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Introduction

Introduction

When an experiment is performed, often we are not interested in
all the details of the outcome, but rather we are interested only in
some numerical quantity determined by the outcome.

Examples:

I In the experiment of the dice, we could be interested only in the
sum of the scores and not on the individual scores.

I In the experiment of the 100m run, we could be interested only in
the position of the runner at lane 4, our favorite runner, and not in
the complete arrival order.

I In the experiment of the falling meteor, we could be interested only
on the distance of the impact point from our town, and not on the
geographical coordinates of the impact point.
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These quantities of interest, that are determined by the outcome
of the experiment, are known as random variables.

Definition
Consider an experiment with sample space Ω and a σ−algebra F of
subsets of Ω as the set of the events. A random variable for the
experiment is a function X : Ω→ R such that
(*) for any Borel subset A of R, X−1(A) = {ω ∈ Ω : X (ω) ∈ A} ∈ F .

If Ω is discrete, then the condition (*) is trivially satisfied.

If Ω is continuous, then the condition (*) becomes
I for any Borel subset A of R, X−1(A) = {ω ∈ Ω : X (ω) ∈ A} is a

Borel subset of Ω.
All the functions X : Ω→ R, Ω continuous, that one encounters in
Probability Theory and Statistics satisfy this condition.

By summarizing, we can say that a random variable for an
experiment associates a number to each outcome of the
experiment.
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The random variables considered in the previous example:

I For the experiment of the dice, the sum of the scores is the random variable

X : Ω = {1, 2, 3, 4, 5, 6}2 → R
given by

X (ω) = ω1 + ω2, ω ∈ Ω.

I For the experiment of 100m run, the position of the runner at lane 4 in the
arrival order is the random variable

X : Ω = {ω : ω is a permutation of 1, 2, 3, 4, 5, 6, 7, 8} → R
given by

X (ω) = ”i ∈ {1, 2, 3, 4, 5, 6, 7, 8} such that ωi = 4”, ω ∈ Ω.

I For the experiment of the falling meteor, the distance on the Earth’s surface
between the impact point and our town, with geographical coordinates
(λ, φ), is the random variable

X : Ω = (−π, π]× [−π
2
,
π

2
]→ R

given by (RE is the Earth’s radius)

X (ω) = RE · arccos (sinω2 sinφ+ cosω2 cosφ cos |ω1 − λ|) , ω ∈ Ω.
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Discrete Random Variables and Probability Mass
Functions

Definition
Consider an experiment with sample space Ω. A random variable
X : Ω→ R for the experiment is called discrete if X (Ω) is a discrete
subset of R.
Let X be a discrete random variable for the experiment. The
probability mass function (pmf) of X is the function

fX : X (Ω)→ [0,1]

given by
fX (x) = P (X = x) , x ∈ X (Ω).

Here, X = x denotes the event "X (ω) = x".

The pmf of X is also called the distribution of X .
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A random variable for an experiment with a discrete sample space
is discrete.

In fact, if we can list the elements of Ω, i.e.

Ω = {ai : i ∈ I},

with I = {1,2, . . . ,n} for some positive integer n or
I = {1,2,3, . . .}, then we can list the elements of X (Ω):

X (Ω) = {X (ai) : i ∈ I}.
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For the experiment of the dice, consider the random variable X
sum of the scores. We have

X (Ω) = {2,3, . . . ,12}
and the pmf of X is

fX (s) = P (X = s) = P ("X (ω) = ω1 + ω2 = s")

=


s−1
36 if s ≤ 7

13−s
36 if s ≥ 7

, s ∈ X (Ω) .
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For the experiment of the 100m run, consider the random variable
X position of the runner at lane 4 in the arrival order. We have

X (Ω) = {1, 2, 3, 4, 5, 6, 7, 8} .
By assuming that the runners are all of the same strength, and so

all the orders of arrival (elementary events) have the same
probability, the pmf of X is

fX (k) = P (X = k) = P ("X (ω) = k") = P ("ωk = 4")

=
|{permutations of 1, 2, 3, 4, 5, 6, 7, 8 with 4 in k − th position}|

|Ω|

=
|{permutations of 1, 2, 3, 5, 6, 7, 8}|
|{permutations of 1, 2, 3, 4, 5, 6, 7, 8}| =

7!

8!
=

1
8
, k ∈ X (Ω) .
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For the experiment of the falling meteor, the random variable X
distance on the Earth’s surface between the impact point and our
town is not discrete, since

X (Ω) = [0, πRE ] ,

is an interval, where RE is the Earth’s radius.
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Given a discrete random variable X for an experiment of sample
space Ω, we have, for the pmf fX of X ,∑

x∈X(Ω)

fX (x) = 1.

In fact,

∑
x∈X(Ω)

fX (x) =
∑

x∈X(Ω)

P (X = x) = P

 ⋃
x∈X(Ω)

X = x

 = P (Ω) = 1.
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Here is an interesting interpretation of the pmf of a discrete
random variable.

Consider an experiment with sample space Ω and a discrete
random variable X : Ω→ R.

Suppose to consider as the new outcome for the experiment
X (ω), rather than ω. So, the new sample space is the discrete set
Ωnew = X (Ω), rather than Ω.

The p : Ωnew → [0,+∞) giving the probabilities of the elementary
events in the new sample space Ωnew is the pmf of X :

p (x) = P (X = x) = fX (x) , x ∈ Ωnew = X (Ω) .
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Exercise. In the experiment of flipping a regular coin until Head
appears, consider the random variable X giving the remainder of
the integer division by 3 of the number of times that T is obtained.
Find the pmf fX of X . Generalize to the integer division by k ,
where k ≥ 2 is a positive integer, and check that the sum of the
values of the pmf fX is 1.
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Binomial Random Variables

Consider a Bernoulli process, which is given by n independent
trials with the two possible outcomes α and β, with probabilities p
and q := 1− p of obtaining α and β, respectively, at any trial.

The sample space is
Ω = {α, β}n

and the elementary events have probability

P (x) = pkqn−k , x ∈ Ω,

where k is the number of occurences of α in x = (x1, x2, . . . , xn).
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Now, consider the random variable X : Ω→ R given by

X (ω) = "number of occurences of α in ω = (ω1, ω2, . . . , ωn) "
ω ∈ Ω.

Observe that
X (Ω) = {0,1, . . . ,n} .

The pmf of X is

fX (k) = P (X = k) =

(
n
k

)
pkqn−k

k ∈ X (Ω) = {0,1, . . . ,n} .
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In fact, for k ∈ {0,1, . . . ,n}, we have

P (X = k)

= P ({ω ∈ Ω : the number of occurences of α in ω is k})

= P

 ⋃
J⊆{1,...,n}
|J|=k

{ω ∈ Ω : α occurs in ω in the positions of the set J}



= P

 ⋃
J⊆{1,...,n}
|J|=k

{xJ}


xJ ∈ Ω has α in the positions of the set J and β in the others

=
∑

J⊆{1,...,n}
|J|=k

P (xJ) .
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Now, for any J ⊆ {1, . . . ,n} such that |J| = k , we have

P (xJ) = pkqn−k .

Then

P (X = k) =
∑

J⊆{1,...,n}
|J|=k

P (xJ)

=
∑

J⊆{1,...,n}
|J|=k

pkqn−k

= pkqn−k · "number of subsets of {1, . . . ,n} with k elements"

= pkqn−k ·
(

n
k

)
.
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This random variable X related to the Bernoulli process is an
example of a binomial random variable.

Definition
A random variable X : Ω→ R for an experiment with sample space Ω
is said to have the binomial distribution Binomial(n,p), where n is a
positive integer and p ∈ [0,1], if X (Ω) = {0,1, . . . ,n} and the pmf fX of
X is

fX (k) =

(
n
k

)
pkqn−k , k ∈ {0,1, . . . ,n},

where q := 1− p.
X is said a binomial random variable if it has some binomial
distribution Binomial(n,p).

