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The Central Limit Theorem

The Central Limit Theorem

Given a finite or infinite sequence X1,X2,X3, . . . of discrete or
continuous or mixed random variables (here and in the following
for the same experiment), we say that the random variables of the
sequence are Independent and Identically Distributed (IID) if
they are independent and have the same distribution.

One of the most important results in Probability Theory, known as
the Central Limit Theorem, states that the sum of a large number
of IID random variables is approximately normally distributed.



The Central Limit Theorem

In order to introduce the Central Limit Theorem, we need the
following notion. Let X be a discrete or continuous or mixed
random variable. The random variable

X ∗ :=
X − E (X )

SD (X )

is called the standardized form of X .

We have already considered the standardized form Z = X−µ
σ of a

normal random variable X with distribution N(µ, σ). Z is a
standard normal random variable: it has distribution N(0,1).

Exercise. Find mean and variance of the standardized form X ∗ of
a general random variable X .



The Central Limit Theorem

Here is the precise statement of the Central Limit Theorem.

Theorem
(Central Limit Theorem) Let X1,X2,X3, . . . be an infinite sequence of
IID discrete or continuous or mixed random variables. For any
n ∈ {1,2,3, . . .}, let

Sn := X1 + X2 + · · ·+ Xn

be the sum of the first n random variables. Then

lim
n→∞

FS∗
n

(x) = Φ (x) for any x ∈ R,

where FS∗
n

is the distribution function of the standardized form S∗n of Sn
and Φ is the distribution function of a standard normal random variable.

The proof of this theorem is outside the scope of the course.
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The normal approximation for Sn

Let µ and σ be the common mean and standard deviation of the
IID random variables X1,X2,X3, . . . For n ∈ {1,2,3, . . .}, we have

E (Sn) = E (X1) + E (X2) + · · ·+ E (Xn) = nµ

Var (Sn) = Var (X1) + Var (X2) + · · ·+ Var (Xn) = nσ2.

The Central Limit Theorem says that, for n large,

S∗n =
Sn − E (Sn)

SD (Sn)
=

Sn − nµ√
nσ

.

is approximately distributed as a standard normal variable Z ,
whose distribution is N(0,1).



The Central Limit Theorem The normal approximation for Sn

Then, for n large,
Sn = nµ+

√
nσS∗n

is approximately distributed as the random variable

Yn = nµ+
√

nσZ ,

which has the normal distribution

N
(

nµ+
√

nσ · 0, (
√

nσ · 1)2
)

= N(nµ, (
√

nσ)2).

This means that, for any a,b ∈ R with a < b, we have, for n large,

P (Sn ≤ a) ≈ P (Yn ≤ a) = Φ

(
a− nµ√

nσ

)

P (Sn > b) ≈ P (Yn > b) = 1− Φ

(
b − nµ√

nσ

)

P (a < Sn ≤ b) ≈ P (a < Yn ≤ b) = Φ

(
b − nµ√

nσ

)
− Φ

(
a− nµ√

nσ

)
.



The Central Limit Theorem The normal approximation for Sn

Observe that if X1,X2,X3, . . . have distribution N(µ, σ2), then , for
any n, Sn is exactly (and not only approximately) distributed as

N(nµ,nσ2) = N(nµ, (
√

nσ)2).

In this case
S∗n =

Sn − nµ√
nσ

= Z

is a standard normal random variable and

Yn = nµ+
√

nσZ = Sn.



The Central Limit Theorem The normal approximation for Sn

Example. A US insurance company has around 104 car
policyholders. Assume that the distribution of the yearly claim (a
mixed random variable) is the same for all policyholders with
mean 260$ and standard deviation 800$.

What is the probability that the total yearly claim exceeds 2.8
million $?

Let n ≈ 104 be the number of car policyholders. For
k ∈ {1,2, . . . ,n}, let Xk be the yearly claim of the k−th
policyholder. The total yearly claim is

Sn = X1 + X2 + · · ·+ Xn.

The random variables X1,X2, . . . ,Xn have a common distribution
of mean µ = 260$ and standard deviation σ = 800$.

It is also reasonable assume that X1,X2, . . . ,Xn are independent.



