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Introduction

Introduction

Suppose we want to obtain information about the winner of a
ballot between two candidates A and B in some political election.

Assume that a representative sample of 100 voters has been
(randomly) chosen. If 62 of them declare to vote for A, can we
conclude that the winner of the ballot will be A?

Of course, we cannot conclude this. In fact, the proportion of A’s
supporters in the sample can be greater than the proportion of A’s
supporters in the population of voters (the electorate).

But, if we know that it is very difficult to have 62 voters for A in a
representative sample of 100 voters, when A has less than 50% of
the voters in the electorate, then we can be quite confident that A
will be the winner of the ballot.



Introduction

Obtaining information on the winner of the election starting from a
sample of voters is what we have called Inferential Statistics.

As a general rule, in order to draw valid inferences about a
population from a sample, one needs to know how likely are
certain events regarding the population.

For example, in the ballot situation, we need to know how likely is
the event "there are 62 voters for A in a sample of 100 voters",
when A has less than 50% of the voters in the electorate.

The determination of the likelihood, or possibility, that an event will
occur is the subject of study of Probability Theory, that is
presented now.

We come back to this question regarding the ballot later on.



Introduction

The word "probability" is a commonly used term that relates to the
possibility that a particular event will occur when some experiment
is performed.

For example, in the experiment given by the flip of a normal coin,
we say that the event "Head appears" has probability 50%.

The basic concepts of Probability Theory are those of
experiment, event and probability that now we introduce.



Experiments with outcomes not known a priori

Experiments with outcomes not known a priori

An experiment is a process that produces an outcome, not
known a priori.

The set of all possible outcomes is called the sample space of
the experiment.

In the following, we denote the sample space by Ω.



Experiments with outcomes not known a priori

The name "sample space" comes from the fact that when we try to
learn about something regarding a population by examining an its
sample of a given size n, first of all we have to accomplish the
experiment of selecting such a sample (the outcome of the
experiment) from the set of all possible sample of size n in the
population. In this particular experiment, it does make sense to
call "sample space" the set of all possible outcomes.

In the ballot example, we select a sample of 100 voters from the
set of all possible samples of 100 voters in the electorate.



Experiments with outcomes not known a priori

Now, we present some examples of experiments.

Example.

I Experiment: first birth in Italy in 2019.

I Outcome: gender of the newborn.

I Sample space:
Ω = {girl, boy} .

Example.

I Experiment: flip two coins.

I Outcome: the pair of the faces shown. It is understood that there
are a first coin and a second coin: the pair outcome has the face
shown by the first coin as first component and the face shown by
the second coin as second component.

I Sample space:
Ω = {H,T}2 = {(H,H) , (H,T ) , (T ,H) , (T ,T )} ,

where H stands for Head and T stands for Tail.



Experiments with outcomes not known a priori

Example.

I Experiment: roll two six-sided dice.

I Outcome: the pair of scores obtained. It is understood that there
are a first die and a second die: the pair outcome has the score of
the first die as first component and the score of the second die as
second component.

I Sample space:
Ω = {1,2,3,4,5,6}2

.

Example.

I Experiment: 100m run at the Olympic Games with 8 runners
denoted by 1,2,3,4,5,6,7,8 (their starting lane).

I Outcome: order of arrival.

I Sample space:

Ω = set of the permutations of 1,2,3,4,5,6,7,8.



Experiments with outcomes not known a priori

In the previous four examples, the sample space was finite. Here
are other two examples where it is infinite. In the first example Ω is
infinite but countable and in the second example Ω is infinite but
uncountable.

Example with Ω infinite but countable.

I Experiment: flip a coin until Head appears.

I Outcome: the sequence of the faces shown.

I Sample space:

Ω =

(T ,T , . . . ,T ,H)︸ ︷︷ ︸
n components

: n ∈ {1,2,3, . . .}

 ∪ {(T ,T ,T , . . .)}



Experiments with outcomes not known a priori

Example with Ω infinite but uncountable

I Experiment: next falling of a meteor on the Earth.

I Outcome: geographic coordinates (longitude and latitude) of the
impact point.

I Sample space:
Ω = (−π, π]×

[
−π

2
,
π

2

]



Experiments with outcomes not known a priori

Observe that for the same experiment we could consider different
outcomes.

For example:

I in the experiment of the two dice, instead of the pair of scores, we
can consider the sum of the scores as the outcome;

I in the 100m run experiment, instead of the order of arrival, we can
consider only the winner as the outcome;

I in the falling meteor experiment, we can consider the geographic
coordinates of the impact point plus the diameter of the crater as
the outcome.

Exercise. Describe the new sample spaces in these three
examples.



Experiments with outcomes not known a priori Events

Events

An event relative to the experiment is a statement that says
something about the outcome.

Example. In the experiment of flipping two coins, an event is the
statement

"the faces shown by the two coins are equal".



Experiments with outcomes not known a priori Events

An event is identified with a subset of Ω: precisely, the statement
A (ω), that says something about the outcome ω ∈ Ω, is identified
with the subset of Ω

{ω ∈ Ω : A (ω)} .

In the experiment of the two coins, the statement

A (ω) = "the faces shown by the two coins are equal" = " ω1 = ω2 "

is identified with

{ω ∈ Ω : A (ω)} = {ω ∈ Ω : ω1 = ω2} = {(H,H) , (T ,T )} .



Experiments with outcomes not known a priori Events

Here are other examples of events in the previous experiments.

In the experiment of the first birth in Italy in 2019, events are

"the newborn is a boy" = {boy}
"the newborn is a girl" = {girl} .

In the experiment of the two coins, an event is

"the first coin shows Head" = {(H,H) , (H,T )} .

In the experiment of the dice, an event is

"the sum of the scores is 7"
=
{

(i , j) ∈ {1,2,3,4,5,6}2 : i + j = 7
}

= {(1,6) , (2,5) , (3,4) , (4,3) , (5,2) , (6,1)} .



Experiments with outcomes not known a priori Events

In the experiment of the 100m run, an event is

"the runner in lane 4 wins the run" = {ω = ω1 . . . ω8 ∈ Ω : ω1 = 4} .

In the experiment of flip a coin until Head appears, an event is

"Head appears within four flips" = {H, (T ,H), (T ,T ,H), (T ,T ,T ,H)}.

In the experiment of the meteor falling, events are

"the meteor falls in the austral hemisphere" = (−π, π]× [−π
2
,0]

"the meteor falls in Italy"

= {(λ, φ) ∈ (−π, π]× [−π
2
,
π

2
] : (λ, φ) is in Italy}.



Experiments with outcomes not known a priori Events

There are two particular events:

I the event Ω, namely a statement A (ω) true for any outcome ω ∈ Ω;

I the event ∅, namely a statement A (ω) false for any outcome ω ∈ Ω.

In the example of the two dice:

I the event "the score of the second die is less than 7" is Ω;

I the event "the sum of scores is 1" is ∅.



Experiments with outcomes not known a priori Events

It is known that statements can be combined by logical operations:
starting with the statements A(ω) and B(ω), one can obtain the
new statements

not A(ω), A(ω) and B(ω), A(ω) or B(ω).

When we interpret the events as subsets of Ω, these logical
operations between events correspond to set theory operations:

Logical operation Set theory operation
not A(ω) Ac = Ω \ A
A(ω) and B(ω) A ∩ B
A(ω) or B(ω) A ∪ B

Exercise. In the dice experiment, consider the events

A = "both scores are odd", B = "the sum of the scores is 6".

Find "not A", "A and B" and "not (A or B)" as subsets of Ω, by
listing their elements.



Experiments with outcomes not known a priori Events

We say that the events A(ω) and B(ω) are disjoint if

∀ω ∈ Ω : ”A (ω) and B (ω) ” is false

and this corresponds to

A ∩ B = ∅

when the events are interpreted as subsets of Ω.



Experiments with outcomes not known a priori Events

Examples.

In the dice experiment, the events

"Both scores are odd" and "The sum of scores is odd"

are disjoint and this corresponds to
{(1, 1) , (1, 3) , (1, 5) , (3, 1) , (3, 3) , (3, 5) , (5, 1) , (5, 3) , (5, 5)}
∩ {(1, 2) , (1, 4) , (1, 6) , (2, 1) , (2, 3) , (2, 5) , (3, 2) , (3, 4) , (3, 6) ,

(4, 1) , (4, 3) , (4, 5) , (5, 2) , (5, 4) , (5, 6) , (6, 1) , (6, 3) , (6, 5)}
= ∅.

In the falling meteor experiment, the events

"The meteor falls in Italy" and "The meteor falls in the austral hemisphere"

are disjoint and this corresponds to{
(λ, φ) ∈ (−π, π]×

[
−π

2
,
π

2

]
: (λ, φ) is in Italy

}
∩ (−π, π]×

[
−π

2
,0
]

= ∅.



Experiments with outcomes not known a priori Events

The relation of implication between the events A(ω) and B(ω), i.e.

∀ω ∈ Ω : A (ω)⇒ B (ω)

corresponds to the relation of inclusion

A ⊆ B

when the events are interpreted as subsets of Ω.



Experiments with outcomes not known a priori Events

Examples.

In the dice experiment, the implication

"Both scores are odd"⇒ "The sum of scores is even"

corresponds to the inclusion

{(1, 1) , (1, 3) , (1, 5) , (3, 1) , (3, 3) , (3, 5) , (5, 1) , (5, 3) , (5, 5)}
⊆ {(1, 1) , (1, 3) , (1, 5) , (2, 2) , (2, 4) , (2, 6) , (3, 1) , (3, 3) , (3, 5) ,

(4, 2) , (4, 4) , (4, 6) , (5, 1) , (5, 3) , (5, 5) , (6, 2) , (6, 4) , (6, 6)} .

In the falling meteor experiment, the implication

"The meteor falls in Italy"⇒ "The meteor falls in the boreal hemisphere"

corresponds to the inclusion{
(λ, φ) ∈ (−π, π]×

[
−π

2
,
π

2

]
: (λ, φ) is in Italy

}
⊆ (−π, π]×

[
0,
π

2

]
.



Experiments with outcomes not known a priori Events

Exercise. In the four examples with Ω finite, how many events are
there?

Exercise. Let A(ω) and B(ω) events. Show that

∀ω ∈ Ω : ”A (ω) and not B (ω) ” is false

is equivalent to A ⊆ B, when the events are interpretated as
subsets of Ω.



Probability

Probability

Consider an experiment with sample space Ω. First, we suppose
that Ω is finite.

A measure of probability for the experiment associates at each
event relative to the experiment a number in [0,1] that measures
the possibility that the event occurs: the larger the number, the
larger the possibility ; 0 denotes that the event surely does not
occur and 1 denotes that the event surely does occur.



Probability

Formally, a measure of probability for the experiment is a function

P : set of the subsets of Ω = set of the events→ R

satisfying the following three properties:

1) positivity: for any event A, P (A) ≥ 0;

2) normalization: P (Ω) = 1;

3) additivity: for any events A,B that are disjoint, i.e. A ∩ B = ∅,

P (A ∪ B) = P (A) + P (B) .

Given a measure of probability P for the experiment and an event
A, the number P (A) is called the probability of A.



Probability

The additivity 3) for two events implies the additivity for an
arbitrary number of events:

I for any events A1,A2, . . . ,An that are disjoint, i.e.

Ai ∩ Aj = ∅ for i , j ∈ {1,2, . . . ,n} with i 6= j ,

we have

P (A1 ∪ A2 ∪ · · · ∪ An) = P (A1) + P (A2) + · · ·+ P (An) .

In fact
P (A1 ∪ A2 ∪ · · · ∪ An)

= P (A1 ∪ (A2 ∪ · · · ∪ An))

= P (A1) + P (A2 ∪ · · · ∪ An)

by 3): A1 ∩ (A2 ∪ · · · ∪ An) = A1 ∩ A2 ∪ · · · ∪ A1 ∩ An = ∅ ∪ · · · ∪ ∅ = ∅
= P (A1) + P (A2 ∪ (A3 ∪ · · · ∪ An))

= P (A1) + P (A2) + P (A3 ∪ · · · ∪ An)

by 3): A2 ∩ (A3 ∪ · · · ∪ An) = A2 ∩ A3 ∪ · · · ∪ A2 ∩ An = ∅ ∪ · · · ∪ ∅ = ∅
= . . .

= P (A1) + P (A2) + · · ·+ P (An) .



Probability

Assume now the general situation where Ω is an arbitrary set,
which can be finite, infinite countable or infinite uncountable.

In this general situation we have to replace, in the above definition
of measure of probability, the additivity property 3) with

I for any sequence of events A1,A2,A3, . . . that are disjoint, i.e.

Ai ∩ Aj = ∅ for i , j ∈ {1,2,3, . . .} with i 6= j

we have

P

(∞⋃
i=1

Ai

)
=
∞∑
i=1

P (Ai ) .

Unlike the case with Ω finite, where there are only a finite number
of events (subsets of Ω) and so the previous additivity property for
an arbitrary finite number of events is sufficient, in the case of Ω
infinite there are an infinite number of events and so a new
additivity property for an infinite number of events is required.



Probability

When Ω is infinite uncountable another difficulty appears.

Consider the experiment of the falling meteor, where the infinite
uncountable sample space of the geographic coordinates

Ω = (−π, π]×
[
−π

2
,
π

2

]
is the surface S of the Earth, considered spherical.

It is reasonable to assign the following measure of probability: for
any event B, i.e. for any B subset of S,

P (B) =
area(B)

area(S)
.

Observe that B is the event "ω ∈ B", i.e. "the meteor falls in B",
and so P(B) is the probability that the meteor falls in B.



Probability

However, the Banach-Tarski paradox holds : S can be
disassembled in a finite number of disjoint subsets B1,B2, . . . ,Bn
of S and, under suitable rotations and translations, they can be
reassembled in two identical copies of S.

Since the area is invariant under rotations and translations and the
area of the union of disjoint sets is the sum of the areas, we
conclude that

area(S) = area(B1) + area(B2) + · · ·+ area(Bn) = 2 · area(S).

Absurd! This means that such subsets B1,B2, . . . ,Bn of S cannot
have an area and, as a consequence, a probability.



Probability

Conclusion: when Ω is infinite uncountable, we cannot pretend
that every subset of Ω is an event, where for an event we mean a
subset of Ω to which can be assigned a probability.