Note that the distribution Binomial(n, 1
2), where p = q = 1

2 , is given
by:

fX (k) =

(
n
k

)(
1
2

)k (1
2

)n−k

=

(
n
k

)
2−n, k ∈ {0,1, . . . ,n}.
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Examples of binomial distributions.
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Exercise. Provide an explanation for the different positions of the
peaks in the previous figures of binomial distributions.
In other words: given a random variable X with distribution
Binomial(n,p), find an index k∗ ∈ {0,1, . . . ,n} such that fX (k)

increases when k is varying from 0 to k∗ and decreases when k is
varying from k∗ to n.
To this aim, find for which k we have fX (k) < fX (k + 1) and for which
k we have fX (k) > fX (k + 1).

Exercise. Prove directly by using the expression of the pmf fX that

n∑
k=0

fX (k) = 1

for a random variable X with binomial distribution Binomial(n,p).
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Exercise. Let k be a given positive integer and, for any integer
n ≥ k , let Xn be a random variable with binomial distribution
Binomial(n,p). Prove that, as a function of n, fXn (k) increases up to
a maximum value and then decreases asymptotically to zero, as
n→∞.
To this aim, find for which n we have fXn (k) < fXn+1 (k) and viceversa.
Then, take the limit as n→∞ of fXn (k).

Exercise. Consider the Bernoulli process of length n with
outcomes α and β at any trial. We have seen that the random
variable

X (ω) = "number of occurences of α in ω", ω ∈ Ω,

has distribution Binomial(n,p), where p is the probability of
obtaining α at any trial. What is the distribution of the random
variable

Y (ω) = "number of occurences of β in ω", ω ∈ Ω ?
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Example. The Bernoulli process with p = q = 1
2 includes the

experiment of flipping n times a regular coin (or of flipping n
regular coins) as well as the situation where a couple of parents
decides to have n children.

So, the random variable number of Heads in n flips, as well as the
random variable number of girls in n children, are binomial random
variables X with distribution Binomial(n, 1

2).

The pmf of X for n = 4 is:

P(X = 0) =

(
4
0

)
· 2−4 =

1
16
, P(X = 1) =

(
4
1

)
· 2−4 =

4
16
,

P(X = 2) =

(
4
2

)
· 2−4 =

6
16
,

P(X = 3) =

(
4
3

)
· 2−4 =

4
16
, P(X = 4) =

(
4
4

)
· 2−4 =

1
16
.
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Example from Genetics. Some particular traits (such as eyes color
or handedness) of an individual are determined by two genes, a
dominant gene d and a recessive gene r .

An individual can be:

I pure dominant, i.e. the individual has two dominant genes d;

I hybrid, i.e. the individual has a dominant gene d and a recessive
gene r ;

I pure recessive, i.e. the individual has two recessive genes r .

A pure dominant and an hybrid have not the particular trait and
are alike in appearance, whereas a pure recessive has the
particular trait and she/he is, in some sense, "special".
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When two individuals mate, the resulting offspring receives
independently and randomly one gene from the mother and one
gene from the father.

Is it possible for two non-"special" parents, to have a "special"
child? Yes, if both parents are hybrid. In fact, in this case, the child
can be pure dominant, hybrid or pure recessive.

Suppose that two hybrid parents have n children. What is the
probability that k of these children, k ∈ {0,1,2, . . . ,n}, are pure
recessive?

We can consider the Bernoulli process where each trial is the birth
of a child with possible outcomes α ="the child is pure recessive"
and β ="the child is not pure recessive".
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Since each child receives independently and randomly one gene
from the mother and one gene from the father, we have the
following table:

Gene from the mother Gene from the father Probabilty
d d 1

4
d r 1

4
r d 1

4
r r 1

4

Thus, we have the probabilities p = 1
4 and q = 3

4 in the Bernoulli
process.

The number of pure recessive children is a binomial random
variable X with distribution Binomial(n, 1

4): the pmf is

P (X = k) =

(
n
k

)
·
(

1
4

)k

·
(

3
4

)n−k

, k ∈ {1, . . . ,n}.
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If n = 4, the pmf of X is

P (X = 0) =

(
4
0

)
·
(

3
4

)4

= 31.64%

P (X = 1) =

(
4
1

)
· 1

4
·
(

3
4

)3

= 42.19%

P (X = 2) =

(
4
2

)
·
(

1
4

)2

·
(

3
4

)2

= 21.09%

P (X = 3) =

(
4
3

)
·
(

1
4

)3

· 3
4

= 4.69%

P (X = 4) =

(
4
4

)
·
(

1
4

)4

= 0.39%.

Exercise. Suppose that two parents, one hybrid the other pure
recessive, have n children. What is the probability that k of these
children, k ∈ {0,1, . . . ,n}, are pure recessive?
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Mean of a Discrete Random Variable

Definition
Let X be a discrete random variable for an experiment with sample
space Ω. The mean of X is the quantity

E (X ) :=
∑

x∈X(Ω)

x · fX (x) =
∑

x∈X(Ω)

x · P (X = x) .

Other terms for E (X ) are expected value and expectation.
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If a discrete random variable X has uniform distribution, i.e.

fX (x) = P (X = x) =
1

|X (Ω)|
, x ∈ X (Ω) ,

then E(X ) is the average of the values in X (Ω):

E (X ) =
∑

x∈X(Ω)

x · fX (x) =
∑

x∈X(Ω)

x · 1
|X (Ω)|

=

∑
x∈X(Ω)

x

|X (Ω)|

In the general case,

E(X ) =
∑

x∈X(Ω)

x · fX (x)

is the weighed average of the values x ∈ X (Ω) with weights the
values fX (x) of the pmf of X .

Therefore, E(X ) can be thought as the center of mass of a system
of particles lying in a straight line at the positions x ∈ X (Ω) with
masses fX (x). Exercise. Explain why.
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Example. Consider the experiment where a die is rolled with
sample space Ω = {1,2,3,4,5,6}. Consider the random variable

X (ω) = "score of the die" = ω, ω ∈ Ω.

Since X has uniform distribution, E (X ) is the average of the six
values in X (Ω):

E (X ) =
1 + 2 + 3 + 4 + 5 + 6

6
=

21
6

= 3.5.

Note that, despite the name "Expected Value", E (X ) can not be
one of the values of X .

Exercise. Compute the mean of the random variable position of
the runner at lane 4 in the arrival order, for the experiment of the
100m run.
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Exercise. Compute the mean of the random variable sum of the
scores, for the experiment of the two dice. Explain how this mean
can be immediately computed by looking at the graph of the
probability mass function and at the interpretation of the mean as
center of mass.
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In the frequentist interpretation of probability, E (X ) has a clear
significance.

Consider to repeat the underlying experiment a very large number
n of times and let ωobs

1 , ωobs
2 , . . . , ωobs

n be the observed outcomes.