The Central Limit Theorem The normal approximation for Sn

Therefore, since n is large, the Central Limit Theorem says that

P
(

Sn > b = 2.8 · 106
)
≈ P (Yn > b)

= 1− Φ

(
b − nµ√

nσ

)
= 1− Φ

(
2.8 · 106 − 104 · 260

102 · 800

)
= 1− Φ

(
20 · 104

8 · 104

)
= 1− Φ

(
20
8

)
= 1− Φ (2.5) = 1− 0.9938
= 0.62%.

So, although we do not know the distribution of the yearly claim,
we can conclude that it is almost sure that the insurance company
has not to pay the amount of 2.8 million $ for claims.
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When the normal approximation for Sn is valid?

The Central Limit Theorem leaves open the following question:
how large has to be n in order to have a valid normal
approximation for Sn?

The answer, of course, depends on the common distribution of
X1,X2,X3, . . . For example, if this distribution is normal, then, for
any n, Sn has exactly a normal distribution.

A general rule of thumb is the following: for any common
distribution of X1,X2,X3, . . ., one can be confident that the normal
approximation is valid whenever n is at least 30.

In many cases the normal approximation is valid for a much
smaller n.



The Central Limit Theorem When the normal approximation for Sn is valid?

Example. In figure, we see the distribution of Sn
n in case of the

exponential distribution E(1) for n = 1,5,10. In this case µ = σ = 1.

Since, for n large, Sn has distribution close to the distribution

N(nµ, (
√

nσ)2)

of Yn, the distribution of Sn
n is close, for n large, to the distribution

N

(
nµ
n
,

(√
nσ
n

)2)
= N

(
µ,

(
σ√
n

)2
)

= N

(
1,
(

1√
n

)2
)

of Yn
n .
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The normal approximation of the binomial distribution
Consider a Bernoulli process of length n, where, at any trial, there
are two outcomes α and β with probability p and q, respectively.

Let, for i ∈ {1,2, . . .n}, Xi be the discrete random variable given
by

Xi =

{
1 if the outcome of the i − th trial is α
0 if the outcome of the i − th trial is β.

Since X1,X2, . . . ,Xn are IID with the Bernoulli distribution
Bernoulli(p) of common mean

µ = 1 · p + 0 · q = p

and common variance

σ2 =
(
12 · p + 02 · q

)
− p2 = p − p2 = pq,

the Central Limit Theorem says that, for large n,

Sn = X1 + X2 + · · ·+ Xn = number of occurrences of α in the n trials

has approximately the normal distribution N
(

np,
(√

n · √pq
)2
)
.



The normal approximation of the binomial distribution

On the other hand, we know that Sn has distribution
Binomial (n,p).

Thus, we can conclude that: for n large, the distribution
Binomial (n,p) is approximately the normal distribution
N
(
np, (
√

n · √pq)2).
Therefore, we can approximate the probabilities related to a
binomial random variable with probabilities related to a normal
random variable.

Rule of thumb: the normal approximation to the binomial
distribution is quite good when np and nq are greater than 5.



The normal approximation of the binomial distribution

Example. Pmfs for Binomial(n,0.4) in case of n = 4,6,8,10. As n
increases, the pmfs approaches to a normal pdf.



The normal approximation of the binomial distribution

Observe that, for n large, the probability P (Sn = k), with
k ∈ {0,1, . . . ,n}, is small but not zero and so it cannot be well
approximated by the probability P (Yn = k) = 0, where Yn is the
normal random variable whose distribution N

(
np, (
√

n · √pq)2) is
close to the distribution of Sn.

Therefore, for n large, we approximate such a probability with

P (Sn = k) = P (k − 0.5 < Sn ≤ k + 0.5)

≈ P (k − 0.5 < Yn ≤ k + 0.5)

This approximation is called continuity correction or integer
correction.

Exercise. Compute the exact pmf of the distribution
Binomial (8,0.4), where np = 3.2 and nq = 4.8, and the
approximate pmf computed by the integer correction. Do the same
for the distribution Binomial (20,0.4), where np = 8 and nq = 12.



The normal approximation of the binomial distribution

We have previously seen figures where there is evidence that, as
n increases, the pmf of a distribution Binomial(n,p) approaches to
a normal pdf.