In the general case, where Ω is any set, first to assign a measure
of probability, we have to introduce a suitable family of subset of
Ω, called a σ-algebra of subsets of Ω.

The events are then the elements of the σ-algebra.



Probability

A σ-algebra of subsets of Ω is a family F of subsets of Ω such
that

I Ω ∈ F ;

I F is closed with respect to the complementation: for any A ∈ F , we
have Ac ∈ F ;

I F is closed with respect to the countable union: for any sequence
A1,A2,A3, . . . ∈ F we have

∞⋃
i=1

Ai ∈ F .



Probability

Given a σ−algebra F of subset of Ω, the previous properties imply
these other properties:

I ∅ ∈ F .

Proof: ∅ = Ωc and Ω ∈ F ⇒ Ωc = ∅ ∈ F .

I F is closed with respect to the countable intersection: for any
sequence A1,A2,A3, . . . ∈ F , we have

∞⋂
i=1

Ai ∈ F .

Proof: by the De Morgan’s laws
∞⋂
i=1

Ai =

(
∞⋃
i=1

Ac
i

)c

.

and

A1,A2,A3, . . . ∈ F ⇒ Ac
1,A

c
2,A

c
3, . . . ∈ F ⇒

∞⋃
i=1

Ac
i ∈ F

⇒
∞⋂
i=1

Ai =

(
∞⋃
i=1

Ac
i

)c

∈ F .



Probability

I F is closed with respect to the finite union: for any finite sequence
A1,A2, . . . ,An ∈ F , we have

n⋃
i=1

Ai ∈ F .

Proof: by setting An+1 = An+2 = An+3 = · · · = ∅, we have
A1,A2,A3, . . . ∈ F and

A1,A2,A3, . . . ∈ F ⇒
n⋃

i=1

Ai =
∞⋃
i=1

Ai ∈ F .

I F is closed with respect to the finite intersection: for any finite
sequence A1,A2, . . . ,An ∈ F , we have

n⋂
i=1

Ai ∈ F .

Proof: by setting An+1 = An+2 = An+3 = · · · = Ω, we have
A1,A2,A3, . . . ∈ F and

A1,A2,A3, . . . ∈ F ⇒
n⋂

i=1

Ai =
∞⋂
i=1

Ai ∈ F .



Probability

I F is closed with respect to the set difference, i.e. for any A,B ∈ F ,
we have

A \ B = {ω ∈ A : ω /∈ B} ∈ F .

Proof: we have A \ B = A ∩ Bc and

A,B ∈ F ⇒ A,Bc ∈ F ⇒ A \ B = A ∩ Bc ∈ F .



Probability

Now, we are ready to introduce the notions of event and measure
of probability in the general case, where Ω is any set.

Definition
Given an experiment of sample space Ω, we define events of the
experiment the elements of a some prefixed σ−algebra F of subsets
of Ω and we define a measure of probability for the experiment a
function

P : F = set of events→ R

satisfying the following three properties:
1) positivity: for any event A, we have P (A) ≥ 0;
2) normalization: P (Ω) = 1;
3) countable additivity: for any sequence of events A1,A2,A3, . . .

that are disjoint, we have

P

(∞⋃
i=1

Ai

)
=
∞∑
i=1

P (Ai ) .



Probability Borel subsets

Borel subsets
We say that:

I Ω is discrete if it is finite or infinite countable;

I Ω is continuous if

Ω = I1 × I2 × · · · × Id ⊆ Rd ,

where I1, I2, . . . , Id are intervals of R not reduced to points.

Note that if Ω is continuous, then it is infinite uncountable.

When Ω is discrete, we consider as events all the subset of Ω, i.e.
we use the σ−algebra

F = family of all subsets of Ω.

When Ω is continuous, we use the σ−algebra

F = family of the Borel subsets of Ω.



Probability Borel subsets

The Borel subsets of Ω = I1 × I2 × · · · × Id are the subsets of Ω
that can be obtained starting from the closed boxes

[a1,b1]× [a2,b2]× · · · × [ad ,bd ] ,

where [ak ,bk ] ⊆ Ik , k ∈ {1, . . .d}, by repeated applications of the
operations of complementation

A 7→ Ac

and countable union

A1,A2,A3, . . . 7→
∞⋃

i=1

Ai .

In other words, if A is a Borel subset, then Ac is a Borel subset by
definition; if A1,A2,A3, . . . are Borel subsets, then

⋃∞
i=1 Ai is a

Borel subset by definition.



Probability Borel subsets

The family of the Borel subsets is clearly a σ−algebra of subsets
of Ω.

In fact:

I The family contains ∅ and so it contains also Ω = ∅c , in fact ∅ is a
particular closed box: if ak > bk for some k ∈ {1, . . . ,d}, then
[ak ,bk ] = ∅ and so

[a1,b1]× [a2,b2]× · · · × [ad ,bd ] = ∅.

I by definition the family is closed with respect to complementation
and countable union.



Probability Borel subsets

Starting from Borel subsets, we can obtain new Borel subsets, not
only by complementation and countable union, but also by
countable intersection, finite union, finite intersection and set
difference.

In fact, these last four operations can be reproduced by using
complementation and countable union:

A1,A2,A3, . . . 7→
∞⋂
i=1

An =

(
∞⋃

n=1

Ac
n

)c

A1,A2, . . .An,An+1 = ∅,An+2 = ∅ . . . 7→
n⋃

i=1

Ai =
∞⋃
i=1

Ai

A1,A2, . . .An,An+1 = Ω,An+2 = Ω, . . . 7→
n⋂

i=1

Ai =
∞⋂
i=1

Ai

A,B 7→ A \ B = A ∩ Bc .



Probability Borel subsets

Consider the bidimensional case d = 2. We have Ω = I1 × I2 and
the closed boxes [a1,b1]× [a2,b2] with [a1,b1] ⊆ I1 and
[a2,b2] ⊆ I2.

Particular closed boxes are:

I the empty set: for a1 > b1 or a2 > b2;

I points: for a1 = b1 and a2 = b2;

I horizontal or vertical closed segments: for a2 = b2 or a1 = b1.



Probability Borel subsets

Horizontal or vertical open segments are Borel subsets: they are
obtained by subtracting to the horizontal or vertical closed
segments (that are Borel subsets) the end points (that are Borel
subsets).

A closed box (that is a Borel subset) minus some of the vertex
points (that are Borel subsets) or some of the horizontal or vertical
open segments sides of the box (that are Borel subsets) is a Borel
subset.

For example, an open box (a1,b1)× (a2 × b2) is a Borel subset,
since it is the closed box [a1,b1]× [a2 × b2] minus the four vertex
points and the four open segment sides.



Probability Borel subsets

The trapezium T1, that does not include the slanting upper border,
is a Borel subset: we have

T1 =
∞⋃

n=1

(Bn,1 ∪ Bn,2 ∪ · · · ∪ Bn,2n−1 ),

where Bn,1,Bn,2, . . . ,Bn,2n−1 are closed boxes, whose basis length
is b−a

2n−1 , without the vertex points on the slanting upper border.

Exercise. If the vertex points on the slanting upper border are not
excluded, do we obtain T1 with the border as the countable union?



Probability Borel subsets

The trapezium T2, that includes the slanting upper border, is a
Borel subset: we have

T2 =
∞⋂

n=1

(Bn,1 ∪ Bn,2 ∪ · · · ∪ Bn,2n−1 ),

where Bn,1,Bn,2, . . . ,Bn,2n−1 are closed boxes, whose basis length
is b−a

2n−1 .

The slanting segment T2 \ T1 is a Borel subset. So, any segment,
horizontal or vertical or slanting, is a Borel subset.



Probability Borel subsets

Triangles are Borel subsets:

A = (A ∪ B ∪ C) \ (B ∪ C)

where A ∪ B ∪ C, B and C are trapeziums.



Probability Borel subsets

Polygons are Borel subsets: they are finite unions of triangles.



Probability Borel subsets

Curved geometric figures are Borel subsets: they are countable
union of polygons or countable intersection of polygons.

For example, an open circle is the countable union of open regular
polygons inscribed on it.

Similarly, a closed circle is the countable intersection of closed
regular polygons circumscribed to it.



Probability Borel subsets

In the general d−dimensional case, the Borel subsets of
Ω = I1 × I2 × · · · × Id are the subsets of Ω to which we can assign
a measure:

I for d = 1, measure means length;

I for d = 2, measure means area;

I for d = 3, measure means volume.

I for a general d , the measure measure(A) of a Borel subset A of Ω,
which is a d−dimensional area or volume of A, is given by

measure(A) =

∫
x∈A

dx .

More about this later.



Probability Interpretation of the probability

Interpretation of the probability
In the previous definition of a measure of probability for an
experiment, we have introduced the concept of probability in an
axiomatic manner, giving the properties to be satisfied by what is
called a measure of probability.

But, what is the real meaning of the concept of probability?

There are two interpretations of the probability:

I the frequentist interpretation;

I the bayesian interpretation.

The adjective "bayesian" comes from the English statistician,
philosopher and Presbyterian minister Thomas Bayes
(1701-1761).



Probability Interpretation of the probability

In the frequentist interpretation of the probability, the
probability P (A) of an event A is defined in the following manner.

Imagine to repeat the experiment a very large number n of times,
all repetitions of the experiment carried out in the same
conditions.

Let ωobs
1 , ωobs

2 , . . . , ωobs
n be the observed outcomes in these n

ripetitions. We set,

P (A) = Long Time Relative Frequency of A

:=

∣∣{i ∈ {1,2, . . . ,n} : A
(
ωobs

i

)}∣∣
n

=
number of times that A occurs

n
.



Probability Interpretation of the probability

To avoid the problem of how large has to be n, we can define

P (A) = lim
n→∞

number of times that A occurs
n

,

but now we have to postulate the existence of such a limit.

Exercise. Verify that this definition of probability satisfies the three
properties of positivity, normalization and additivity in the definition
of a measure di probability.



Probability Interpretation of the probability

Example: experiment of flipping a coin with Ω = {H,T}. In the
frequentist interpretation, say that the event

"H appears" = {H}

has probability 1
2 means:

I if we repeat n times with n large the experiment of flipping that coin,
the relative frequency of the occurrences of H is close to 1

2 and
tends to 1

2 as n→∞.



Probability Interpretation of the probability

The frequentist interpretation of the probability can be
successfully applied to the experiments of flipping a coin or rolling
a die, but it is quite difficult to apply it at the Olympic Games 100m
run, since it is a unique situation that cannot be repeated in the
same conditions (as any sport situation).

In this situation the bayesian interpretation works better.

In the bayesian interpretation of the probability, the probability
P (A) of an event A is interpreted as a "degree of belief" in the
statement A, rather than a Long Time Relative Frequency of A.

Unlike the frequentist interpretation, the bayesian interpretation
does not define what is a probability, but it tries to give a meaning
to the probability introduced in the axiomatic manner.



Probability Interpretation of the probability

Example: experiment of flipping a coin with Ω = {H,T}. In the
bayesian interpretation, say that the event

A = "Head appears" = {H}

has probability 1
2 means:

"The degree of belief" that H occurs is the same as the "degree of
belief" that T occurs.

In the bayesian intepretation, the probability "degree of belief"
P(A) = m

n of an event A, where m and n are positive integer with
m ≤ n, has the following meaning: to say that A occurs is like to
say that a red ball is picked when a ball is randomly selected from
an urn with n balls, where m are red and m − n are black.



Probability Interpretation of the probability

Implicit in the bayesian interpretation of the probability is the fact
that the measure of probability depends on the available
information.

Example: in the experiment of the 100m run at the Olympic
Games:

I if one does not know who are the runners, she/he can assign
"degree of belief" 1

8 to the event "the runner at lane 4 wins";

I but, she/he will change this "degree of belief" if it is known that the
runner at lane 4 is Usain Bolt.



Probability Interpretation of the probability

In the bayesian interpretation, the measure of probability for the
experiment is subjective: each person assigns own probabilities to
the events, probabilities that are based on own information as well
as personal convictions.

On the other hand, in the frequentist interpretation it is objective:
all people assign the same probabilities, probabilities that are
based on repetitions of the experiment.



Probability Interpretation of the probability

Exercise. In the experiment of rolling a die with Ω = {1, . . . ,6}, what
does it mean in the two interpretations say that the events
"the score is 1", . . . , "the score is 6" have all probability 1

6 ?

Exercise. In the following cases, say which interpretation of the
probability is more appropriate (explain the meaning of the statements to
someone that does not know probability).

I The probability to select a jolly from a normal deck of playcards is 2
54 .

I The p. that Juventus will win the 2018-2019 Champions League is 50%.

I The p. that the patient will recover from the disease is 80%.

I The p. that tomorrow Sap’s stocks will increase their value over 5% is 90%.

I The p. that next car passing along this street is red is 5%.

I The p. that tomorrow will rain is 90%.

I The p. that the International Space Station will have a malfunction within
one month is 10%.

I The p. that the life time of the lamp will be less then one year is 10%.
I The p. that the defendant is guilty is 99%.



Probability Properties of the probability

Properties of the probability

Let P be a measure of probability for an experiment with sample
space Ω and σ−algebra of the events F .

Starting from the three properties in the definition of a measure of
probability, we can prove these other nine properties of P.



Probability Properties of the probability

4) P (∅) = 0.

Proof of 4). Let A1 = ∅,A2 = ∅,A3 = ∅, . . ., so that A1,A2,A3, . . . are
disjoint and

∞⋃
i=1

Ai = ∅. By the countable additivity, we have

P(∅) = P

(∞⋃
i=1

Ai

)
=
∞∑
i=1

P (Ai ) =
∞∑
i=1

P (∅) .

The equation

P(∅) =
∞∑
i=1

P (∅)

holds only if P (∅) = 0. Exercise. Why? What happens if P(∅) > 0?



Probability Properties of the probability

5) Finite additivity: for any events A1,A2, . . . ,An that are disjoint,
we have

P (A1 ∪ A2 ∪ · · · ∪ An) = P (A1) + P (A2) + · · ·+ P (An) .

Proof of 5). Let An+1 = ∅,An+2 = ∅,An+3 = ∅, . . ., so that A1,A2,A3, . . .
are disjoint and

∞⋃
i=1

Ai = A1 ∪ A2 ∪ · · · ∪ An.