We have, for any x ∈ X (Ω),

P (X = x) ≈ Long Time Relative Frequency of X = x

=

∣∣{i ∈ {1,2, . . . ,n} : X
(
ωobs

i

)
= x

}∣∣
n

.
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Then

E (X ) =
∑

x∈X(Ω)

x · P (X = x)

≈
∑

x∈X(Ω)

x ·
∣∣{i ∈ {1,2, . . . ,n} : X

(
ωobs

i

)
= x

}∣∣
n

=

∑
x∈X(Ω)

x ·
∣∣{i ∈ {1,2, . . . ,n} : X

(
ωobs

i

)
= x

}∣∣
n

=

n∑
i=1

X
(
ωobs

i

)
n

Therefore, for a very large n, the mean E (X ) is close to the mean
of the data x =

(
X
(
ωobs

1

)
,X
(
ωobs

2

)
, . . . ,X

(
ωobs

n
))

.
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By considering the probabilities as limits as n→∞, we have:

E (X ) =
∑

x∈X(Ω)

x · P (X = x)

=
∑

x∈X(Ω)

x · lim
n→∞

∣∣{i ∈ {1,2, . . . ,n} : X
(
ωobs

i

)
= x

}∣∣
n

= lim
n→∞

∑
x∈X(Ω)

x ·
∣∣{i ∈ {1,2, . . . ,n} : X

(
ωobs

i

)
= x

}∣∣
n

= lim
n→∞

n∑
i=1

X
(
ωobs

i

)
n

So, the sum of the observed values of X grows as E(X )n, as
n→∞:

n∑
i=1

X
(
ωobs

i
)
∼ E (X ) n, , n→∞, i.e. lim

n→∞

n∑
i=1

X
(
ωobs

i

)
E (X ) n

= 1.
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Example. Consider the random variable X score when a die is
rolled.

In the frequentist interpretation, E (X ) = 3.5 means that after a
very large number n of rolls of the die, the average of the
observed scores is close to 3.5.

In other terms, the sum of the observed scores grows as 3.5n, as
n→∞.

Exercise. What is the frequentist significance of the mean of the
random variables position of the runner at lane 4 in the arrival
order, for the experiment of the 100m run, and sum of the scores,
for the experiment of the two dice.
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Observe that if Ω is discrete, then

E (X ) =
∑
ω∈Ω

X (ω) · P (ω) .

This is another formula for the mean, where the sum has indices
the outcomes ω of the experiment, rather than the values x of the
random variable.

In fact

E (X ) =
∑

x∈X(Ω)

x · P (X = x) =
∑

x∈X(Ω)

x · P

 ⋃
ω∈Ω

X(ω)=x

{ω}


=

∑
x∈X(Ω)

x ·
∑
ω∈Ω

X(ω)=x

P (ω) =
∑

x∈X(Ω)

∑
ω∈Ω

X(ω)=x

x · P (ω)

=
∑

x∈X(Ω)

∑
ω∈Ω

X(ω)=x

X (ω) · P (ω) =
∑
ω∈Ω

X (ω) · P (ω) .
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Here is an example of computation of the mean by the previous
formula.

Example. An insurance company sets the annual premium of its
life insurance policies in order to have, for the next year, an
expected profit for each police of c% of the amount it would have
to pay out for the die of the individual. A reference value can be
c% = 0.1%.

Find the annual premium "a" for a policy of value v for an
individual that will die during the year with probability p.

Here, the experiment is the future next year with two possible
outcomes: "the individual will die during the year" and "the
individual will not die during the year".

The profit is the random variable:

X ("the individual will die during the year") = −v + a
X ("the individual will not die during the year") = a.
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Thus

E (X ) = X ("the individual will die") · P ("the individual will die")
+X ("the individual will not die") · P ("the individual will not die")

= (−v + a) · p + a · (1− p) = −v · p + a.

Since it is required that

c% · v = E(X ) = −v · p + a,

we obtain
a = (p + c%) · v .

By the frequentist interpretation of E(X ), we can conclude that the
observed sum of the profits of the sold policies asymptotically
grows as n · c% · v, where n is the number of sold policies. So, if n
is large, then the insurance company has a large profit.

This is the reason for which insurance companies thrive.
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Exercise. A bookmaker (Eurobet) offers the win of Roma in
tomorrow evening football match Roma-Real Madrid at 3.35, i.e.
one has to pay 1 now for having back 3.35 in case of a win of
Roma. By assuming that the expected profit of the bookmaker is
c% = 1% of the amount paid out for a win of Roma, find the
probability that Roma will win the match.
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Properties of the mean
Theorem
(Linearity of the mean). Let X ,Y : Ω→ R be discrete random
variables. We have

E (X + Y ) = E (X ) + E (Y )

and
E (cX ) = cE (X ) for any c ∈ R.

Proof.
Assume Ω discrete. We give the proof only for this case. We have

E (X + Y ) =
∑
ω∈Ω

(X (ω) + Y (ω)) · P (ω)

=
∑
ω∈Ω

X (ω) · P (ω) +
∑
ω∈Ω

Y (ω) · P (ω) = E (X ) + E (Y )
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Proof.
and

E (cX ) =
∑
ω∈Ω

cX (ω) · P (ω)

= c
∑
ω∈Ω

X (ω) · P (ω) = cE (X ) .

Consequence: for random variables X1,X2, . . . ,Xn : Ω→ R, we
have

E (X1 + X2 + · · ·+ Xn) = E (X1) + E (X2) + · · ·+ E(Xn).

Exercise. Prove this.
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Observe that if, for some c ∈ R, we have

Y (ω) = c, for any ω ∈ Ω,

i.e. Y is a constant random variable, also called a deterministic
random variable, then

E(Y ) =
∑

x∈Y (Ω)

x · P(Y = x) = c · P(Y = c) = c · 1 = c.

Thus, for a random variable X , we have

E(X + c) = E(X ) + c for any c ∈ R.

In fact, let Y be the constant random variable of value c. We have

E(X + c) = E(X + Y ) = E(X ) + E(Y ) = E(X ) + c.
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Here are two examples of use of the formula for the mean of a
sum of random variables.

Example. Consider the experiment where n dice are rolled, whose
sample space is Ω = {1,2,3,4,5,6}n, and consider the random
variable

X (ω) = "sum of the scores" = ω1 + ω2 + · · ·+ ωn, ω ∈ Ω.

Find the mean of X .

We have
X = X1 + X2 + · · ·+ Xn,

where, for i ∈ {1, . . . ,n}, Xi is the random variable

Xi (ω) = ωi = "score of the i − th die", ω ∈ Ω.

We have
E(X ) = E(X1) + E(X2) + · · ·+ E(Xn) = 3.5n

since Xi , i ∈ {1,2, . . . ,n}, is the score of a single die and so
E(Xi ) = 3.5 as we have previously seen.



Mean of a Discrete Random Variable Properties of the mean

Exercise. We have just assumed that the pmf of Xi , i ∈ {1, . . . ,n},
has constant value 1

6 , since Xi is the score of a single die. Prove
this by assuming that all the elementary events in
Ω = {1,2,3,4,5,6}n have the same probabilities.

Exercise. Suppose that two dice are rolled. What is the mean of
the difference of the scores?
Now, suppose the the two dice are rolled n times. What can we
say about the sum, over the n rolls, of the differences of the
scores when n→∞.

Exercise. Consider a dice play where three dice are rolled: a red
one, a white one and a black one. The score of one roll of the
three dice is the sum of the score of the red die, counted two
times, the score of the white die, counted one time, and the score
of the black die, counted one time but negatively.
Suppose that the three dice are rolled n times. How large is the
sum of the scores of the rolls when n is large?
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Example. Consider a bookmaker that manages n bets on the
occurrence of the events A1,A2, . . . ,An relative to some
experiment.

Assume that in the i−th bet, i ∈ {1, . . . ,n}, one pays ai for having
back kiai , ki > 1, if Ai occurs. The number ki is called the odd of
the i-th bet. Let pi be the probability of Ai . Find the expected profit
of the bookmaker.

Let X be the random variable profit. We have

X = X1 + X2 + · · ·+ Xn

where Xi , i ∈ {1,2, . . . ,n}, is the profit of the bet on the event Ai .

Since

E (Xi) = (−kiai + ai)·pi +ai ·(1− pi) = (1− kipi) ai , i ∈ {1, . . . ,n} ,
we have

E (X ) =
n∑

i=1

E (Xi) =
n∑

i=1

(1− kipi) ai .
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Exercise.