This can explained by the integer correction: for k ∈ {0,1, . . . ,n},
we have, for n large,

P (Sn = k) ≈ P (k − 0.5 < Yn ≤ k + 0.5)

=

k+0.5∫
k−0.5

fYn (x)dx

= fYn (ξ) by the Mean Value Theorem

where ξ ∈ [k − 0.5, k + 0.5] and fYn is the normal pdf
N(np, (

√
n · √pq)2).



The normal approximation of the binomial distribution

For n large and for any a,b ∈ {0,1, . . . ,n} with a ≤ b, we have by
the integer correction

P (a ≤ Sn ≤ b) ≈ P (a− 0.5 < Yn ≤ b + 0.5)

In fact

P (a ≤ Sn ≤ b) =
b∑

k=a

P (Sn = k) ≈
b∑

k=a

P (k − 0.5 < Yn ≤ k + 0.5)

= P (a− 0.5 < Yn ≤ b + 0.5) .

However, observe that

P (a− 0.5 < Yn ≤ b + 0.5)

= P (a− 0.5 < Yn ≤ a) + P (a < Yn ≤ b) + P (b < Yn ≤ b + 0.5)

≈ P (a < Yn ≤ b)

if

P (a− 0.5 < Yn ≤ a) ,P (b < Yn ≤ b + 0.5) � P (a < Yn ≤ b)

and this happens when 0.5 � b − a.



The normal approximation of the binomial distribution

Observe that the probability P (a ≤ Sn ≤ b) can be exactly
computed by

P (a ≤ Sn ≤ b) =
b∑

k=a

P (Sn = k) =
b∑

k=a

(
n
k

)
pk qn−k . (1)

However, when n is large, the sum in (1) could have many terms,
the products pkqn−k could be very small and give underflow and
the binomial coefficients

(n
k

)
could be very large and give overflow.

This is one of the reasons for using the normal approximation of
the binomial distribution.



The normal approximation of the binomial distribution

Example. Consider a ballot with two candidates A and B. Assume
that exactly p = 46% of the voters support the candidate A.

If a representative sample of voters of size n is randomly chosen
from the population of the voters, what is the probability that at
least n

2 voters support A?

Observe that this is the probability that a pool based on this
sample will predict a win of A instead of B.

We consider the Bernoulli process of lenght n, where at the i−th
trial, i ∈ {1, . . . ,n}, the outcome is the candidate supported by the
the i−th voter of the sample: the outcome α is the candidate A
(probability p = 46%) and the outcome β is the candidate B
(probability q = 54%).

Therefore, the numbers of voters in the sample supporting the
candidate A is given by the random variable Sn, whose distribution
is Binomial(n,p).



The normal approximation of the binomial distribution

We have

P
(

Sn ≥
n
2

)
= P

(n
2
≤ Sn ≤ n

)
≈ P

(n
2
− 0.5 < Yn ≤ n + 0.5

)
= Φ

(
n + 0.5− np√

n · √pq

)
− Φ

( n
2 − 0.5− np
√

n · √pq

)

= Φ

(
√

n ·
1 + 0.5

n − p
√

pq

)
− Φ

(
√

n ·
1
2 −

0.5
n − p
√

pq

)
.

So, for n = 100, we have

P
(

Sn ≥
n
2

)
≈ Φ (10.9)− Φ (0.70) = 1− 0.7580 = 24.2%

and, for n = 1000, we have

P
(

Sn ≥
n
2

)
≈ Φ (34.3)− Φ (2.51) = 1− 0.9940 = 0.6%.

Exercise. Use P
( n

2 < Yn ≤ n
)
, instead of P

( n
2 − 0.5 < Yn ≤ n + 0.5

)
,

as an approximation of P
(
Sn ≥ n

2

)
.



The normal approximation of the binomial distribution

Exercise. A machine producing pieces produces a defective piece
with probability p. What is the probability that in a set of n pieces
produced by the machine more than 100p% of them are
defective? Use the normal approximation.
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Why the normal distribution appears so frequently?

The preceding version of the Central Limit Theorem assumes that
X1,X2,X3, . . . are Independent and Identically Distributed random
variables.

There is a more general version of the Central Limit Theorem,
where the assumption that the random variables are Identically
Distributed is not longer necessary.