By the countable additivity and 4), we have

P(A1 ∪ A2 ∪ · · · ∪ An) = P

(∞⋃
i=1

Ai

)
=
∞∑
i=1

P (Ai )

=
n∑

i=1

P (Ai ) +
∞∑

i=n+1

P (∅)︸︷︷︸
=0

= P (A1) + P (A2) + · · ·+ P (An) .



Probability Properties of the probability

Exercise. Prove that, in case of Ω finite, the countable additivity
and the finite additivity are equivalent. As a consequence we have
that, in case of Ω finite, the additivity (finite additivity with two
events) is equivalent to the countable additivity. Why?



Probability Properties of the probability

6) Difference property: for any events A and B with A ⊆ B, we
have

P (B \ A) = P(B)− P (A) .

Proof of 6). A and B \ A = Ac ∩ B are disjoint with A ∪ (B \ A) = B.

By the finite additivity 5), we have P(A) + P(B \ A) = P(B).



Probability Properties of the probability

7) For any event A, we have

P (Ac) = 1− P (A) .

Proof of 7). Take B = Ω in the difference property 6). We have
B \A = Ω \A = Ac and, by normalization, P(B) = P(Ω) = 1 and so

P(Ac) = P(Ω)− P(A) = 1− P(A).



Probability Properties of the probability

8) For any event A, we have P (A) ≤ 1.

Proof of 8). By positivity we have P(Ac) ≥ 0 and so, by 7),

P(A) = 1− P(Ac) ≤ 1.



Probability Properties of the probability

9) For any events A and B with A ⊆ B, we have P (A) ≤ P (B).

Proof of 9). By positivity we have P(B \ A) ≥ 0 and so, by the
difference property 6),

0 ≤ P(B \ A) = P(B)− P(A).



Probability Properties of the probability

10) Inclusion-exclusion principle: for any events A and B, we
have

P (A ∪ B) = P (A) + P (B)− P (A ∩ B) .

Proof of 10). A ∩ Bc , A ∩ B and Ac ∩ B are disjoint. We have

(A ∩ Bc) ∪ (A ∩ B) = A and then P(A ∩ Bc) + P(A ∩ B) = P(A)

(A ∩ B) ∪ (Ac ∩ B) = B and then P(A ∩ B) + P(Ac ∩ B) = P(B)

(A ∩ Bc) ∪ (A ∩ B) ∪ (A ∩ Bc) = A ∪ B
and then P(A ∩ Bc) + P(A ∩ B) + P(Ac ∩ B) = P(A ∪ B).

by using the finite additivity 5). Thus

P(A ∪ B) = P(A ∩ Bc) + P(A ∩ B) + P(Ac ∩ B)

= P(A)− P(A ∩ B) + P(A ∩ B) + P(B)− P(A ∩ B)

= P (A) + P (B)− P (A ∩ B) .



Probability Properties of the probability

11) Upper monotone convergence: for any sequence
A1,A2,A3, . . . of events such that

A1 ⊆ A2 ⊆ A3 ⊆ . . . ( and then P(A1) ≤ P(A2) ≤ P(A3) ≤ . . .)

we have

P

(∞⋃
i=1

Ai

)
= lim

i→∞
P(Ai) = sup

i∈{1,2,3,...}
P(Ai).

12) Lower monotone convergence: For any sequence
A1,A2,A3, . . . of events such that

A1 ⊇ A2 ⊇ A3 ⊇ . . . ( and then P(A1) ≥ P(A2) ≥ P(A3) ≥ . . .)

we have

P

(∞⋂
i=1

Ai

)
= lim

i→∞
P(Ai) = inf

i∈{1,2,3,...}
P(Ai).



Probability Properties of the probability

Proof of 11). Define

B1 = A1 and Bk+1 = Ak+1 \
k⋃

i=1

Ai = Ak+1 \ Ak , k ∈ {1, 2, 3, . . .}.

The events B1,B2,B3, . . . are
disjoint with

k⋃
i=1

Bi = Ak , k ∈ {1, 2, 3, . . .}, and
∞⋃
i=1

Bi =
∞⋃
i=1

Ai .

Thus, by countable and finite additivity we have

P

(
∞⋃
i=1

Ai

)
= P

(
∞⋃
i=1

Bi

)
=
∞∑
i=1

P (Bi ) = lim
k→∞

k∑
i=1

P (Bi ) = lim
k→∞

P

(
k⋃

i=1

Bi

)
= lim

k→∞
P (Ak ) .



Probability Properties of the probability

Proof of 12). We have, by 7),

P

(∞⋂
i=1

Ai

)
= 1− P

((∞⋂
i=1

Ai

)c)
= 1− P

(∞⋃
i=1

Ac
i

)
.

By A1 ⊇ A2 ⊇ A3 ⊇ . . ., we obtain

Ac
1 ⊆ Ac

2 ⊆ Ac
3 ⊆ . . . .

Thus, by the upper monotone convergence 11) and 7), we have

P

(∞⋃
i=1

Ac
i

)
= lim

i→∞
P(Ac

i ) = lim
i→∞

(1− P(Ai )) = 1− lim
i→∞

P(Ai )

and so

P

(∞⋂
i=1

Ai

)
= 1− P

(∞⋃
i=1

Ac
i

)
= 1−

(
1− lim

i→∞
P(Ai )

)
= lim

i→∞
P(Ai ).



Probability Probability as area

Probability as area

Previously, we have seen that in case of a continuous sample
space Ω ⊆ Rd , the events are the Borel subsets: this means that
the subset of Ω to which we assign a probability are exactly those
to which we can assign a measure, i.e. a d−dimensional area or
volume.

Indeed, for a general sample space, the probability of an event
can be thought as an "area" (or "volume") of the event, normalized
in order to have "area" of the sample space equal to 1.

In fact, a measure of probability has the same properties as the
area (or the volume) has.

Here are some examples of this.



Probability Probability as area

A1,A2,A3,A4 disjoint ⇒ P(A1 ∪ A2 ∪ A3 ∪ A4) = P(A1) + P(A2) + P(A3) + P(A4).



Probability Probability as area

P(A) + P(Ac) = P(Ω).



Probability Probability as area

A ⊆ B ⇒ P(A) ≤ P(B).



Probability Probability as area

Indeed, the abstraction of the notion of "area" or "volume" is the
notion of "measure".

Given a set Ω and a σ−algebra F of subsets of Ω, we define a
measure for the subsets in F a function

m : F → R

satisfying the properties of positivity and countable additivity.

So, a measure of probability is a measure with the normalization
m(Ω) = 1.

A measure satisfies all the previous properties of probability from
4) to 12): in 7) and 8) substitute 1 with P(Ω).



Probability for experiments with discrete sample space

Probability for experiments with discrete sample space

Consider an experiment with a discrete sample space Ω.

The events

A(ω) = "the outcome x is obtained" = "ω = x" = {x} , x ∈ Ω,

are called elementary events.



Probability for experiments with discrete sample space

In case of a discrete sample space, we can generate a measure
of probability in the following way.

Given a function p : Ω→ [0,+∞) such that∑
x∈Ω

p(x) = 1,

we assign the probabilities of the elementary events:

P (x) = p(x), x ∈ Ω,

where P (x) stands for P ({x}).

Once we have assigned a probability to each elementary event,
for each event A ⊆ Ω, we have, by finite or countable additivity,

P (A) = P

(⋃
x∈A

{x}

)
=
∑
x∈A

P (x) =
∑
x∈A

p(x).



Probability for experiments with discrete sample space

Exercise. Above we have proved that if P is a measure of
probability such that

P(x) = p(x), x ∈ A, (1)

then, for any event A ⊆ Ω,

P(A) =
∑
x∈A

p(x). (2)

In other words, we have proved that, if there exists, there is a
unique measure of probability P such that (1) holds and it is given
by (2).
To complete our discussion, prove that the function
P : family of all subsets of Ω→ R given by

A 7→ P(A) =
∑
x∈A

p(x), A ⊆ Ω,

is a measure of probability. This shows that indeed there exists a
measure of probability such that (1) holds.



Probability for experiments with discrete sample space

In case of Ω finite and

p(x) =
1
|Ω|

, x ∈ Ω,

i.e. all the outcomes have the same probability to be obtained, we
have

P (A) =
∑
x∈A

p(x) =
∑
x∈A

1
|Ω|

=
|A|
|Ω|

, A ⊆ Ω.

This is what is called classical probability: the probability of an
event is simply the ratio

number of favorable outcomes
number of total outcomes

where for a favorable outcome we mean an outcome for which the
event is true.



Probability for experiments with discrete sample space

Now, we present measures of probability for the previous
experiments with discrete sample space.

In the experiment of the first birth in 2019 in Italy, it is reasonable
to assume

P (girl) = P (boy) =
1
|Ω|

=
1
2
.

In the experiment of flipping two coins, it is reasonable to assume

P ((H,H)) = P ((H,T )) = P ((T ,H)) = P ((T ,T )) =
1
|Ω|

=
1
4
,

for two regular coins.

In the experiment of rolling two dice, it is reasonable to assume

P ((i , j)) =
1
|Ω|

=
1
36
, (i , j) ∈ Ω = {1,2,3,4,5,6}2 ,

for two regular dice.



Probability for experiments with discrete sample space

In the experiment of the 100m run at the Olympic Games, it is
reasonable assume

P (x) =
1
|Ω|

=
1
8!
, x permutation of 1,2,3,4,5,6,7,8,

if one does not know who are the runners, but it is unreasonable if
one knows that Usain Bolt is one of the runners.

In the experiment of flipping a regular coin until Head appears, it is
reasonable to assume

P

T , . . . ,T︸ ︷︷ ︸
n−1 times

,H

 =
1
2n , n ∈ {1,2,3, . . .} ,

P ((T ,T ,T , . . .)) = 0.



Probability for experiments with discrete sample space

Exercise. Prove that in case of Ω discrete and infinite, the
probabilities p(x), x ∈ Ω, of the elementary events cannot be all
equal.

Exercise. In the experiment of the 100m run at the Olympic
Games, assume

P (x) =
1
|Ω|

=
1
8!
, x permutation of 1,2,3,4,5,6,7,8.

What is the probability of the event "the runner at lane 4 wins"?

Exercise. Prove that in the experiment of flipping a regular coin
until Head appears, we have∑

x∈Ω

p(x) = 1.

Moreover, explain why the probabilities of the elementary events
given for this experiment are reasonable. Finally, compute the
probability that Head appears after an even number of flips.



Probability for experiments with discrete sample space Some problems of probability

Some problems of probability

Now, we present some problems of computation of probabilities
for experiments such that:

I the sample space is finite;

I all the outcomes have the same probability to be obtained and so
we are in the context of classical probability.



Probability for experiments with discrete sample space Some problems of probability

Problem 1. Assume that the engineering freshmen at the
University of Trieste are 420: 144 are smokers and 276 are not. If
a freshman is randomly selected, what is the probability that
she/he is a smoker?

Experiment: selection of an engineering freshman.

Outcome: the selected engineering freshman.

Sample space: set of the engineering freshmen.

Measure of probability: the fact that the engineering freshman is
"randomly selected" means that all the elementary events have
the same probability

1
|Ω|

=
1

420
.



Probability for experiments with discrete sample space Some problems of probability

Therefore, the event

A = "the selected freshman is a smoker"
= {ω ∈ Ω : ω is a smoker}

has probability

P (A) =
|A|
|Ω|

=
144
420

= 0.3429 = 34.29%.



Probability for experiments with discrete sample space Some problems of probability

Problem 2. Suppose that two regular dice are rolled. What is the
probability that the sum of the scores is s, where s ∈ {2, . . . ,12}?

Experiment: roll of the two dice.

Outcome: the pair of the scores.

Sample space:
Ω = {1,2,3,4,5,6}2 .

Measure of probability: the fact that the dice are "regular" means
that all the elementary events have the same probability

1
|Ω|

=
1

36
.



Probability for experiments with discrete sample space Some problems of probability

Therefore, the event

A = "the sum of the scores is s"
= {(i , j) ∈ Ω : i + j = s}
= {(i , s − i) : 1 ≤ i ≤ 6 and 1 ≤ s − i ≤ 6}
= {(i , s − i) : 1 ≤ i ≤ 6 and s − 6 ≤ i ≤ s − 1}
= {(i , s − i) : max {1, s − 6} ≤ i ≤ min {6, s − 1}}

has probability

P (A) =
|A|
|Ω|

=
min {6, s − 1} −max {1, s − 6}+ 1

36

=


s−1−1+1

36 if s − 1 ≤ 6 ( i.e. s − 6 ≤ 1)

6−(s−6)+1
36 if s − 1 > 6 ( i.e. s − 6 > 1)

=


s−1
36 if s ≤ 7

13−s
36 if s > 7.



Probability for experiments with discrete sample space Some problems of probability

So, we have the following table of probabilities
s P (" The sum of the scores is s ")
2 1

36

3 2
36

4 3
36

5 4
36

6 5
36

7 6
36

8 5
36

9 4
36

10 3
36

11 2
36

12 1
36

where it appears that the most probable sum of scores is 7 with
probability 1

6 .

Exercise. What is the probability that the sum of the scores is
larger than 6?



Probability for experiments with discrete sample space Some problems of probability

Problem 3. Given 10 married couples, the women are grouped
and the men are grouped. Then a woman and a man are
randomly and independently selected. What is the probability that
the selected woman and man are married to each other?

Experiment: selection of a woman in the group of the women and
of a man in the group of men.

Outcome: the pair (selected woman, selected man).

Sample space:

Ω = set of the women× set of the men.

Measure of probability: the fact that a woman and a man are
"randomly and independently selected" means that all the
elementary events have the same probability

1
|Ω|

=
1

|set of the women| · |set of the men|
=

1
10 · 10

=
1

100
.



Probability for experiments with discrete sample space Some problems of probability

Therefore, the event

A = "the selected woman and man are married to each other"
= {(w ,m) ∈ Ω : w and m are married }

has probability

P (A) =
|A|
|Ω|

=
10

100
=

1
10
.

Exercise. A person is said mature if she/he is 50 or more years
old. Assume that there are 4 mature women and 7 mature men.
What is the probability that in the selected pair the woman is
mature and the man is not.