I By assuming that the bookmaker sets

1
ki

= pi + c%, i ∈ {1, . . . ,n} , (1)

where c% > 0, shows that

E (Xi ) = c%kiai , i ∈ {1, . . . ,n} and then E (X ) = c% ·
n∑

i=1

kiai .

So the expected profit in each bet is c% of what is paid out by the
bookmaker, as in case of the insurance company. Real
bookmakers fix the odds by (1).

I Consider the following ki , i ∈ {1,2,3}, for the three events 1X2
relevant to the match Roma-Real Madrid:

1 : 3.35, X : 3.60, 2 : 2.10.

Find c%, the probabilities of 1, X and 2 and the expected profit
E (X ) of the bookmaker for ai = 1, i ∈ {1,2,3}.
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We have also the following property of the mean.

Theorem
(Monotonicity of the mean). Let X ,Y : Ω→ R be discrete random
variables. If

X ≤ Y, i.e. X (ω) ≤ Y (ω) for any ω ∈ Ω,

then
E (X ) ≤ E (Y ) .

Proof.
Assume Ω discrete. We give the proof only for this case. We have

E (X ) =
∑
ω∈Ω

X (ω)︸ ︷︷ ︸
≤Y (ω)

· P (ω)︸ ︷︷ ︸
≥0

≤
∑
ω∈Ω

Y (ω) · P (ω) = E (Y ) .
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Indipendence of Discrete Random Variables

Consider a finite sequence X1,X2, . . . ,Xn, or an infinite sequence
X1,X2,X3, . . ., of discrete random variables for the same
experiment with sample space Ω.

Let I be the set of indices for the sequence: I = {1,2, . . . ,n} if the
sequence is finite and I = {1,2,3, . . .} if it is infinite.

Definition
The random variables of the sequence Xi , i ∈ I, are called
independent if for any sequence xi , i ∈ I, where xi ∈ Xi (Ω) for any
i ∈ I, the events of the sequence

Xi = xi , i ∈ I,

are independent.



Indipendence of Discrete Random Variables

By recalling the definition of independence for the sequence of
events Xi = xi , i ∈ I, we can rewrite the definition of independence
of the random variables Xi , i ∈ I, as follows.

The random variables Xi , i ∈ I, are independent if and only if for
any positive integer k such that 2 ≤ k ≤ |I|, for any
i1, . . . , ik−1, ik ∈ I distinct and for any

xi1 ∈ Xi1(Ω), . . . , xik−1 ∈ Xik−1(Ω), xik ∈ Xik (Ω)

such that
P
(
Xi1 = xi1 ∩ · · · ∩ Xik−1 = xik−1

)
6= 0,

we have

P
(
Xik = xik |Xi1 = xi1 ∩ · · · ∩ Xik−1 = xik−1

)
= P

(
Xik = xik

)
= fXik

(xik ).

In other terms, independence of a sequence of discrete random
variables means that knowledge about the values of some of the
random variables does not change the pmfs of the others.



Indipendence of Discrete Random Variables

Moreover, by recalling the equivalent formulation of the
independence of events by probability of an intersection as
product of probabilities, we can rewrite the definition of
independence of the random variables Xi , i ∈ I, as follows.

The random variables Xi , i ∈ I, are independent if and only if for
any positive integer k such that 2 ≤ k ≤ |I|, for any i1, . . . , ik ∈ I
distinct and for any

xi1 ∈ Xi1(Ω), . . . , xik ∈ Xik (Ω),

we have

P
(
Xi1 = xi1 ∩ · · · ∩ Xi1 = xik

)
= P

(
Xi1 = xi1

)
· · ·P

(
Xik = xik

)
= fXi1

(xi1) · · · fXik
(xik ).
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Here are two examples of independence of a sequence of discrete
random variables.

Example. Consider a Bernoulli process given by n independent
trials with possible outcomes α and β.

Consider, for any i ∈ {1, . . . ,n}, the random variable

Xi (ω) =

{
1 if ωi = α
0 if ωi = β

=

{
1 if the outcome of the i − th trial is α
0 if the outcome of the i − th trial is β

ω ∈ Ω = {α, β}n
.

The fact that the trials are independent means that the random
variables X1,X2, . . . ,Xn are independent.

Observe that X1 + X2 + · · ·+ Xn is the number of outcomes α in
the n trials. We known that it has distribution Binomial(n,p), where
p is the probability of α at any trial.
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Example. Consider the experiment where n dice are rolled. The
sample space is Ω = {1,2,3,4,5,6}n.

Consider, for any i ∈ {1, . . . ,n}, the random variable

Xi (ω) = ωi = "score of the i − th die", ω ∈ Ω.

The single rolls are independent and this fact means that the
random variables X1,X2, . . . ,Xn are independent.

Clearly X1 + X2 + · · ·+ Xn is the total score.



Indipendence of Discrete Random Variables

As a consequence of the definition of independence we have the
following property.

Theorem
Let Xi , i ∈ I, be a sequence of independent discrete random variables.
For any positive integer k such that 2 ≤ k ≤ |I|, for any i1, i2, . . . , ik ∈ I
distinct and for any

U ⊆ Xi1 (Ω)× · · · × Xik (Ω),

we have

P ((Xi1 , . . . ,Xik ) ∈ U) =
∑

(xi1
,...,xik )∈U

P (Xi1 = xi1 ) · · ·P (Xik = xik ) . (2)
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Proof.
We have

P ((Xi1 , . . . ,Xik ) ∈ U)

= P

 ⋃
(xi1

,...,xik )∈U

Xi1 = xi1 ∩ · · · ∩ Xik = xik


=

∑
(xi1

,...,xik )∈U

P (Xi1 = xi1 ∩ · · · ∩ Xik = xik )

=
∑

(xi1
,...,xik )∈U

P (Xi1 = xi1 ) · · ·P (Xik = xik ) .



Indipendence of Discrete Random Variables

Exercise. Consider the situation where the independent random
variables Xi , i ∈ I, have the same distribution, i.e. they have the
same range Z , Z = Xi(Ω) for any i ∈ I, and the same pmf f , f = fXi

for any i ∈ I. Compute P
((

Xi1 , . . . ,Xik
)
∈ U

)
for

U = {(z, . . . , z) : z ∈ Z}.

Exercise. Show that in the previous two examples of the Bernoulli
process and the roll of the dice the situation of the previous
exercise holds. What is the event

(
Xi1 , . . . ,Xik

)
∈ U, U as in the

previous exercise, and what is its probability?
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Exercise. Consider a Bernoulli process of length n = 3k , where k
is even. Divide the Bernoulli process in three consecutive parts of
length k . Compute the probability that in each part there is an
equal number of outcomes α and β.

To this aim, define

U = {x ∈ {0,1}n : there is an equal number of components 0
and 1 in (x1, . . . , xk ), (xk+1, . . . , x2k ) and (x2k+1, . . . , x3k )}

V = {x ∈ {0,1}k : there is an equal number of components 0
and 1 in x}

and show, by using (2), that

P((X1, . . . ,Xn) ∈ U)

= P((X1, . . . ,Xk ) ∈ V ) · P((Xk+1, . . . ,X2k ) ∈ V ) · P((X2k+1, . . . ,X3k ) ∈ V ).

where X1, . . . ,Xn are the random variables previously defined for
the Bernoulli process.
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We have also the following other property.

Theorem
Let Xi , i ∈ I, be a sequence of independent discrete random variables.
For any positive integer k such that 2 ≤ k ≤ |I|, for any i1, i2, . . . , ik ∈ I
distinct and for any

Ui1 ⊆ Xi1 (Ω), . . . ,Uik ⊆ Xik (Ω),

we have

P (Xi1 ∈ Ui1 ∩ · · · ∩ Xik ∈ Uik ) = P (Xi1 ∈ Ui1 ) · · ·P (Xik ∈ Uik ) .