Probability for experiments with discrete sample space Some problems of probability

Problem 4. A shop accepts, as credit cards, American Express or
VISA. A total of 22 percent of customers have an American
Express card, 58 percent have a VISA card and 14 percent have
both. What is the probability that the next customer entering the
shop, i.e. a randomly selected customer, can pay by credit card in
this shop?

Experiment: selection of a customer.

Outcome: the selected customer.

Sample space: the set of customers.

Measure of probability: all the elementary events have the same
probability 1

|Ω| .



Probability for experiments with discrete sample space Some problems of probability

The events

A = "the selected customer has an Amexican Express card"
= {ω ∈ Ω : ω has an Amexican Express card}

B = "the selected customer has a VISA card"
= {ω ∈ Ω : ω has a VISA card}

A ∩ B = "the selected customer has both cards"
= {ω ∈ Ω : ω has both cards}

have probabilities

P (A) =
|A|
|Ω|

= 22%

P (B) =
|B|
|Ω|

= 58%

P (A ∩ B) =
|A ∩ B|
|Ω|

= 14%.



Probability for experiments with discrete sample space Some problems of probability

Therefore, the event

A ∪ B = "the selected customer can pay by credit card in this shop"
= {ω ∈ Ω : ω has an American Express card or a VISA card}

has probability

P (A ∪ B) = P (A) + P (B)− P (A ∩ B)

= 22% + 58%− 14% = 66%.

Exercise. What is the probability that the selected customer has a
Visa card and not an American Express card.

Exercise. In a wardrobe, the trousers have zip or buttons and
some of them are jeans. Over all trousers, the percentage of jeans
is 100p%, p ∈ [0,1], and the percentage of trousers with zip is
100q%, q ∈ [0,1]. Trousers have zip or are jeans. What is the
probability that a randomly selected trousers is a jeans with zip?



Probability for experiments with discrete sample space Some problems of probability

Problem 5. Consider the following table of earning in US in 1989

Consider the experiment where a worker is randomly selected.



Probability for experiments with discrete sample space Some problems of probability

What is the probability of the event

A = ”the selected worker is a woman”?

We have

P(A) =
|A|
|Ω|

=
31340K

31340K + 49678K
= 0.3868.

What is the probability of the event

B = ”the selected worker is a man”?

We have B = Ac and

P(B) = P(Ac) = 1− P(A) = 1− 0.3868 = 0.6132.



Probability for experiments with discrete sample space Some problems of probability

What is the probability of the event

C = ”the selected worker is a woman and she earns
over 50,000 dollars”?

We have

P(C) =
|C|
|Ω|

=
8255K + 947K

31340K + 49678K
= 0.1136.

Exercise. Compute the probability of the events

D = ”the selected worker is a man and he earns
over 50,000 dollars”

and

E = ”the selected worker earns over 50,000 dollars”.



Probability for experiments with discrete sample space Some problems of probability

Exercise. Suppose that the column "Numbers" in the previous
table is erased, except for the totals. Compute the probability that
the selected worker is in a given earning group with percentages
100p% (women) and 100q% (men) in the column "Distribution
(percent)".



Probability for experiments with continuous sample space

Probability for experiments with continuous sample
space

Consider an experiment with a continuous sample space

Ω = I1 × I2 × · · · × Id ⊆ Rd ,

where I1, I2, · · · , Id are intervals of R not reduced to points.

In case of a continuous sample space, we can generate a
measure of probability in the following way.



Probability for experiments with continuous sample space

Given an integrable function p : Ω→ [0,+∞) such that∫
x∈Ω

p(x)dx =

∫
x∈I1×I2×...×Id

p(x)dx

=

∫
I1

∫
I2
· · ·
∫

Id
p(x1, x2, . . . , xd )dxd · · · dx2dx1 = 1

we assign to a closed box

[a1,b1]× [a2,b2]× · · · × [ad ,bd ] ⊆ Ω,

where [ak ,bk ] ⊆ Ik , k ∈ {1, . . . ,d}, the probability

P ([a1,b1]× [a2,b2]× · · · × [ad ,bd ])

=

∫
x∈[a1,b1]×[a2,b2]×···×[ad ,bd ]

p(x)dx

=

∫ b1

a1

∫ b2

a2

· · ·
∫ bd

ad

p(x1, x2, . . . , xd )dxd · · · dx2dx1.

The closed boxes play the same role as the elementary events in
case of a discrete sample space.



Probability for experiments with continuous sample space

Once we have assigned the probabilities of the closed boxes, by
using the properties of a measure of probability we can assign a
probability to all Borel subsets in an incremental manner, i.e. in
the same manner with which the Borel subsets are constructed,

In fact, we can proceed as follows.

I Given disjoint Borel subsets A1,A2, . . . ,An whose probabilities are
assigned, we can assign a probability to the new Borel subset

⋃n
i=1 Ai by

the finite additivity property: P
(⋃n

i=1 Ai
)

=
∑n

i=1 P (Ai ) .
I Given disjoint Borel subsets A1,A2,A3, . . . whose probabilities are

assigned, we can assign a probability to the new Borel subset
⋃∞

i=1 Ai by
the countable additivity property: P

(⋃∞
i=1 Ai

)
=
∑∞

i=1 P (Ai ) .
I Given Borel subsets A and B with A ⊆ B whose probabilities are assigned,

we can assign a probability to the new Borel subset B \ A by the difference
property: P (B \ A) = P (B)− P (A).

I Given Borel subsets A1,A2,A3, . . . such that A1 ⊆ A2 ⊆ A3, . . . whose
probabilities are assigned, we can assign a probability of the new Borel
subset

⋃∞
i=1 Ai by the upper convergence property:

P
(⋃n

i=1 Ai
)

= limi→∞ P (Ai ) . An analogous consideration holds for the
lower convergence property.



Probability for experiments with continuous sample space

Example:



Probability for experiments with continuous sample space

In this manner, we assign to each Borel subset A of Ω the
probability

P (A) =

∫
x∈A

p(x)dx .

In other words, what we have done is to define and construct the
integral of p on arbitrary Borel subsets of Ω starting from the
integrals of p on closed boxes∫

x∈[a1,b1]×[a2,b2]×···×[ad ,bd ]

p(x)dx

=

∫ b1

a1

∫ b2

a2

· · ·
∫ bd

ad

p(x1, x2, . . . , xd )dxd · · · dx2dx1,

which can be easily computed by nested one-dimensional
integrals on intervals.



Probability for experiments with continuous sample space

Exercise. Above we have proved that if P is a measure di
probability such that

P ([a1, b1]× [a2, b2]× · · · × [ad , bd ]) =

∫
x∈[a1,b1]×[a2,b2]×···×[ad ,bd ]

p(x)dx (3)

for any closed box
[a1, b1]× [a2, b2]× · · · × [ad , bd ] ⊆ Ω,

then, for any Borel subset A of Ω,

P (A) =

∫
x∈A

p(x)dx . (4)

In other words, we have proved that, if there exists, there is a
unique measure of probability P such that (3) holds and it is given
by (4).
To finish our discussion, prove that the function

A Borel subset of Ω 7→ P (A) =

∫
x∈A

p(x)dx

is a measure of probability. This shows that indeed there exists a
measure of probability such that (3) holds.



Probability for experiments with continuous sample space

Observe that if a Borel subset A of Ω has dimension smaller than
the dimension d of Ω, then

P (A) =

∫
x∈A

p(x)dx = 0.

Then:

I For d = 2, points and curves included in Ω have probability zero.

I For d = 3, points, curves and surfaces in Ω have probability zero.



Probability for experiments with continuous sample space

In case of a continuous sample space Ω, the elementary events

"ω = x" = {x}, x ∈ Ω,

have probability zero since they are points.

But, we can say that the infinitesimal closed box
[x1, x1 + dx1]× [x2, x2 + dx2]× · · · × [xd , xd + dxd ]

with vertex x = (x1, x2, . . . , xd ) has infinitesimal probability

∫
y∈[x1,x1+dx1]×[x2,x2+dx2]×···×[xd ,xd +dxd ]

p(y)dy

= p(x)

∫
y∈[x1,x1+dx1]×[x2,x2+dx2]×···×[xd ,xd +dxd ]

dy

p has constant value p(x) on the infinitesimal closed box

= p(x)

∫ x1+dx1

x1

∫ x2+dx2

x2

· · ·
∫ xd +dxd

xd

dyd · · · dy2dy1

= p(x)dxd · · · dx2dx1.



Probability for experiments with continuous sample space

Therefore, for a Borel subset A of Ω, we can interpreted the
probability

P (A) =

∫
x∈A

p(x)dx

as the sum of the infinitesimal probabilities

p(x)dx = p(x)dxd · · · dx2dx1

of all infinitesimal closed boxes

[x1, x + dx1]× [x2, x2 + dx2]× · · · × [xd , xd + dxd ]

x = (x1, x2, . . . , xd ) ∈ A,

which completely cover A.

Thus, similarly to the case of a discrete sample space, we can say
that the probability of an event is the sum of the probabilities of the
elementary events that constitute it: but for a continuous sample
space this is an infinite sum of infinitesimal probabilities.



Probability for experiments with continuous sample space

When I1, I2, . . . , Id are bounded intervals of R, i.e. Ω is a bounded
subset of Rd , and

p(x) =
1

measure(Ω)

=
1

length(I1) · length(I2) · . . . · length(Id )
, x ∈ Ω,

we have, for each Borel subset A of Ω,

P(A) =

∫
x∈A

1
measure(Ω)

dx =
1

measure(Ω)
·
∫

x∈A
dx

=
measure(A)

measure(Ω)
.

This is the notion of classical probability for a continuous sample
space.



Probability for experiments with continuous sample space

In the theoretical experiment of a point randomly selected in Ω,
with Ω bounded subset of Rd , "randomly selected" just means

p(x) =
1

measure(Ω)
, x ∈ Ω.

We say "theoretical experiment" because points are only abstract
notions that do not exists in the real world.

Practical instances of this experiment:

I The random number generators in the computers approximate the random
selection of a real number in [0, 1].

I A needle is thrown on the floor. The angle of the needle with a prefixed
direction is a randomly selected number in (−π, π].

I A blinded player kicks a ball in an empty room. The point where the ball
comes to rest after many bounces on the walls of the room is a randomly
selected point on the floor.

I A fish is swimming in a pool (or a fly is flying in a room). The position of the
fish at a given time is a randomly selected point in the pool.



Probability for experiments with continuous sample space

Exercise. In the experiment of kicking the ball, assume that the
room is squared and determine the probability that the ball stops
in the circle inscribed in the square.

Exercise. In the experiment of the swimming fish, assume a
rectangular pool of sides 50 m and 20 m and determine the
probability that the fish is within 1 m from the pool’s border.



Probability for experiments with continuous sample space

Exercise. Consider a random number generator.

I What is the probability that the selected number is equal to 0.5?

I What is the probability that the selected number is between 0.2 and
0.7?

I What is the probability that the selected number has second digit
(after the point) 0?

I What is the probability that the selected number has second digit k ,
k ∈ {0,1, . . . ,9}?

I What is the probability that the selected number has l-th digit k ,
l ∈ {1,2,3, . . .} and k ∈ {0,1, . . . ,9}?

I Do the last point by considering the base B representation, instead
of the base 10 representation.

I What is the probability that the selected number is irrational?



Probability for experiments with continuous sample space

In the experiment of the meteor, the geographic coordinates of the
impact point are not a randomly selected point in
Ω = (−π, π]× [−π2 ,

π
2 ].

If this was true, then fall in (−π, π]× [0,1◦] and fall in
(−π, π]× [89◦,90◦] had the same probabilities, but the first subset
has a much larger area on the Earth’s surface.

The problem is that the impact point lies on the spherical Earth’s
surface, not on the rectangle Ω which is the Mercator projection of
the Earth’s surface found in atlases.

For this experiment, we take

p(λ, φ) =
1

4π
cosφ, (λ, φ) ∈ Ω = (−π, π]× [−π

2
,
π

2
],

and then, for a Borel subset A of Ω, we have

P(A) =
Area(A)

Area of the Earth’s surface
,

where Area(A) is the area of A on the Earth’s surface. The impact
point is a randomly selected point on the Earth’s surface, not on Ω.



Probability for experiments with continuous sample space

Exercise. In the experiment of the falling meteor:

I by looking at the infinitesimal area on the Earth’s surface of the
infinitesimal closed box [λ, λ+ dλ]× [φ, φ+ dφ] of vertex the point
of geographic coordinates (λ, φ), find the function p with which

P(A) =
Area(A)

Area of the Earth’s surface

holds, where Area(A) is the area of the Borel subset A of Ω on the
Earth’s surface;

I check that
∫

x∈Ω
p(x)dx = 1;

I determine the probabilities of the closed boxes;

I determine the probability that the meteor falls in Italy.



Conditional Probability

Conditional probability
Consider an experiment and a measure of probability P for this
experiment. Suppose that the experiment, or part of it, has been
accomplished but the outcome is still unknown.

Assume that some additional information relative to the unknown
outcome becomes now available and that this information permits
to say that a certain event surely occurs.

This new knowledge modifies the measure of probability P.

Example: consider a person randomly selected from the
population of a given town. The probability of the event

"the selected person has got a Ferrari"

is small but it changes if additional information permits to say that
the event

"the selected person is a tycoon"

surely occurs.



Conditional Probability

Example: consider the experiment with the dice. The events

B = "the sum of the scores is 10", C = "both scores are even",
D = "both scores are odd".

have probabilities

P(B) =
13− 10

36
=

3
36

=
1
12
, P(C) = P(D) =

9
36

=
1
4
.

Now, assume that the event

A = "the score of the first die is 4"
= {(4,1), (4,2), (4,3), (4,4), (4,5), (4,6)}

occurs, and then the possible outcomes are only those in the
subset A of Ω. The previous probabilities becomes

Pnew(B) =
1
6
, Pnew(C) =

3
6

=
1
2
, Pnew(D) = 0.



Conditional Probability

Now, we formalize the change of the probabilities when we known
that a given event surely occurs.

Definition
Let P be a measure of probability for an experiment and let A be an
event relative to this experiment such that P(A) 6= 0. The conditional
measure of probability given A is defined as

P (B|A) :=
P (A ∩ B)

P (A)
,

for any event B relative to the experiment. P (B|A) is said the
conditional probability of B given A.

When it is known that the event A occurs, the probability P(B) of
the event B changes to

Pnew(B) = P(B|A).



Conditional Probability

In the example of the dice, by applying the definition of conditional
probability we find the new probabilities already computed:

Pnew(B) = P(B|A)

= P("the sum of the scores is 10"|"the score of the first die is 4")

=
P(A ∩ B)

P(A)
=

P((4,6))

P(A)
=

1
36
6

36

=
1
6

Pnew(C) = P(C|A)

= P("both scores are even"|"the score of the first die is 4")

=
P(A ∩ C)

P(A)
=

P({(4,2), (4,4), (4,6)}
P(A)

=
3

36
6

36

=
1
2

Pnew(D) = P(D|A)

= P("both scores are odd"|"the score of the first die is 4")

=
P(A ∩ D)

P(A)
=

P(∅)
P(A)

= 0.



Conditional Probability

The function

Pnew(·) = P(·|A) : F = set of events → R

Pnew(B) = P(B|A) =
P (A ∩ B)

P (A)
, B ∈ F , i.e. B is an event,

is a (new) measure of probability for the experiment: it satisfies
the three conditions required in the definition of a measure of
probability, as now we show.

Positivity: for any event B, we have

P (B|A) =
P (A ∩ B)

P (A)
≥ 0.

Normalization:

P (Ω|A) =
P (A ∩ Ω)

P (A)
=

P (A)

P (A)
= 1.



Conditional Probability

Countable additivity: for a sequence B1,B2,B3, . . . of disjoint
events we have

P

(∞⋃
i=1

Bi |A

)
=

P
(

A ∩
∞⋃

i=1
Bi

)
P (A)

=

P
(∞⋃

i=1
A ∩ Bi

)
P (A)

=

∞∑
i=1

P (A ∩ Bi)

P (A)
since A ∩ B1,A ∩ B2,A ∩ B3, . . . are disjoint

=
∞∑

i=1

P (A ∩ Bi)

P (A)
=
∞∑

i=1

P (Bi |A) .



Conditional Probability

Note that:

I if B and A are disjoint, then

P(B|A) =
P(A ∩ B)

P(A)
=

P(∅)
P(A)

= 0;

I if B is included in A, then

P(B|A) =
P(A ∩ B)

P(A)
=

P(B)

P(A)
.

The function
P(·|A) : G → R with G := "set of events included in A" = {B ∈ F : B ⊆ A}

P(B|A) =
P(B)

P(A)
, B ∈ G , i.e. B is an event included in A, (5)

is a measure of probability for the experiment with the new
sample space A, instead of Ω.

Exercise. Prove that G is a σ−algebra of subsets of A and that (5)
is a measure of probability.



Conditional Probability

We can justify this definition of conditional probability in three
different ways.

First way (classical probability). Consider an experiment with a
finite sample space Ω and assume that all the elementary events
have the same probability 1

|Ω| (as in the example of the dice).

Suppose that the event A occurs. Basing on this, we want to
assign a new measure of probability, denoted by Pnew to the
events: for any event B, we have

Pnew(B) =
∑
x∈B

Pnew (x) =
∑

x∈A∩B

Pnew (x) +
∑

x∈Ac∩B

Pnew (x)︸ ︷︷ ︸
=0 since x /∈ A

=
∑

x∈A∩B

Pnew (x) . (6)

Moreover
1 = Pnew (A) =

∑
x∈A

Pnew (x) . (7)



Conditional Probability

Since all the elementary events in A have the same probability P,
it is reasonable assume that they have also the same probability
Pnew, since both measure of probabilities refer to the same
experiment. Let c be this common new probability. Then, by (7),

1 =
∑
x∈A

Pnew (x) =
∑
x∈A

c = |A|c

and then
Pnew (x) = c =

1
|A|

, x ∈ A.

Therefore, by (6) we have

Pnew(B) =
∑

x∈A∩B

Pnew (x) =
∑

x∈A∩B

1
|A|

=
|A ∩ B|
|A|

=

|A∩B|
|Ω|
|A|
|Ω|

=
P (A ∩ B)

P (A)
.



Conditional Probability

Second way (frequentist interpretation). Repeat the experiment a
very large number n of times and let ωobs

1 , ωobs
2 , . . . , ωobs

n be the
observed outcomes.

Let B be an event, we have

P (B) = Long Time Relative Frequency of B

= lim
n→∞

∣∣{i ∈ {1,2 . . . ,n} : B
(
ωobs

i

}∣∣
n

.

Assume that the event A occurs. We want to assign a new
measure of probability Pnew to the events.

Since A occurs, it is reasonable to set, for any event B,

Pnew(B) = Long Time Relative Frequency of B when A occurs

= lim
n→∞

∣∣{i ∈ {1,2, . . . ,n} : A
(
ωobs

i

)
and B

(
ωobs

i

)}∣∣∣∣{i ∈ {1,2, . . . ,n} : A
(
ωobs

i

)}∣∣ .

In fact, since A is the new set of possible outcomes, we have to
exclude repetitions of the experiment with outcomes not in A.



Conditional Probability

We have

Pnew(B) = lim
n→∞

∣∣{i ∈ {1,2, . . . ,n} : A
(
ωobs

i

)
and B

(
ωobs

i

)}∣∣∣∣{i ∈ {1,2, . . . ,n} : A
(
ωobs

i

)}∣∣
= lim

n→∞

|{i∈{1,2,...,n}:A(ωobs
i ) and B(ωobs

i )}|
n

|{i∈{1,2,...,n}:A(ωobs
i )}|

n

=
lim

n→∞
|{i∈{1,2,...,n}:A(ωobs

i ) and B(ωobs
i )}|

n

lim
n→∞

|{i∈{1,2,...,n}:A(ωobs
i )}|

n

=
P (A ∩ B)

P (A)
.



Conditional Probability

Third way (Probability as "area"). The probability of an event can
thought as the "area" of the event, normalized in order to have
"area" of the sample space Ω equal to 1:

P(B) =
Area(B)

Area(Ω)
.

Thus, in a measure of probability, we compare the "area" of the
event B with the "area" of the sample space Ω.



Conditional Probability

Assume that the event A occurs. Now, we have a new measure of
probability Pnew, where we compare the "area" of the event B,
which is restricted to A ∩ B since A occurs, to the "area" of the
new set of possible outcomes A:

Pnew(B) =
Area(A ∩ B)

Area(A)
=

Area(A∩B)
Area(Ω)

Area(A)
Area(Ω)

=
P(A ∩ B)

P(A)
.



Conditional Probability

If Ω is finite and all the elementary events have the same
probability 1

|Ω| (classical probability), then

P (B|A) =
|A ∩ B|
|A|

In fact

P (B|A) =
P (A ∩ B)

P (A)
=

|A∩B|
|Ω|
|A|
|Ω|

=
|A ∩ B|
|A|

.

Exercise. Find a formula for the conditional probability P (B|A) in
the context of classical probability for continuous sample space.

Now, we present two problems of computation of conditional
probabilities where Ω is finite and all the elementary events have
the same probability.



Conditional Probability

Problem 1. Assume that someone, say Peter, has two children.
What is the probability that Peter has two daughters given that he
has a daughter?

Since the other child is a boy or a girl, it seems that the probability
is 1

2 , but this is not the right answer.

Experiment: the births of the two children of Peter.

Outcome: (gender of the first child, gender of the second child).

Sample space: Ω = {(g,g) , (g,b) , (b,g) , (b,b)} .

Measure of probability: the elementary events have probabilities

P((g,g)) = P((g,b)) = P((b,g)) = P((b,b)) =
1
4
.



Conditional Probability

Consider the events

A = "Peter has a daughter" = {(g,g) , (g,b) , (b,g)}

and
B = "Peter has two daughters" = {(g,g)} .

We have
P (B|A) =

|A ∩ B|
|A|

=
|B|
|A|

=
1
3
.

The answer is 1
3 , not 1

2 , because the daughter cited in the event A
can be the first or the second child of Peter.

Of course, if A was "Peter has a daughter as first child", i.e.
A = {(g,g), (g,b)}, then P(B|A) was 1

2 .



Conditional Probability

Exercise. Assume that Peter has n children. What is the
probability that Peter has n daughters given that he has n − 1
daughters?

Exercise. Assume that Peter has three children. What is the
probability that Peter has three sons given that he has a son and
this son is not the youngest children of Peter.



Conditional Probability

Problem 2. In table below are listed the number of students
enrolled in an american college, categorized by sex and age.

Consider the experiment where a student enrolled in this college
is randomly selected.



Conditional Probability

What is the conditional probability that the selected student is over
30, given that this student is a man?

We have
P ("the student is over 30"|"the student is a man")

=
|{over 30} ∩ {men}|

|{men}| =
613 + 684

5881
= 22.05%.

What is the conditional probability that the selected student is a
woman, given that this student is under 20?

We have
P ("the student is a woman"|"the student is under 20")

=
|{women} ∩ {under 20}|

|{under 20}| =
119 + 1455

119 + 1455 + 91 + 1309
= 52.93%.

Exercise. What is the conditional probability that the selected
student is a man, given that this student is under 20?



Conditional Probability

Exercise. In the previous problem of the earning in US, what is the
conditional probability that the selected worker is a woman, given
that she/he earns over 50,000 dollars?

Exercise. In the experiment of rolling two dice, what is the
conditional probability that the sum of the scores is s, where
s ∈ {2,3, . . . ,12}, given that the sum of the scores is even?

Exercise. In the experiment of the 100 m run with all arrival orders
having the same probability, what is the conditional probability that
the runner 4 is at least fourth, given that the runner 3 is at least
third?

Exercise. In the experiment of flipping a coin until Head appears,
what is the conditional probability that Head appears within 10
flips, given it appears after an even number of flips?



Conditional Probability

Exercise. In the experiment of the meteor falling, what is the
conditional probability that the meteor falls in Italy given that it falls
in Europe?

Exercise. Let A and B disjoint events. Shows that
P(B|A) ≤ P(A|B) if and only if P(B) ≤ P(A). Does this equivalence
still hold when A and B are disjoint?



Conditional Probability Assign probabilities by conditional probability

Assign probabilities by conditional probability
We can rewrite the conditional probability equation as

P(A ∩ B) = P(A) · P(B|A) (8)

This formula is useful in the following situation.

We have seen that, in case of Ω discrete, the measure of
probability is determined once that the probabilities of the
elementary events are assigned.

Often, it is no so easy assign directly such probabilities in the
situation where the sample space is some cartesian product (or
some subset of a cartesian product), as Ω = {H,T}2 for the
experiment of the two coins or Ω = {1, . . . ,6}2 for the experiment
of the two dice.

In such a situation, (8) helps to assign the probabilities of the
elementary events, as it is now explained.



Conditional Probability Assign probabilities by conditional probability

Let Ω ⊆ E × F , where E and F are discrete sets and so Ω is also
a discrete set.

The probability of the elementary event {(e, f )}, with (e, f ) ∈ Ω,
can be assigned by

P((e, f ))

= P({ω ∈ Ω : ω1 = e} ∩ {ω ∈ Ω : ω2 = f})
= P ({ω ∈ Ω : ω1 = e}) · P ({ω ∈ Ω : ω2 = f} | {ω ∈ Ω : ω1 = e})

if the probabilities
P ({ω ∈ Ω : ω1 = e})

and
P ({ω ∈ Ω : ω2 = f} | {ω ∈ Ω : ω1 = e})

are easy to assign.



Conditional Probability Assign probabilities by conditional probability

Example. In the experiment of the two coins, we have

P ({ω ∈ Ω : ω1 = e}) = P (the first coin shows e) =
1
2

and

P ({ω ∈ Ω : ω2 = f} | {ω ∈ Ω : ω1 = e})

= P (the second coin shows f |the first coin shows e) =
1
2
.

since the face shown by the first coin does not affect the face
shown by the second coin.

Thus, for any (e, f ) ∈ Ω = {H,T}2, we have

P((e, f )) =
1
2
· 1

2
=

1
4
.



Conditional Probability Assign probabilities by conditional probability

Example. In the experiment of the two dice, we have

P ({ω ∈ Ω : ω1 = e}) = P (the first die scores e) =
1
6

and

P ({ω ∈ Ω : ω2 = f} | {ω ∈ Ω : ω1 = e})

= P (the second die scores f |the first die scores e) =
1
6
.

since the score of the first die does not affect the score of the
second die.

Thus, for any (e, f ) ∈ Ω = {1, . . . ,6}2, we have

P((e, f )) =
1
6
· 1

6
=

1
36
.



Conditional Probability Assign probabilities by conditional probability

Example. Consider the experiment where two playcards are
randomly chosen from a deck D of n cards.

The outcome is the pair (first chosen card, second chosen card).

The sample space is

Ω =
{
ω ∈ D2 : ω1 6= ω2

}
.

Here it is understood that when the second card is chosen, the
first card chosen is not re-inserted in the deck.

Given a pair (e, f ) ∈ Ω, the probability of the elementary event
{(e, f )}, i.e. the event

"the chosen cards are e and f "

is

P (the first chosen card is e)

· P (the second chosen card is f |the first chosen card is e)

=
1
n
· 1

n − 1
=

1
n (n − 1)

.



Conditional Probability Assign probabilities by conditional probability

Exercise. Assume to have a standard deck of 52 playcards.
Determine the probabilities of the following events:

I Both chosen cards are Hearts.

I The chosen cards have the same value.

I One chosen card is the Queen of Spades and the other is the King
of Clubs.

Exercise. Consider the previous experiment with a standard deck
of 52 playcards, but now suppose that if the first chosen card is a
Jack, a Queen or a King , then all the Jacks, Queens and Kings
are removed from the deck before to choose the second card.
Determine the probability of the elementary events.



Conditional Probability Assign probabilities by conditional probability

The generalization of equation

P(A ∩ B) = P(A) · P(B|A)

to many events A1,A2, . . . ,An is

P(A1∩A2∩· · ·∩An) = P(A1) · P(A2|A1)· · · · ·P(An|A1∩A2∩· · ·∩An−1).