Indipendence of Discrete Random Variables

Proof.
We use U = Ui1 × · · · × Uik in the previous formula (2) and obtain

P(Xi1 ∈ Ui1 ∩ · · · ∩ Xik ∈ Uik )

= P((Xi1 , . . . ,Xik ) ∈ Ui1 × · · · × Uik )

=
∑

(xi1
,...,xik

)∈Ui1
×···×Uik

P(Xi1 = xi1 ) · · ·P (Xik = xik )

=
∑

xi1
∈Ui1

. . .
∑

xik
∈Uik

P (Xi1 = xi1 ) · · ·P (Xik = xik )

= (
∑

xi1
∈Ui1

P (Xi1 = xi1 )) · · · (
∑

xik
∈Uik

P (Xik = xik ))

= P (Xi1 ∈ Ui1 ) · · ·P (Xik ∈ Uik ) .



Indipendence of Discrete Random Variables

By recalling the formulation of the independence of events by
probability of an intersection as product of the probabilities, this
last property can be restated as follows.

Theorem
Let Xi , i ∈ I, be a sequence of independent discrete random variables.
For any sequence Ui , i ∈ I, where Ui ⊆ Xi (Ω) for any i ∈ I, the events
of the sequence

Xi ∈ Ui , i ∈ I,

are independent.

Exercise. Explain why the property in the definition of independent
discrete random variables is a particular case of this property.

Exercise. Consider the experiment where we roll n dice. What is
the probability that the dice of odd index has an even score and
the dice of even index has an odd score?
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Operations preserving independence
We present four operations on a sequence Xi , i ∈ I, of
independent discrete random variables preserving the
independence relationship.

First operation. Let Xi , i ∈ I, be a sequence of independent
discrete random variables and let

Yi = fi(Xi), i ∈ I,

where fi : Xi(Ω)→ R. The discrete random variables Yi , i ∈ I, are
independent.

In fact, consider a sequence yi ∈ Yi(Ω), i ∈ I. The events Yi = yi ,
i ∈ I, are independent since, for i ∈ I,

Yi = yi ⇔ Xi ∈ Ui = f−1
i ({yi}) = {x ∈ Xi(Ω) : fi(x) = yi}

and the events Xi ∈ Ui , i ∈ I, are independent.

So, as an example, if Xi , i ∈ I, are independent, also X 2
i , i ∈ I, are

independent.
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Second operation. Let X1, . . . ,Xn,Xn+1,Xn+2, . . . be a finite or
infinite sequence of discrete random variables and let

Y = f (X1, . . . ,Xn),

where f : X1(Ω)× · · · × Xn(Ω)→ R. The discrete random
variables Y ,Xn+1,Xn+2, . . . are independent.

In fact, consider a sequence
y ∈ Y (Ω), xi1 ∈ Xi1 (Ω), . . . , xik ∈ Xik (Ω),

where i1, . . . , ik ∈ {n + 1,n + 2, . . .} are distinct indices. We show
that

P(Y = y ∩ Xi1 = xi1 ∩ · · · ∩ Xik = xik ) = P(Y = y)P(Xi1 = xi1 ) · · ·P(Xik = xik )

To this aim, observe that
P(Y = y ∩ Xi1 = xi1 ∩ · · · ∩ Xik = xik ) = P((X1, . . . ,Xn,Xi1 , . . . ,Xik ) ∈ U)

where U is the subset of X1(Ω)× · · · × Xn(Ω)× Xi1 (Ω)× · · · × Xik (Ω)
given by

U = {(x1, . . . , xn, xi1 , . . . , xik ) : (x1, . . . , xn) ∈ V}
V = f−1({y}) = {(x1, . . . , xn) ∈ X1(Ω)× · · · × Xn(Ω) : f (x1, . . . , xn) = y}.
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Now

P ((X1, . . . ,Xn,Xi1 , . . . ,Xik ) ∈ U)

=
∑

(x1,...,xn)∈V

P (X1 = x1) · · ·P (Xn = xn)P (Xi1 = xi1 ) · · ·P (Xik = xik )

by the previous formula (2)

=

 ∑
(x1,...,xn)∈V

P (X1 = x1) · · ·P (Xn = xn)

P (Xi1 = xi1 ) · · ·P (Xik = xik )

= P ((X1, . . . ,Xn) ∈ V )P (Xi1 = xi1 ) · · ·P (Xik = xik )

by the previous formula (2)

= P (Y = y)P (Xi1 = xi1 ) · · ·P (Xik = xik )

since (X1, . . . ,Xn) ∈ V ⇔ Y = y .

So, as an example, if X1,X2,X3,X4,X5, . . . are independent, also
X1 + X2 + X3,X4,X5, . . . and X1 · X2 · X3,X4,X5, . . . are
independent.
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Third operation. By the definition of independence for events,
independent events

A1,A2,A3, . . .

presented here in the order: first A1, then A2 and so on, remain
independent if they are presented in any other order.

In fact, the notion of independence is related to all the finite
sequences

Ai1 , . . . ,Aik−1 ,Aik

of events taken in A1,A2,A3, . . ., with not necessarily increasing
distinct indices i1, . . . , ik−1, ik arbitrarily chosen in {1,2,3, . . .}. So,
for any order with which the events A1,A2,A3, . . . are presented,
we always consider the same finite sequences.

Therefore, independent discrete random variables X1,X2,X3, . . .
remain independent if they are presented in any other order.

Exercise. Let X1,X2,X3,X4,X5,X6 be independent discrete random
variables. Show that (X1 + X2)2,X 2

3 · X 2
4 ,X

2
5 − X 2

6 are independent.
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Fourth operation. By the definition of independence for events, a
subsequence

Ai , i ∈ J ⊆ I,

of a sequence Ai , i ∈ I, of independent events is a sequence of
independent events.

In fact, any finite sequence

Ai1 , . . . ,Aik−1 ,Aik

of events taken in Ai , i ∈ J, with distinct indices i1, . . . , ik−1, ik ∈ J
is also a finite sequence of events taken in Ai , i ∈ I, since
i1, . . . , ik−1, ik ∈ I.

Therefore, a subsequence Xi , i ∈ J ⊆ I, of a sequence Xi , i ∈ I,
of independent discrete random variables is a sequence of
independent discrete random variables.

So, as an example, if X1,X2,X3,X4,X5,X6, . . . are independent,
also X2,X4,X6, . . . are independent.
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Mean of the product
Observe that the property

E (X · Y ) = E (X ) · E((Y ) ,

where X ,Y : Ω→ R are discrete random variables, does not hold
in general.

In fact, consider a discrete random variable X with

P(X = −1) = P(X = 1) =
1
2
.

Since X has mean 0 and X 2 is a constant random variable of
value 1, we have

E (X · X ) = E
(

X 2
)

= 1 6= 0 = E (X )2 = E (X ) · E (X ) .

However, the property holds if X and Y are independent.
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Theorem
Let X ,Y : Ω→ R be discrete random variables. If X and Y are
independent, then

E (XY ) = E (X )E (Y ) .

Proof.
We have

E (XY ) =
∑

z∈(XY )(Ω)

z · P (XY = z)

=
∑

z∈(XY )(Ω)

z · P(
⋃

(x,y)∈X(Ω)×Y (Ω)
xy=z

X = x ∩ Y = y )

=
∑

z∈(XY )(Ω)

z
∑

(x,y)∈X(Ω)×Y (Ω)
xy=z

P (X = x ∩ Y = y)

=
∑

z∈(XY )(Ω)

∑
(x,y)∈X(Ω)×Y (Ω)

xy=z

z︸︷︷︸
=xy

P (X = x ∩ Y = y)

=
∑

(x,y)∈X(Ω)×Y (Ω)

xy · P (X = x ∩ Y = y)
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Proof.
Now, since X and Y are independent we have

E (XY ) =
∑

(x,y)∈X(Ω)×Y (Ω)

xyP (X = x ∩ Y = y)

=
∑

(x,y)∈X(Ω)×Y (Ω)

xyP (X = x)P (Y = y)

= (
∑

x∈X(Ω)

xP (X = x) ) (
∑

y∈Y (Ω)

yP (Y = y) )

= E (X ) · E (Y ) .

Consequence: for independent random variables
X1,X2, . . . ,Xn : Ω→ R, we have

E (X1X2 · · ·Xn) = E (X1)E (X2) · · ·E(Xn).

Exercise. Prove this.
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Exercise. Consider a Bernoulli process of lenght n. For
i ∈ {1, . . . ,n}, let Xi be the random variable with value 1 if the
outcome of the i−th trial is α and 0 otherwise. Without using the
independence of X1,X2, . . . ,Xn, verify that

E (X1X2 · · ·Xn) = E (X1)E (X2) · · ·E(Xn).

Exercise. Consider the experiment where n dice are rolled.
Compute the mean of the random variable product of the scores.
Compute the mean of the product between the sum of the scores
of the dice of odd index and the sum of the scores of the dice of
even index.



Variance

Variance
The mean is a number that we associate to each discrete random
variable, whose meaning is clear in the frequentist interpretation.

Apart this interpretation, we can say that the mean summarizes in
a single number (as center of mass) all the possible values that
can be assumed by the random variable. But the crucial question
is: how are close the values of the random variable to the mean?

For example, consider these three discrete random variables U, V
and W with pmfs

P(U = 0) = 1

P (V = −1) = P (V = 1) =
1
2

P (W = −10) = P (W = 10) =
1
2
.

All three random variables have mean 0, but U surely assumes
the value 0 and the two values of V are closer to 0 than the two
values of W .



Variance

In order to measure how close are the values of a discrete random
variable X to the mean µ := E (X ), we consider the random
variable |X − µ| distance between X and µ.

Then, we could consider, as a measure of closeness of the values
of X to µ, the mean E (|X − µ|). But, it is matematically more
convenient to use the mean of |X − µ|2 = (X − µ)2.

Definition
Let X be a discrete random variable. The variance of X is the quantity

Var (X ) := E
(

(X − µ)2
)
.

The variance is a measure of how close are the random values of
X to µ.

Exercise. By using the monotonicity property of the mean, prove
that Var(X ) ≥ 0 for a discrete random variable X .



Variance

For the three previous random variables U, V and W , where
µ = 0, the squares U2, V 2 and W 2 are deterministic random
variables of value 0, 1 and 100, respectively, and so

Var (U) = E
(

U2
)

= 0,

Var (V ) = E
(

V 2
)

= 1

Var (W ) = E
(

W 2
)

= 100.



Variance

Observe that

Var(X ) = E
(

(X − µ)2
)

= E
(

X 2
)
− µ2.

In fact,

E
(

(X − µ)2
)

= E
(

X 2 − 2µX + µ2
)

= E(X 2 − 2µX ) + µ2

= E(X 2) + E(−2µX ) + µ2

= E
(

X 2
)
− 2µE (X ) + µ2

= E
(

X 2
)
− 2µ2 + µ2

= E
(

X 2
)
− µ2.



Variance

We have defined the variance as a measure of the closeness of
the random values of X to µ, but a better measure is given by the
standard deviation.

Definition
Let X be a discrete random variable. The standard deviation of X is
the quantity

SD (X ) :=
√

Var(X ).

Unlike the variance, the standard deviation has the same
dimensions of the values of X .



Variance

In order to compute variances and standard deviations, the
following formula is useful.

Let X : Ω→ R be a discrete random variable and let h : R→ R.
The random variable h(X ) is discrete. Exercise. Why? We have

E (h (X )) =
∑

x∈X(Ω)

h (x) · P (X = x) .

In fact
E (h (X )) =

∑
y∈h(X)(Ω)

y · P (h (X ) = y)

=
∑

y∈h(X)(Ω)

y · P(
⋃

x∈X(Ω)
h(x)=y

X = x )

=
∑

y∈h(X)(Ω)

y ·
∑

x∈X(Ω)
h(x)=y

P (X = x) =
∑

y∈h(X)(Ω)

∑
x∈X(Ω)
h(x)=y

y︸︷︷︸
=h(x)

· P (X = x)

=
∑

x∈X(Ω)

h (x) · P (X = x) .



Variance

Observe that, if Ω is discrete, then

E(h(X )) =
∑
ω∈Ω

h (X (ω))P (ω)

by using the formula for the mean of h(X ) with the outcomes as
indices of the sum.

In particular, for h(X ) = X 2, we have

E
(

X 2
)

=
∑

x∈X(Ω)

x2 · P (X = x) .

and, if Ω is discrete,

E
(

X 2
)

=
∑
ω∈Ω

X (ω)2 P(ω).



Variance

Moreover, for h(X ) = (X − µ)2, we have

Var(X ) = E
(

(X − µ)2
)

=
∑

x∈X(Ω)

(x − µ)2 · P (X = x) . (3)

and, if Ω is discrete,

Var(X ) = E
(

(X − µ)2
)

=
∑
ω∈Ω

(X (ω)− µ)2 P(ω).

Exercise. By using (3), show that the variance of X can be
interpreted as a momentum of inertia. In this context, explain why
the relation

Var (X ) = E
(

X 2
)
− µ2

is the Parallel Axis Theorem.

Exercise. By using (3), show that Var(X ) = 0 if and only if
P (X 6= µ) = 0.



Variance

As an example of computation of variance and standard deviation,
consider the experiment roll of a single die and the random
variable X score. We have

E(X 2) =
6∑

k=1

k2 · P (X = k)

=
12 + 22 + 32 + 42 + 52 + 62

6
=

91
6

= 15.1667

and so

Var(X ) = E(X 2)− µ2 = 15.1667− 3.52 = 2.9167

SD(X ) =
√

Var(X ) =
√

2.1967 = 1.7078.



Variance

Exercise. Compute the standard deviation for the random variable
profit of the insurance company on its life insurance policy.

Exercise. Compute the mean and the standard deviation, as a
function of n, of a discrete random variable X with
X (Ω) = {1,2, . . . ,n} and uniform distribution.



Variance The Chebyshev’s inequality

The Chebyshev’s inequality
We have seen that the variance of a discrete random variable X is
a measure of how close are the random values of X to the mean
of X : we can say qualitatively that the smaller the variance, the
closer to the mean are the values.

The Chebyshev’s inequality specifies quantitatively the
closeness of the values of X to the mean in terms of the variance.

Theorem
(Chebyshev’s inequality) Let X : Ω→ R be a discrete random
variable with mean µ. For any c > 0, we have

P (|X − µ| ≥ c) ≤ Var (X )

c2 .

Fixed c > 0, the smaller the variance, the smaller the probability
that the value of the random variable is far at least c from the
mean.



Variance The Chebyshev’s inequality

Proof.
Let c > 0. Consider the event |X − µ| ≥ c, i.e. the event

F = {ω ∈ Ω : |X (ω)− µ| ≥ c}

and the random variable (indicator function of the event F )

IF =

{
1 if F occurs, i.e. ω ∈ F
0 if F does not occur, i.e. ω /∈ F .

Note that
E (IF ) = 1 · P (F ) + 0 · P (F c) = P (F ) .

Moreover we have
(X − µ)2 ≥ c2IF .

In fact: for ω ∈ F , we have

(X (ω)− µ)2 ≥ c2 = c2IF (ω)

and, for ω /∈ F , we have

(X (ω)− µ)2 ≥ 0 = c2IF (ω) .