In fact
P (A1 ∩ A2 ∩ · · · ∩ An−2 ∩ An−1 ∩ An)

= P (A1 ∩ A2 ∩ · · · ∩ An−2 ∩ An−1) · P (An|A1 ∩ A2 ∩ · · · ∩ An−2 ∩ An−1)

= P (A1 ∩ A2 ∩ · · · ∩ An−2) · P (An−1|A1 ∩ A2 ∩ · · · ∩ An−2)

·P (An|A1 ∩ A2 ∩ · · · ∩ An−2 ∩ An−1)

= . . .

= P (A1) · P (A2|A1) · · · · · P (An−1|A1 ∩ A2 ∩ · · · ∩ An−2)

·P (An|A1 ∩ A2 ∩ · · · ∩ An−2 ∩ An−1)

Now, we present an example where this formula is used.



Conditional Probability Assign probabilities by conditional probability

Example. Suppose that three people are randomly chosen from a
group of 4 women and 6 men.

What is the probability that all of them are women?

What is the probability that one is a woman and the other two are
men?

The outcome of the experiment is the triple

(first chosen person, second chosen person, third chosen person) .

The sample space is

Ω =
{
ω ∈ E3 : ω1, ω2 and ω3 are distinct

}
,

where E is the set of the women and men.
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We have

P("all women")
= P("the first is woman")
· P("the second is woman"|"the first is woman")
· P("the third is woman"|"the first and the second are women")

=
4

10
· 3

9
· 2

8
=

1
30
.

We have

P("a woman and two men")
= P("the first is woman and the other two are men")

+P("the second is woman and the other two are men")
+P("the third is woman and the other two are men")
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with

P ("the first is woman and the other two are men")
= P ("the first is woman")
·P ("the second is man"|"the first is woman")
·P ("the third is man"|"the first is woman and the second is man")

=
4

10
· 6

9
· 5

8
=

1
6

P ("the second is woman and the other two are men")
= P ("the first is man")
·P ("the second is woman"|"the first is man")
·P ("the third is man"|"the first is man and the second is woman")

=
6

10
· 4

9
· 5

8
=

1
6
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and

P ("the third is woman and the other two are men")
= P ("the first is man")
·P ("the second is man"|"the first is man")
·P ("the third is woman"|"the first is man and the second is man")

=
6

10
· 5

9
· 4

8
=

1
6
.

Thus
P("a woman and two men") =

1
6

+
1
6

+
1
6

=
1
2
.

Exercise. What is the probability that all are men and the
probability that one is man and two are women.

Exercise. Determine the probabilities of the elementary events for
this experiment.
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Exercise. What is the probability of obtain n times, one after the
other, "Red" at the roulette game?

Exercise. Explain why the probabilities of the elementary events in
the experiment of flipping a coin until H appears are just those
previously introduced.

Exercise. In the experiment where k playcards are randomly
chosen from a deck of n playcards, determine the probability of
the elementary events.

Exercise. In the experiment where four playcards are randomly
chosen from a standard deck of 52 playcards, determine the
probabilities of the following events:

I The chosen cards are all Hearts.

I The chosen cards have all different values.

I The chosen cards are the four Queens.
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Exercise (The birthdays problem). Consider the experiment where
n people are randomly selected from an huge population. What is
the probability that the birthdays of the selected people are all
different? What is the probability that there are (at least) two
people with the same birthday? Find the minimum n for which it is
easier to have two people with the same birthday than not to. Do
not consider leap years.
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Here is another example where we use conditional probabilities
for assigning probabilities to the elementary events.

The Monty Hall problem. The 70’s american show "Let’s Make a
Deal" with Monty Hall (Maurice Halprin) as host

contained a game, described below, where a player had the
possibility of winning a car.
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There are three closed doors: behind one door there is a car and
behind the other two there are goats.

The game consists of three stages.

1 The host invites the player to choose one of the closed door without
open it.

2 Then, the host, which knows where is the car, opens one of the two
doors not chosen by the player revealing a goat.

3 Finally, the host asks to the player if she/he wants to change the
previous selected door with the other closed door or keep it. After
the answer and the possible change, the player opens her/him door
and wins what is behind, a car or a goat.
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Now, the question is:

I in order to win the car, what is the best choice for the player at the
stage 3: change the door or keep it?

It seems that it is the same to change or to keep: in any case, by
changing or by keeping, we have two closed doors with a car
behind one door and a goat behind the other.

Observe that in "Let’s Make a Deal" there was not the stage 3, for
reasons that will be clear soon. The stage 2 was done only for the
show, to keep high the tension.

Now, we give a probabilistic structure to the game.
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Experiment: the selection of the three doors at the stages 1, 2 and
3.

Outcome: the triple

(door selected in 1, door selected in 2, door selected in 3) .

Sample space: let C be the door with car behind and let G1 and
G2 be the other two doors with the goats behind, we have

Ω = {(C,G1,C) , (C,G1,G2) , (C,G2,C) , (C,G2,G1) ,

(G1,G2,G1) , (G1,G2,C) ,

(G2,G1,G2) , (G2,G1,C) } .
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Measure of probability: if the player at the stage 3 changes the door, we
have

P ((C,G1,C)) = P (”ω1 = C”) · P (”ω2 = G1”|”ω1 = C”) ·

·P (”ω3 = C”|”ω1 = C” ∩ ”ω2 = G1”) =
1
3
· 1

2
· 0 = 0

P ((C,G1,G2)) =
1
3
· 1

2
· 1 =

1
6

P ((C,G2,C)) =
1
3
· 1

2
· 0 = 0

P ((C,G2,G1)) =
1
3
· 1

2
· 1 =

1
6

P ((G1,G2,G1)) =
1
3
· 1 · 0 = 0

P ((G1,G2,C)) =
1
3
· 1 · 1 =

1
3

P ((G2,G1,G2)) =
1
3
· 1 · 0 = 0

P ((G2,G1,C)) =
1
3
· 1 · 1 =

1
3
.

The probability of winning the car, i.e. the prob. of ”ω3 = C”, is 1
3 + 1

3 = 2
3 .
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Measure of probability: if the player at the stage 3 keeps the door, we
have

P ((C,G1,C)) =
1
3
· 1

2
· 1 =

1
6

P ((C,G1,G2)) =
1
3
· 1

2
· 0 = 0

P ((C,G2,C)) =
1
3
· 1

2
· 1 =

1
6

P ((C,G2,G1)) =
1
3
· 1

2
· 0 = 0

P ((G1,G2,G1)) =
1
3
· 1 · 1 =

1
3

P ((G1,G2,C)) =
1
3
· 1 · 0 = 0

P ((G2,G1,G2)) =
1
3
· 1 · 1 =

1
3

P ((G2,G1,C)) =
1
3
· 1 · 0 = 0.

The probability of winning the car is 1
6 + 1

6 = 1
3 .
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Conclusion:

I it is better to change at the stage 3.

This is clear also by the following simple argument:

I If the player keeps the door, then she/he wins the car if and only if
at the stage 1 it is selected the door with the car behind and this
has probability 1

3 .

I If the player changes the door, then she/he wins the car if and only
if at the stage 1 it is selected a door with a goat behind and this has
probability 2

3 .
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Exercise. What happens in the situation where the host does not
know what is behind the doors and so he can also open at the
stage 2 the door with the car behind?

Exercise. What is the probability of winning the car if at the stage
3 the player changes the door with probability p and keeps it with
probability q = 1− p? Consider both the cases where the host
knows what is behind the doors and does not know what is
behind.

Exercise. What happens in the situation where there are n doors
with k doors with a car behind and the other n − k doors with a
goat behind? Consider both the cases where the host knows what
is behind the doors and does not know what is behind.
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Independence of events
Definition
Let P be a measure of probability for an experiment and let A and B be
events relative to this experiment. The following three facts are
equivalent:

a) P (A ∩ B) = P (A) · P (B)

b) P (B|A) = P (B) if P (A) 6= 0

c) P (A|B) = P (A) if P (B) 6= 0.

If one between a), b) and c) is satisfied (and so all a), b) and c) are
satisfied), we say that A and B are independent.

In other words, two events are independent if the knowledge that
one of them occurs does not modify the probability of the other.
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Now, we prove the equivalence of a), b) and c).

a)⇒ b). If a) holds, then

P (B|A) =
P (A ∩ B)

P (A)
=

P (A)P (B)

P (A)
= P (B) if P (A) 6= 0.

b)⇒ a). If b) holds, then

P (A ∩ B) = P (A) · P (B|A) = P (A) · P (B) if P (A) 6= 0.

If P (A) = 0, then, since A ∩ B ⊆ A, we have

0 ≤ P (A ∩ B) ≤ P (A) = 0

and so P (A ∩ B) = 0 and we conclude

P (A ∩ B) = 0 = 0 · P (B) = P (A) · P (B) .

Exercise. Prove a)⇒ c), c)⇒ a), b)⇒ c) and c)⇒ b).
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Example. Consider the experiment of the dice and the events

A = "the score of the first die is 3"
B = "the sum of the scores is 8"
C = "the sum of the scores is 7".

A and B are not independent:

P (A ∩ B) = P ((3,5)) =
1

36
, P (A) =

1
6
, P (B) =

13− 8
36

=
5
36

P (A ∩ B) 6= P (A)P (B) .

A and C are independent:

P (A ∩ C) = P ((3,4)) =
1

36
, P (A) =

1
6
, P (C) =

7− 1
36

=
6

36
P (A ∩ C) = P (A)P (C) .



Independence of events

We can understand this also noting that

P (A) = P ("the score of the first die is 3") =
1
6

P (A|B)

= P ("the score of the first die is 3"|"the sum of the scores is 8")

=
1
5

since "the sum of the scores is 8"= {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)}.

P (A|C)

= P ("the score of the first die is 3"|"the sum of the scores is 7")

=
1
6

since "the sum of the scores is 7"= {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}

Then, A and B are not independent and A and C are independent.
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Let Ω = E ×F , with E and F finite. Assume that all the elementary
events {(e, f )}, where (e, f ) ∈ Ω, have the same probability

P ((e, f )) =
1
|Ω|

=
1

|E | · |F |
.

Then, for any U ⊆ E and V ⊆ F , the events ”ω1 ∈ U” and
”ω2 ∈ V ” are independent and

P(”ω1 ∈ U”) =
|U|
|E |

and P(”ω2 ∈ V ”) =
|V |
|F |

.

In fact

P (”ω1 ∈ U”) = P (U × F ) =
|U × F |
|Ω|

=
|U| · |F |
|E | · |F |

=
|U|
|E |

P (”ω2 ∈ V ”) = P (E × V ) =
|E × V |
|Ω|

=
|E | · |V |
|E | · |F |

=
|V |
|F |

P (”ω1 ∈ U” ∩ ”ω2 ∈ V ”) = P (U × V ) =
|U × V |
|Ω|

=
|U| · |V |
|E | · |F |

= P(”ω1 ∈ U”) · P(”ω2 ∈ V ”).
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Examples:

I in the experiment of the coins, the events "the first coin shows a
face in E" and "the second coin shows a face in F", where
E ,F ⊆ {H,T}, are independent.

I In the experiment of the dice, the events "the score of the first die is
in U" and "the score of the second die is in V", where
U,V ⊆ E = F = {1, . . . ,6}, are independent.

So, in the example of the dice, the events "the score of the first die
is odd" and "the score of the second die is smaller than four" are
independent.
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Example. Consider once again the table

of the students enrolled in an american college.

Suppose that a male student is randomly selected and,
independently, also a female student is randomly selected.
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We want to find the probability that the students selected are both
between 22 and 24 years old.

The sample space is

Ω = {men} × {women} .

The fact that the male student and the female student are
"randomly and independently selected" means that, for any
(m,w) ∈ Ω, we have

P ("the selected man is m" ) =
1

|{men}|

P ("the selected woman is w" ) =
1

|{women}|
and the events

"the selected man is m" and "the selected woman is w"

are independent.
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The probabilities of the elementary events are all equal:
P ((m,w)) = P ("the selected man is m" ∩ "the selected woman is w")

= P ("the selected man is m") · P ("the selected woman is w")

=
1

| {men} | ·
1

| {women} | , (m,w) ∈ Ω.

Hence, the events
A = "the selected man is between 22 and 24"

= ”ω1 ∈ U”, U = {men between 22 and 24}”
B = "the selected woman is between 22 and 24"

= ”ω2 ∈ V ”, V = {women between 22 and 24}
are independent and

P(A) =
|U|

|{men}| and P(B) =
|V |

|{women}| .

So

P(A ∩ B) = P(A) · P(B) =
|U|

|{men}| ·
|V |

|{women}| =
1080
5881

· 968
6663

= 2.67%.

Exercise. Find the prob. that both students are in the same age group.
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Exercise. Consider the experiment of flipping two coins. Are the
events

"both faces are equal" and "the first coin shows H"

independent?

Exercise. Let A and B events. Prove that if A and B are
independent, then B and A are independent.

Exercise. Let A and B events. Prove that if A and B are
independent, then Ac and B are independent, A and Bc are
independent and Ac and Bc are independent.

Exercise. Prove that if one of two events is ∅ or Ω, the events are
independent.
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Independence of many events
We can generalize the notion of independence to a finite
sequence A1,A2, . . . ,An, or to an infinite sequence A1,A2,A3, . . .,
of events in the following way.

Let I be the set of indices for the sequence: we have
I = {1,2, . . . ,n} for the finite sequence and I = {1,2,3, . . .} for the
infinite sequence.

The events of the sequence are called independent if, for any
positive integer k such that 2 ≤ k ≤ |I| = "number of indices" and
for any indices i1, . . . , ik−1, ik ∈ I distinct such that
P
(
Ai1 ∩ · · · ∩ Aik−1

)
6= 0, we have

P
(
Aik |Ai1 ∩ · · · ∩ Aik−1

)
= P

(
Aik
)
.

In other words, the events are independent if the knowledge that
some of them occur does not modify the probability of the others.
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In case of n = 3 events A1,A2,A3, this definition becomes:

k = 2 :
P (A1|A2) = P (A1|A3) = P (A1)
P (A2|A1) = P (A2|A3) = P (A2)
P (A3|A1) = P (A3|A2) = P (A3)

and

k = 3 :
P (A1|A2 ∩ A3) = P (A1)
P (A2|A1 ∩ A3) = P (A2)
P (A3|A1 ∩ A2) = P (A3) .
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Equivalently, the independence of the events can be expressed by
saying that, for any positive integer k such that 2 ≤ k ≤ |I| and for
any indices i1, i2, . . . , ik ∈ I distinct, we have

P
(
Ai1 ∩ Ai2 ∩ · · · ∩ Aik

)
= P

(
Ai1
)
· P
(
Ai2
)
· · · · · P

(
Aik
)
.