Variance The Chebyshev’s inequality

Proof.
Thus, by the monotonicity property of the mean,

Var (X ) = E
(

(X − µ)2
)
≥ E

(
c2IF

)
= c2E (IF ) = c2P (F ) .

We conclude that

P (|X − µ| ≥ c) = P (F ) ≤ Var (X )

c2 .



Variance The Chebyshev’s inequality

The Chebyshev’s inequality can be restated as follows: for any
k > 0, we have

P (|X − µ| ≥ kSD (X )) ≤ 1
k2 .

In fact
P (|X − µ| ≥ kSD (X )) ≤ Var (X )

(kSD (X ))2 =
1
k2 .

So, for any k > 0,

P (|X − µ| < kSD (X )) ≥ 1− 1
k2 .

In fact

P (|X − µ| < kSD (X )) = 1− P (|X − µ| ≥ kSD (X )) ≥ 1− 1
k2 .



Variance The Chebyshev’s inequality

In particular

P (|X − µ| < 2SD (X )) ≥ 3
4

P (|X − µ| < 3SD (X )) ≥ 8
9
.

Exercise. For the random variable X score when a single die is
rolled, verify that

P (|X − µ| < 2SD (X )) ≥ 3
4
.



Variance Properties of the variance

Properties of the variance
Theorem
Let X : Ω→ R be a discrete random variable. We have

Var (cX ) = c2Var (X ) for any c ∈ R

and
Var (X + c) = Var (X ) for any c ∈ R.

Proof.
For c ∈ R, we have

Var (cX ) = E
(

(cX − E (cX ))2
)

= E
(

(cX − cE (X ))2
)

= E
(

(c (X − E (X )))2
)

= E
(

c2 (X − E (X ))2
)

= c2E
(

(X − E (X ))2
)

= c2Var (X )



Variance Properties of the variance

Proof.
and

Var (X + c) = E
(

(X + c − E (X + c))2
)

= E
(

(X + c − (E (X ) + c))2
)

= E
(

(X − E (X ))2
)

= Var (X ) .

Consequence:

SD (cX ) = |c| · SD (X ) for any c ∈ R

and
SD (X + c) = SD (X ) for any c ∈ R.

Exercise. Prove this.



Variance Properties of the variance

Observe that the property

Var (X + Y ) = Var (X ) + Var (Y ) ,

where X ,Y : Ω→ R are discrete random variables, does not hold
in general.

In fact, if Var (X ) 6= 0, then

Var (X + X ) = Var (2X ) = 4Var (X ) 6= 2Var (X ) = Var (X ) + Var (X ) .

However, the property holds if X and Y are independent.

Theorem
Let X ,Y : Ω→ R be discrete random variables. If X and Y are
independent, then

Var (X + Y ) = Var (X ) + Var (Y ) .



Variance Properties of the variance

Proof.

Var (X + Y ) = E
(

(X + Y )2
)
− E (X + Y )2

= E
(

X 2 + 2XY + Y 2
)
− E (X + Y )2

= E
(

X 2
)

+ 2E (XY ) + E
(

Y 2
)
− (E (X ) + E (Y ))2

= E
(

X 2
)

+ 2E (XY ) + E
(

Y 2
)
−
(
E (X )2 + 2E (X )E (Y ) + E (Y )2

)
= E

(
X 2
)
− E (X )2︸ ︷︷ ︸

=Var(X)

+ E
(

Y 2
)
− E (Y )2︸ ︷︷ ︸

=Var(Y )

+ 2(E (XY )− E (X )E (Y ))︸ ︷︷ ︸
=0 since X e Y are independent

= Var(X ) + Var(Y ).

Consequence: for independent random variables
X1,X2, . . . ,Xn : Ω→ R, we have

Var (X1 + X2 + · · ·+ Xn) = Var (X1) + Var (X2) + · · ·+ Var(Xn).

Exercise. Prove this.



Variance Properties of the variance

As an example of use of the formula for the variance of the sum of
independent random variables, consider the experiment where n
dice are rolled and the random variable X sum of the scores.

We have
X = X1 + X2 + · · ·+ Xn,

where Xi , i ∈ {1,2, . . . ,n}, is the score of the i−th die.

By the independence of X1,X2, . . . ,Xn, we obtain
Var(X ) = Var(X1) + Var(X1) + · · ·+ Var(Xn) = 2.9167n

SD(X ) = 1.7078
√

n,

since Var(Xi ) = 2.9167, i ∈ {1,2, . . . ,n}, as we have previously
seen.

By recalling that E(X ) = 3.5n, we obtain

P
(
|X − 3.5n| < 1.7078k

√
n
)
≥ 1− 1

k2 , k > 0.

Exercise. In case of n = 100, find a lower bound for
P(300 < X < 400) = P (|X − 350| < 50) .



Variance Properties of the variance

Exercise. Prove that the total score X is arbitrarily close to 3.5n in
relative sense, with a probability arbitrarily close to 1, for a
sufficiently large n.
In other terms, prove that for any ε, δ > 0, there exists N such that
for n ≥ N, we have

P
(∣∣∣∣X − 3.5n

3.5n

∣∣∣∣ < ε

)
≥ 1− δ.



Variance Properties of the variance

Exercise. Derive a formula for the standard deviation of the
bookmaker’s profit in case of independent events A1,A2, . . . ,An.
Can you apply this formula to the events 1X2 of a football match?
Compute the standard deviation in case of 1X2 for the football
match of the previous example.



Mean and Variance of a Binomial Random Variable

Mean and Variance of a Binomial Random Variable

Consider a Bernoulli process given by n independent trials, where
each trial has the possible outcomes α with probability p and β
with probability q.

We have seen that

X = "number of outcomes α in the trials"
= X1 + X2 + · · ·+ Xn,

where, for i ∈ {1, . . . ,n},

Xi =

{
1 if the outcome of the i − th trial is α
0 if the outcome of the i − th trial is β.

and that the random variables X1,X2, . . . ,Xn are independent.



Mean and Variance of a Binomial Random Variable

Note that, for i ∈ {1, . . . ,n},

E (Xi) = 1 · p + 0 · q = p

E
(

X 2
i

)
= 12 · p + 02 · q = p

Var (Xi) = E
(

X 2
i

)
− E (Xi)

2 = p − p2 = pq.

Thus
E (X ) = E (X1) + E (X2) + · · ·+ E (Xn) = np

and, since X1,X2, . . . ,Xn are independent,

Var (X ) = Var (X1) + Var (X2) + · · ·+ Var (Xn) = npq.



Mean and Variance of a Binomial Random Variable

We know that X has distribution Binomial(n,p). What about mean
and variance of a general discrete random variable with
distribution Binomial(n,p)?

Note that mean and variance of a random variable Y depend only
on the pmf fY of Y : in fact

E (Y ) =
∑

y∈Y (Ω)

y · fY (y)

Var (Y ) = E
(

Y 2
)
− E (Y )2

=
∑

y∈Y (Ω)

y2 · fY (y)−

 ∑
y∈Y (Ω)

y · fY (y)

2

Thus, two random variables with the same distribution have the
same mean and the same variance.

We conclude that a random variable Y of distribution
Binomial(n,p) has the same mean and the same variance of the
random variable X related to the above Bernoulli process:

E (Y ) = np and Var (Y ) = npq.



Mean and Variance of a Binomial Random Variable

Example. Suppose that a machine produces defective pieces with
probability p = 1%. Find the mean and the standard deviation of
the number of defective pieces in a shipment of size n = 1000.

The random variable X number of defective pieces in the shipment
has distribution Binomial(n,p) =Binomial(1000,1%).

Thus
E (X ) = np = 1000 · 1

100
= 10

and

SD (X ) =
√

npq =

√
1000 · 1

100
· 99

100
=
√

9.9 = 3.1464.

So
P (|X − 10| < 3.1464k) ≥ 1− 1

k2 , k > 0.