In fact, if this is true, then, the previous definition of independence
is true: for i1, . . . , ik−1, ik ∈ I distinct such that P

(
Ai1 ∩ · · · ∩ Aik−1

)
6= 0, we

have

P
(
Aik |Ai1 ∩ · · · ∩ Aik−1

)
=

P
(
Ai1 ∩ · · · ∩ Aik−1 ∩ Aik

)
P
(
Ai1 ∩ · · · ∩ Aik−1

)
=

P (Ai1 ) · · ·P
(
Aik−1

)
P (Aik )

P (Ai1 ) · · ·P
(
Aik−1

) = P (Aik ) .

Viceversa, if the events are independent with respect to the
previous definition, then for i1, i2, . . . , ik ∈ I distinct, we have

P (Ai1 ∩ Ai2 ∩ · · · ∩ Aik ) = P (Ai1 )P (Ai2 |Ai1 ) · · ·P
(
Aik |Ai1 ∩ Ai2 · · · ∩ Aik−1

)
= P (Ai1 )P (Ai2 ) · · ·P (Aik ) .
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This is valid when P (Ai1 ) ,P(Ai1 ∩ Ai2 ), . . . ,P
(
Ai1 ∩ Ai2 · · · ∩ Aik−1

)
are

all not zero. Assume that this is not true. Since

P (Ai1 ) ≥ P(Ai1 ∩ Ai2 ) ≥ · · · ≥ P
(
Ai1 ∩ Ai2 · · · ∩ Aik−1

)
holds, there is an index s ∈ {1, . . . , k − 1} such that

P (Ai1 ∩ Ai2 ∩ · · · ∩ Ais ) = 0 and P
(
Ai1 ∩ Ai2 ∩ · · · ∩ Ais−1

)
6= 0.

Since
P
(
Ais |Ai1 ∩ · · · ∩ Ais−1

)
= P (Ais )

we obtain
0 = P (Ai1 ∩ Ai2 ∩ · · · ∩ Ais ) = P

(
Ai1 ∩ Ai2 ∩ · · · ∩ Ais−1

)
P
(
Ais |Ai1 ∩ · · · ∩ Ais−1

)
= P

(
Ai1 ∩ Ai2 ∩ · · · ∩ Ais−1

)
P (Ais )

and then P (Ais ) = 0 and so

P (Ai1 )P (Ai2 ) · · ·P (Aik ) = 0.

On the other hand, by

0 = P (Ai1 ∩ Ai2 ∩ · · · ∩ Ais ) ≥ P (Ai1 ∩ Ai2 ∩ · · · ∩ Aik ) ≥ 0,

we obtain

P (Ai1 ∩ Ai2 ∩ · · · ∩ Aik ) = 0 = P (Ai1 )P (Ai2 ) · · ·P (Aik ) .
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This equivalent expression of the independence in case of n = 3
events A1,A2,A3 becomes:

k = 2 :
P (A1 ∩ A2) = P (A1)P (A2)
P (A1 ∩ A3) = P (A1)P (A3)
P (A2 ∩ A3) = P (A2)P (A3)

and

k = 3 : P (A1 ∩ A2 ∩ A3) = P (A1)P (A2)P (A3) .
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The definition of independence for more than two events cannot
be reduced to say that they are independent two by two. This is
explained by the following exercise.

Exercise. Consider the experiment of flipping two coins and the
events

A = "both faces are equal"
B = "the first coin shows H"
C = "the second coin shows H".

Are the following pairs of events

A,B
A,C
B,C

independent? Is the following triple of events

A,B,C

independent?
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Factorized form of the function p and independence
Let Ω = E1 × E2 × · · · × Ed , where Ei , i ∈ {1,2, . . . ,d}, is a discrete
set (so also Ω is a discrete set).

Theorem
If the function p : Ω→ [0,+∞) such that

∑
x∈Ω

p(x) = 1, with which we

define the probabilities of the elementary events, can be factorized as

p (x) = p1 (x1) p2 (x2) · · · pd (xd ) , x = (x1, x2, . . . , xd ) ∈ Ω,

where pi : Ei → [0,+∞), i ∈ {1, . . . ,d}, is such that∑
y∈Ei

pi (y) = 1,

then, for any J1 ⊆ E1, J2 ⊆ E2, . . . , Jd ⊆ Ed , the events

”ω1 ∈ J1”, ”ω2 ∈ J2”, . . . , ”ωd ∈ Jd ”

are independent.
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Proof.
For i ∈ {1, . . . ,d}, we have

P (”ωi ∈ Ji ”) = P (”ω ∈ E1 × · · · × Ei−1 × Ji × Ei+1 × · · · × Ed ”)

=
∑

x∈E1×···×Ei−1×Ji×Ei+1×···×Ed

p (x)

=
∑

x1∈E1

. . .
∑

xi−1∈Ei−1

∑
xi∈Ji

∑
xi+1∈Ei+1

. . .
∑

xd∈Ed

p ((x1, . . . , xi−1, xi , xi+1, . . . , xd ))

=
∑

x1∈E1

. . .
∑

xi−1∈Ei−1

∑
xi∈Ji

∑
xi+1∈Ei+1

. . .
∑

xd∈Ed

p1 (x1) · · · pi−1 (xi−1) pi (xi ) pi+1 (xi+1) · · · pd (xd )

= (
∑

x1∈E1

p1 (x1)) · · · (
∑

xi−1∈Ei−1

pi−1 (xi−1))(
∑
xi∈Ji

pi (xi ))

(
∑

xi+1∈Ei+1

pi+1 (xi+1)) · · · (
∑

xd∈Ed

pd (xd ))

= 1 · · · 1(
∑
xi∈Ji

pi (xi ))1 · · · 1

=
∑
xi∈Ji

pi (xi ) .



Independence of events Factorized form of the function p and independence

Proof.
Now, we prove the independence of the events

”ω1 ∈ J1”, ”ω2 ∈ J2”, . . . , ”ωd ∈ Jd ”.

For any indices i1, . . . , ik ∈ {1, . . . ,d} distinct, we have

P (”ωi1 ∈ Ji1 ∩ · · · ∩ ωik ∈ Jik ”)

= P (”ω ∈ E1 × · · · × Ei1−1 × Ji1 × Ei1+1 × · · · × Eik−1 × Jik × Eik +1 × · · · × Ed ”)

=
∑

x∈E1×···×Ei1−1×Ji1
×Ei1+1×···×Eik −1×Jik

×Eik +1×···×Ed

p (x)

=
∑

x1∈E1

. . .
∑

xi1−1∈Ei1−1

∑
xI1
∈Ji1

∑
xi1+1∈Ei1+1

. . .
∑

xik −1∈Eik −1

∑
xik
∈Jik

∑
xik +1∈Eik +1

. . .
∑

xd∈Ed

p ((x1, . . . , xi1−1, xi1 , xi1+1, . . . , xik−1, xik , xik +1, . . . , xd ))

=
∑

x1∈E1

. . .
∑

xi1−1∈Ei1−1

∑
xI1
∈Ji1

∑
xi1+1∈Ei1+1

. . .
∑

xik −1∈Eik −1

∑
xik
∈Jik

∑
xik +1∈Eik +1

. . .
∑

xd∈Ed

p1 (x1) · · · pi1−1 (xi1−1) pi1 (xi1 ) pi1+1 (xi1+1) · · ·
pik−1 (xik−1) pik (xik ) pik +1 (xik +1) · · · pd (xd )
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Proof.

= (
∑

x1∈E1

p1 (x1))

︸ ︷︷ ︸
=1

· · ·

(
∑

xi1−1∈Ei1−1

pi1−1 (xi1−1))

︸ ︷︷ ︸
=1

(
∑

xi1
∈Ji1

pi1 (xi1 ))(
∑

xi1+1∈Ei1+1

pi1+1 (xI1+1))

︸ ︷︷ ︸
=1

· · ·

(
∑

xik −1∈Eik −1

pik−1 (xk1−1))

︸ ︷︷ ︸
=1

(
∑

xik
∈Jik

pik (xk1 ))(
∑

xik +1∈Eik +1

pik +1 (xk1+1))

︸ ︷︷ ︸
=1

· · ·

(
∑

xd∈Ed

pd (xd ))

︸ ︷︷ ︸
=1

= (
∑

xi1
∈Ji1

pi1 (xi1 )) · · · (
∑

xik
∈Jik

pik (xk1 )) = P (”ωi1 ∈ Ji1 ”) · · ·P (”ωik ∈ Jik ”) .

since P (”ωi ∈ Ji ”) =
∑

xi∈Ji

pi (xi ) , i ∈ {1, . . . , d}, see first part of the proof.



Independence of events Factorized form of the function p and independence

In the previous theorem, the requirement∑
y∈Ei

pi (y) = 1, i ∈ {1, . . . ,d} . (9)

can be dropped.

In fact, if p : Ω→ [0,+∞) such that
∑

x∈Ω

p(x) = 1 can be factorized as

p (x) = q1 (x1) q2 (x2) · · · qd (xd ) , x = (x1, x2, . . . , xd ) ∈ Ω,

where qi : Ei → [0,+∞), i ∈ {1, . . . ,d}, is such that∑
y∈Ei

qi (y) > 0

then, by setting, for i ∈ {1, . . . ,d},

pi (y) =
qi (y)

ci
, y ∈ Ei ,

where
ci =

∑
y∈Ei

qi (y) ,

we have (9). Exercise. Prove this.



Independence of events Factorized form of the function p and independence

Moreover, for x ∈ Ω, we have

p (x) = q1 (x1) q2 (x2) · · · qd (xd )

= c1p1 (x1) c2p2 (x2) · · · cdpd (xd )

= c1c2 · · · cdp1 (x1) p2 (x2) · · · pd (xd ) .

Exercise. By looking at∑
x∈Ω

p (x) and
∑
x∈Ω

c1c2 · · · cdp1 (x1) p2 (x2) · · · pd (xd )

conclude that
c1c2 · · · cd = 1

and then
p (x) = p1 (x1) p2 (x2) · · · pd (xd ) , x ∈ Ω.



Independence of events Factorized form of the function p and independence

Exercise. Consider a function p : Ω→ [0,+∞) which can be
factorized as

p (x) = p1 (x1) p2 (x2) · · · pd (xd ) , x = (x1, x2, . . . , xd ) ∈ Ω,

where pi : Ei → [0,+∞), i ∈ {1, . . . ,d}, is such that∑
x∈Ei

pi (x) = 1.

In which manner is this function different from the function p in the
previous theorem? Show that∑

x∈Ω

p(x) = 1.

So, in the previous theorem, one, and only one, between∑
x∈Ω

p(x) = 1 and
∑
y∈Ei

pi (y) = 1, i ∈ {1, . . . ,d} ,

can be dropped.



Independence of events Factorized form of the function p and independence

Exercise. This exercise asks to prove a viceversa of the previous
theorem. Prove that if, for any x1 ∈ E1, x2 ∈ E2, . . . , xd ∈ Ed , the
events

”ω1 = x1”, ”ω2 = x2”, . . . , ”ωd = xd ”

are independent, then the function p, with which we define the
probabilities of the elementary events, has the factorized form
given above with

pi (y) = P(”ωi = y”), y ∈ Ei and i ∈ {1, 2, . . . , d}.

As a consequence, we have the following fact: if for any
x1 ∈ E1, x2 ∈ E2, . . . , xd ∈ Ed , the events

”ω1 = x1”, ”ω2 = x2”, . . . , ”ωd = xd ”

are independent, then , for any J1 ⊆ E1, J2 ⊆ E2, . . . , Jd ⊆ Ed , the
events

”ω1 ∈ J1”, ”ω2 ∈ J2”, . . . , ”ωd ∈ Jd ”

are independent.



Independence of events Factorized form of the function p and independence

In the case where all elementary events have the same probability
(classical probability), the function p satisfies the factorization
condition of the previous property.

In fact

P(x) =
1
|Ω| =

1
|E1| · |E2| · · · · · |Ed |

= p1(x1)p2(x2) · · · pd (xd ), x ∈ Ω,

where
pi (y) =

1
|Ei |

, y ∈ Ei and i ∈ {1, . . . , d}.

So, the result on the independence of events for the components
of the outcome applies in the case of classical probability.

This fact has been already observed in the case d = 2, when we
considered the independence of two events.



Independence of events Factorized form of the function p and independence

Example. Consider

I the experiment of flipping d coins (or flipping d times a coin), where
Ω = {H,T}d and all the elementary events have the same
probability 2−d ;

or

I the experiment of rolling d dice (or rolling d times a die), where
Ω = {1, . . . ,6}d and all the elementary events have the same
probability 6−d .

Events for different coins or different dice are independent.
So, for the dice, the events "ωi is odd", i ∈ {1, . . . ,d}, are
independent.



Independence of events Factorized form of the function p and independence

Now, we consider the case of a continuous sample space
Ω = I1 × I2 × · · · × Id .

Theorem
If the integrable function p : Ω→ [0,+∞) such that

∫
x∈Ω

p(x) = 1, with

which we define the probabilities of the closed boxes, can be factorized
as

p (x) = p1 (x1) p2 (x2) · · · pd (xd ) , x = (x1, . . . , xd ) ∈ Ω,

where pi : Ii → [0,+∞), i ∈ {1, . . . ,d}, is an integrable function such that∫
y∈Ii

pi (y) dy = 1,

then, for any J1 Borel subset of I1, J2 Borel subset of I2, . . . , Jd Borel
subset of Id , the events

”ω1 ∈ J1”, ”ω2 ∈ J2”, . . . , ”ωd ∈ Jd ”

are independent.



Independence of events Factorized form of the function p and independence

Exercise. Prove the previous theorem. Also show that the
requirement ∫

y∈Ii

pi (y) dy = 1, i ∈ {1, . . . ,d},

can be dropped.