Mean and Variance of a Binomial Random Variable

Exercise. Given C% ∈ (0,1), find a number M, as a function of C%,
such that

P (|X − 10| < M) ≥ C%.

Compute M for C% = 75% and C% = 90%.

Exercise. By using the fact that X has distribution
Binomial (1000,1%) compute the exact probability

P(|X − 10| < M)

for the values of M computed in the previous exercise for
C% = 75% and C% = 90%.



Mean and Variance of a Binomial Random Variable

Exercise.

I Find the mean and the standard deviation of the number X of
Heads when a regular coin is flipped n times.

I Given C% ∈ (0,1) and ε > 0, find a positive integer N as a function
of C% and ε > 0, such that, for a number n ≥ N of flips, we have

P
(∣∣∣∣Xn − 0.5

∣∣∣∣ < ε

)
≥ C%.

Observe that X
n is the percentage of Heads in the n flips of the

coin. By the frequentist interpretation, this percentage has to be
close to the probability 0.5 of Head in one flip, for n large. Compute
N for C% = 75% and C% = 95% and ε = 0.1.



Poisson Random Variables

Poisson Random Variables

Consider a Bernoulli process with n independent trials and
probabilities p and q of obtaining the outcomes α and β,
respectively, at each trial.

Suppose n large and p small with λ = np neither large nor small.

Observe that
λ = np = E (Xn) ,

where Xn is the random variable number of outcomes α in the n
trials, whose distribution is Binomial (n,p).

For studying this situation, we examine what happens to the
distribution Binomial (n,p) when n→∞ and p → 0 with np = λ, λ
fixed.



Poisson Random Variables

For k ≥ 0 integer, we have

lim
n→∞

fXn (k) = lim
n→∞

(
n
k

)
pk qn−k

= lim
n→∞

(
n
k

)(
λ

n

)k (
1− λ

n

)n−k

= lim
n→∞

n!

(n − k)!k !

(
λ

n

)k (
1− λ

n

)n−k

=
λk

k !
lim

n→∞

n (n − 1) · · · (n − k + 1)

nk

(
1− λ

n

)−k (
1− λ

n

)n

with
n (n − 1) · · · (n − k + 1)

nk =
n
n
· n − 1

n
· · · · · n − k + 1

n

=

(
1− 1

n

)
· · ·
(

1− k − 1
n

)
→ 1, n→,∞(

1− λ

n

)−k

→ 1, n→,∞(
1− λ

n

)k

→ e−λ, n→∞.



Poisson Random Variables

Exercise. Prove the last limit.

We conclude that

lim
n→∞

fXn (k) =
λk

k !
e−λ.

Definition
A random variable X : Ω→ R for an experiment with sample space Ω
is said to have the Poisson distribution Poisson(λ), where λ > 0, if
X (Ω) = {0,1,2, . . .} and the pmf fX of X is

fX (k) =
λk

k !
e−λ, k ∈ {0,1,2, . . .}.

X is said a Poisson random variable if it has some Poisson
distribution Poisson(λ).

Exercise. Prove that
n∑

k=0
fX (k) = 1 for a random variable X with

Poisson distribution Poisson(λ).



Poisson Random Variables

A Poisson random variable gives (approximately) in a given
context the number of times that something, call it S, happens in
fixed period of time or space.

Examples:

I The number of misprints on a page of a book.

I The number of people in a community who are at least 100 years
old.

I The number of people entering a shop, an office or an emergency
room in given period of time.

I The number of meteorites greater than 1 meter diameter that strike
Earth in a year.

I The number of overflow floods on a particular river occurring in 100
years.

I The number of goals in a football match.



Poisson Random Variables

In fact, divide the fixed period of time or space in a large number n
of subperiods and assume that that S happens in each subperiod
with small propability p independently of what happens in other
subperiods.

In other terms, we are considering a Bernoulli process where the
independent trials are the subperiods and the outcomes of each
trail is "S happens" and "S does not happen".

So, the random variable X number of times that S happens in the
fixed period is (approximately) a Poisson random variable
Poisson(np).



Poisson Random Variables

Example. Consider the machine producing pieces with probability
p = 1% of a defective piece.

The random variable X number of defective pieces over n = 100
pieces produced is (approximately) a Poisson random variable
Poisson(np) = Poisson(1).

So the probability to have no defective pieces is

P(X = 0) =
10

0!
e−1 = e−1 = 36.8%

and the probability to have at least one defective piece is

P(X > 0) = 1− P(X = 0) = 1− e−1 = 63.2%.

This last value agrees with the value found by the Binomial
distribution.

Exercise. Compute the probability to have not more than four
defective pieces.



Poisson Random Variables

Exercise. What is the probability that the something S happens at
least one time in the fixed period of time. Does this probability
agree with the approximate value found in a previous exercise
dealing with the situation of a Bernoulli process with p small and
np not large?

Exercise. Consider, as in a previous example, a shipment of
n = 1000 pieces produced by the machine with probability p = 1%
of a defective piece. Find the probabilities that there are more
than five defective pieces and more than ten defective pieces.

Exercise. Find the probability that there are at least three crashes
with victims over 107 commercial flights.



Poisson Random Variables

Let X be a random variable with distribution Poisson(λ), where
λ > 0. We have

E (X ) = λ and Var (X ) = λ.

In fact

E (X ) =
∞∑

k=0

kfX (k) =
∞∑

k=0

k
λk

k !
e−λ =

∞∑
k=1

k
λk

k !
e−λ

=
∞∑

k=1

λk

(k − 1)!
e−λ = λe−λ

∞∑
k=1

λk−1

(k − 1)!

= λe−λ
∞∑
l=0

λl

l!︸ ︷︷ ︸
=eλ

= λ

and



Poisson Random Variables

E
(

X 2
)

=
∞∑

k=0

k2fX (k) =
∞∑

k=0

(
k2 − k + k

) λk

k !
e−λ

=
∞∑

k=0

((
k2 − k

) λk

k !
e−λ + k

λk

k !
e−λ

)

=
∞∑

k=0

(
k2 − k

) λk

k !
e−λ +

∞∑
k=0

k
λk

k !
e−λ︸ ︷︷ ︸

=E(X)=λ

with
∞∑

k=0

(
k2 − k

) λk

k !
e−λ =

∞∑
k=2

k (k − 1)
λk

k !
e−λ =

∞∑
k=2

λk

(k − 2)!
e−λ

= λ2e−λ
∞∑

k=2

λk−2

(k − 2)!
= λ2e−λ

∞∑
l=0

λl

l!︸ ︷︷ ︸
=eλ

= λ2.

and then
E
(

X 2
)

= λ2 + λ.



Poisson Random Variables

So
Var (X ) = E

(
X 2)− E (X )2 = λ2 + λ− λ2 = λ.

Exercise. Compute mean and variance of X by assuming that
they are the limit as n→∞ of mean and variance of the random
variable Xn previously introduced and related to the Bernoulli
process.

Exercise. The variance dimensions are the mean dimensions
squared. How is it possible to have E (X ) =Var(X ) for a Poisson
random variable X?



Poisson Random Variables

Exercise. By looking in Wikipedia, for the Seria A season
2017-2018, find the total number of goals scored in the season
and divide it by the total number of matches played. Call this ratio
r .
Assume that the number of goals scored in Seria A season
2018-2019 match is a random variable with distribution Poisson(λ)
with λ = r . Why is it reasonable to set λ = r?
Find the probability that a match in the season 2018-2019 ends
0-0, 1-0 or 0-1. Moreover, find the probability that there more than
five goals scored in a match.

Exercise. Let X be a random variable with distribution Poisson(λ).
Given C% ∈ (0,1), by using the Chebyshev inequality find a
number M, as a function of C%, such that

P (|X − λ| < M) ≥ C%.
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