Exercise. Consider an integrable function p : Ω→ [0,+∞) which
can be factorized as

p (x) = p1 (x1) p2 (x2) · · · pd (xd ) , x = (x1, . . . , xd ) ∈ Ω,

where pi : Ii → [0,+∞), i ∈ {1, . . . ,d}, is an integrable functions
such that ∫

y∈Ii

pi (y) dy = 1.

Show that ∫
x∈Ω

p(x) = 1.



Independence of events Factorized form of the function p and independence

Exercise. This exercise asks to prove a viceversa of the previous
theorem. Prove that if, for any

[a1, b1] ⊆ I1, [a2, b2] ⊆ I2, . . . , [ad , bd ] ⊆ Id

closed boxes, the events

”ω1 ∈ [a1, b1]”, ”ω2 ∈ [a2, b2]”, . . . , ”ωd ∈ [ad , bd ]”

are independent, then the function p with which we define the
probabilities of the closed boxes has the factorized form given
above with

pi(y)dy = P(”ωi ∈ [y , y + dy ]”), y ∈ Ii and i ∈ {1,2, . . . ,d}.

Exercise. Prove that the result on the independence of events for
components of the outcome applies in the case of classical
probability for continuous sample space.



Independence of events Factorized form of the function p and independence

Exercise. In the example of the falling meteor, prove that the
events

λ ∈ J1 and φ ∈ J2,

are independent, where λ is the longitude of the impact point, φ is
the latitude and J1 ⊆ (−π, π] and J2 ⊆

[
−π

2 ,
π
2

]
are Borel subsets.
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The Bernoulli process

A Bernoulli process of length n, where n is a positive integer, is a
composite experiment, where we repeat n times a basic
experiment, called a trial, with two possible outcomes α and β.

It is assumed that the outcome of each trial is independent of the
outcomes of the other trials and that, in any trial, the outcome α is
obtained with probability p and then β is obtained with probability
q := 1− p.

The sample space of the Bernoulli process is Ω = {α, β}n.



The Bernoulli process

The probabilities of the elementary events are:

P (x) = P

(
n⋂

i=1

{ω ∈ Ω : ωi = xi}

)
=

n∏
i=1

P ({ω ∈ Ω : ωi = xi})

= pkqn−k , x = (x1, . . . , xn) ∈ Ω,

where k is the number of occurences of α in x = (x1, . . . , xn).

In case of p = q = 1
2 , all the elementary events have the same

probability

P (x) =

(
1
2

)k (1
2

)n−k

= 2−n, x ∈ Ω.



The Bernoulli process

Exercise. Write all the elements of Ω and their probabilities for a
Bernoulli process of length n = 2. Moreover, show that the sum of
the probabilities is 1.

Exercise. Do the same as in the previous exercise for n = 3.

Exercise. Show that the function

x 7→ pkqn−k , x ∈ Ω,

giving the probabilities of the elementary events for a general
Bernoulli process of length n, with k the number of occurences of
α in x = (x1, . . . , xn), has the factorized form discuss in the
previous section on the independence of events.

Exercise. By using the factorized form shown in the previous
exercise, prove that the sum of the probabilities of the elementary
events for a general Bernoulli process of length n is 1.



The Bernoulli process

Practical examples of Bernoulli processes:

I A regular coin is flipped n times (or n regular coins are flipped). The trials
are the single throws with possible outcomes α = H and β = T . We have
p = q = 1

2 .

I Consider a couple of parents that decides to have n children. The trials are
the single births of the children with outcome the gender of the child: the
possible outcomes are α = girl and β = boy. We have p = q = 1

2 .

I Consider n commercial airplane flights. The trials are the single flights with
possible outcomes α ="the flight crashes with victims" and β ="the flight
does not crash with victims". We can assume p = 10−7.

I Consider a machine producing n pieces. The trials are the production of
the single pieces with possible outcomes α ="the piece is defective" and
β ="the piece is not defective". We can assume p = 1% for a typical
machine.

I Attempting n times the In Vitro Fertilization (IVF). The trials are the single
attempts with possible outcomes α ="the attempt has success and the
woman becomes pregnant" and β ="the attempt has not success". We
can assume p = 20.5% for a woman of age 40− 42 (a typical woman
attempting IVF).



The Bernoulli process

Now, we are interested in

P ("at least one outcome of the trials is α") .

We have

P ("at least one outcome of the trials is α") = 1− qn.

In fact

P ("at least one outcome of the trials is α")
= P ("there exists i ∈ {1,2, . . . ,n} such that ωi = α")
= P

(
{(β, β, . . . , β)}c

)
= 1− P ((β, β, . . . , β))

= 1− qn.



The Bernoulli process

Examples:

I The probability of having at least one occurence of H in n flips of a
regular coin (or in flipping n regular coins) is 1− qn = 1− 2−n.

I If the couple di parents decides to have n children, the probability of
having at least one girl is 1− qn = 1− 2−n.

I The probability to have at least one defective piece on n = 100
pieces produced by the machine is

1− qn = 1− 0.99100 = 63%.

I The probability to have a success on n = 3 attempts of IVF (which
is the maximum number of attempts paid by the italian national
health system) is

1− qn = 1− 0.7953 = 49%.



The Bernoulli process

Exercise. Find in a Bernoulli process the minimum number n of
trials such that

P ("at least one outcome of the trials is α") ≥ C%

as a function of p and C% ∈ [0,1].

Exercise. How many times one has to flip a regular coin to be sure
with probabilities greater or equal to 50%, 90% and 99% that "H"
will appear?

Exercise. How many pieces the machine has to produce to be
sure with probabilities greater or equal to 50%, 90% and 99% that
at least one defective piece will appear?



The Bernoulli process

When np � 1, we have

P ("at least one outcome of the trials is α") ≈ np.

In fact, we have the Taylor expansion

qn = (1− p)n =: f (p) = f (0) + f ′(0)p +
1
2

f ′′(ξ)p2

= 1− np +
1
2

n(n − 1)(1− ξ)n−2p2,

where ξ ∈ [0,p] and

0 ≤ 1
2

n(n − 1)(1− ξ)n−2p2 ≤ 1
2

(np)2.

So, if (np)2 � np, i.e. np � 1, then the third term in the Taylor
expansion has order of magnitude smaller than the second one
and we have qn ≈ 1− np and then

P ("at least one outcome of the trials is α") = 1− qn ≈ 1− (1− np) = np.

Example. The probability of having a crash with victims in n
commercial flights is approximately np = n · 10−7 when n� 107.



The Bernoulli process

Exercise. Give an estimate of the probability of taking a
commercial flight which will crash with victims during the life of a
person.

Exercise. To win the Jackpot (maximum payout) in the italian
lottery "Superenalotto", one has to guess exactly a randomly
selected subset of {1,2, . . . ,90} with six elements.

I Determine the probability to win when one plays a system
encompassing 1000 combinations (i.e. 1000 different subsets of
{1,2, . . . ,90}). The cost of the system is 500 Euros.

I If one plays this system at every weekly draw for fifty years, what is
the probability of win at least one time?



The Bernoulli process

Exercise. Prove that when p is small and np is not large, then

P ("at least one outcome of the trials is α") ≈ 1− e−np.

Use (1− p)n = en log(1−p) and the Taylor expansion of log(1− p)

around p = 0.

Exercise. Find the probability of having a crash with victims in
n = 107 commercial flights.
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The Bayes’ Theorem

In the Bayesian interpretation of the probability, the probabilities of
events are interpreted as degrees of belief about the events.
These degrees of belief are subjective and they depend on the
information one has about the experiment.

If new information now become available, how can we update the
degrees of beliefs of the events?

Suppose that the new available information permits to say that a
certain event A occurs. We can update the measure of probability
to the conditional measure of probability given A.



The Bayes’ Theorem

Consider an experiment with measure of probability P and let A be
an event. Consider the conditional measure of probability P (·|A)
given A.

We are interested in the relation between P called prior
probability and P (·|A) called posterior probability. We have

P (B|A) =
P (A ∩ B)

P (A)
=

P (B ∩ A)

P (A)
=

P (A|B)P (B)

P (A)
, B event.

We can also write

P (B|A) ∝ P (A|B)P (B) , B event.

where ∝ means proportionality: the constant of proportionality
independent of B is 1

P(A) . The function

B 7→ P (A|B) , B event

is called likelihood of A. Exercise. Is the likelihood of A a
measure of probability for the experiment?



The Bayes’ Theorem

The Bayes’ Theorem is a reformulation of the proportionality
relation between the prior probability and the posterior probability.

Theorem
Consider an experiment of sample space Ω. Let A be an event and let

B1,B2, . . . ,Bn disjoint events such that
n⋃

i=1
Bi = Ω. Given the prior

probabilities
P (B1) ,P (B2) , . . . ,P (Bn)

of the events B1,B2, . . . ,Bn and the likelihood values

P (A|B1) ,P (A|B2) , . . . ,P (A|Bn) ,

the posterior probabilities of the events B1,B2, . . . ,Bn are given by

P (Bi |A) =
P (A|Bi)P (Bi)

n∑
j=1

P
(
A|Bj

)
P
(
Bj
) , i ∈ {1, . . . ,n} . (Bayes′ Formula)



The Bayes’ Theorem

Proof.
We have

P (Bi |A) =
P (A|Bi )P (Bi )

P (A)
, i ∈ {1, . . . ,n} .

Since

1 = P (Ω|A) = P

 n⋃
j=1

Bj |A

 =
n∑

i=1

P (Bj |A) ,

we obtain

1 =
n∑

j=1

P (Bj |A) =
n∑

j=1

P (A|Bj )P (Bj )

P (A)

=
1

P (A)

n∑
j=1

P (A|Bj )P (Bj )

and then

P (A) =
n∑

j=1

P (A|Bj )P (Bj ) .



The Bayes’ Theorem

A prominent case is when n = 2 with B1 = B and B2 = Bc .

We obtain

P (B|A) =
P (A|B)P (B)

P (A|B)P (B) + P (A|Bc)P (Bc)
.

and, of course,
P(Bc |A) = 1− P(B|A).



The Bayes’ Theorem

Example. Consider a given disease and let p be the percentage of
the individuals with the disease in the population (p is called the
prevalence of the disease). Suppose p = 0.5%.

Consider a diagnostic test, e.g. a blood test, performed on an
individual for detecting the disease. The test has two possible
results: positive, i.e. the individual has the disease, and
negative, i.e. the individual has not the disease.

Let s1 be the percentage of the individuals with the disease having
a positive test (s1 is called the of the sensitivity of the test).
Suppose s1 = 99%.

Let s2 be the percentage of the individuals without the disease
having a negative test (s2 is called the of the specificity of the
test). Suppose s2 = 98%.



The Bayes’ Theorem

Exercise. What are the percentages of false positive and false
negative? Is it better to have a larger number of false negative or a
larger number of false positive?

Consider the experiment where the test is performed on a given
individual. If the individual has a positive result, she/he will be
tested by a more accurate test (but more costly) for the certainty
of the disease.

Consider the event

B = "the individual has the disease"

We can assume P (B) = p = 0.2%.

Now suppose that the event

A = "the individual has positive test"

occurs. How can we update the probability of the event B?



The Bayes’ Theorem

By using the likelihood values

P (A|B) = s1 = 99%, P (A|Bc) = 1− P (Ac |Bc) = 1− s2 = 2%,

Bayes’ theorem says that

P (B|A) =
P (A|B)P (B)

P (A|B)P (B) + P (A|Bc)P (Bc)

=
s1p

s1p + (1− s2) (1− p)

=
99% · 0.5%

99% · 0.5% + 2% · 99.5%
= 19.9%.

So, with the additional information that the individual has positive
test, the probability that she/he has the disease passes from 0.2%
to 19.9%.



The Bayes’ Theorem

Exercise. Fixed a percentage C%, which relation have to satisfy s1
and s2 in order to have P (B|A) ≥ C%. Describe in the plane the
region given by the points (s1, s2) satisfying this relation.

Exercise. For the disease AIDS, find on internet the prevalence of
the disease and the sensitivity and the specificity of the tests used
for detecting it. Then compute P (B|A).

Exercise. Describe the sample space Ω for this experiment and
find the probabilities of the elementary events.

Exercise. Determine the probability that the individual has not the
disease given that she/he has negative test.



The Bayes’ Theorem

Example An insurance company divided people into three classes
1, 2 and 3 of increasing possibility to have an accident.

It assumes that the percentages of people in classes 1, 2 and 3
are p1, p2 and p3, respectively.

Moreover, it also assumes that the probabilities for people in
classes 1 and 2 and 3 to have an accident in 1-year period are q1,
q2 and q3, respectively, with q1 < q2 < q3.

Suppose
p1 = 80%, p2 = 18%, p3 = 2%

and
q1 = 5%, q2 = 10%, q3 = 20%.



The Bayes’ Theorem

Consider the experiment where a new policyholder is monitored in
the first year.

Consider the events

Bi = "the policyholder is in class i", i ∈ {1,2,3} .

We can assume

P (Bi) = pi , i ∈ {1,2,3} .

Now suppose that the event

A = "the policyholder has an accident"

occurs. How can we update the probability of the events Bi ,
i ∈ {1,2,3}?



The Bayes’ Theorem

By using the likelihood values

P (A|Bi) = qi , i ∈ {1,2,3}

Bayes’ theorem says that

P (B1|A) =
q1p1

q1p1 + q2p2 + q3p3
=

5% · 80%

5% · 80% + 10% · 18% + 20% · 2%
= 65%

P (B2|A) =
q2p2

q1p1 + q2p2 + q3p3
=

10% · 18%

5% · 80% + 10% · 18% + 20% · 2%
= 29%

P (B3|A) =
q3p3

q1p1 + q2p2 + q3p3
=

20% · 2%

5% · 80% + 10% · 18% + 20% · 2%
= 6%.

So, with the additional information that the new policyholder has
an accident in the first year, the probabilities that she/he stays in
the classes 1, 2 and 3 passes from 80%, 18% and 2% to 65%,
29% and 6%, respectively.



The Bayes’ Theorem

Exercise. Describe the sample space Ω for this experiment and
find the probabilities of the elementary events.

Exercise. Suppose that the new policyholder is monitored for
another year and she/he has again an accident. What are the new
probabilities for staying in classes 1, 2 and 3?
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