In this version, one proves that the sum

Sn = X1 + X2 + · · ·+ Xn

is, for n large, approximately normal under the assumption that
X1,X2,X3, . . . are independent and another assumption, known as
Lindenberg’s condition and not explicitly given here, that all the
random variables tend to be of roughly the same magnitude.



Why the normal distribution appears so frequently?

The fact that all the random variables tend to be of roughly the
same magnitude guarantees that none of them tends to dominate
their sum.

In fact, the Lindenberg’s condition implies that

max
k∈{1,...,n}

Var(Xk )
n∑

k=1
Var(Xk )

= max
k∈{1,...,n}

Var(Xk )

Var(Sn)
→ 0, n→∞.

For example, when X1 has values much larger than X2,X3, . . . ,Xn
then, Sn has approximately the distribution of X1, not a normal
distribution.



Why the normal distribution appears so frequently?

This last version of the Central Limit Theorem explains our
previous observation that:

I in a process that produces a final result, which is programmed in
some measure but it is also influenced by many random factors,
numerical quantities related to this final result are normally
distributed.

The explanation is that these numerical quantities can be seen as
the sum Sn of a large number n of independent random variables
X1,X2, . . . ,Xn related to random factors.

The fact that the mean of these random variables X1,X2, . . . ,Xn
can be nonzero is the mathematical translation that the result is in
some measure programmed.



Why the normal distribution appears so frequently?

Example. Consider the formation process of an individual from the
birth to the adulthood.

If this formation process is split in n small successive independent
steps, corresponding to short periods of time in the interval from
the birth to the adulthood , we can think that, at the i-th step,
i ∈ {1, . . . ,n}, there is a small random variation Xi of the quantity
of interest (for example, the height of the individual).

The mean of the random variations X1,X2, . . . ,Xn is not zero,
since the growth of the individual is programmed by the genes.

The quantity of interest in adulthood is then the sum Sn of
X1,X2, . . . ,Xn. Since the periods of time are short, n is large and
then Sn turns out to be normally distributed.

Exercise. By using the Central Limit Theorem explain why the time
to travel by car from the city A to the city B is normally distributed.



Why the normal distribution appears so frequently?

The Central Limit Theorem was stated and proved by the French
mathematician Pierre-Simon Laplace (1749-1827)

to provide a theoretical justification of the empirical fact that a

measurement error = measured value− true value

tends to be normally distributed. This fact was called Law of
Frequency of the Error.

The Law of Frequency of the Error follows by the Central Limit
Theorem by considering the measurement error as the sum Sn of
a large number n of small independent errors X1,X2, . . . ,Xn.



Why the normal distribution appears so frequently?

Example. The error in measuring a distance by means of a rope
can be regarded as being equal to the sum of small errors caused
by random factors as:

1. Wrong positions of the initial zero of the rope;

2. Bending of the rope due to its weight;

3. Elastic effects (the rope can be more o less pulled);

4. Vibrations of the rope due to the wind;

5. Temperature modifying the length of the rope (in case of a metal
rope);



Why the normal distribution appears so frequently?

6. Error in reading the length (for example parallax errors);

7. Random changes of the length of the object to be measured.



Why the normal distribution appears so frequently?

We remark that the adjective "gaussian" of the normal distribution
comes from the use of the Law of the Frequency of the Error that
Carl Friedrich Gauss (1777-1855)

did in the astronomical measurements.
Exercise. If the measurement error has the normal distribution
N(∆, σ2) (∆ is called the systematic error), what is the distribution
of the measured value?



The Sample Mean

The Sample Mean

Consider X1,X2, . . . ,Xn IID random variables with mean µ and
standard deviation σ.

The random variable

X :=
Sn

n
, Sn = X1 + X2 + · · ·+ Xn,

is called the Sample Mean of X1,X2, . . . ,Xn.

The reason for "Sample" is that in many contexts X1,X2, . . . ,Xn
represent numerical quantities obtained by a random sample
taken from a population.



The Sample Mean

The Central Limit Theorem says that, for n large, Sn is
approximately distributed as the normal random variable
Yn = nµ+

√
nσZ with distribution N

(
nµ,

(√
nσ
)2
)

.

Then, for n large, the Sample Mean

X =
Sn

n

is approximately distributed as the random variable

Yn

n
=

nµ+
√

nσZ
n

= µ+
σ√
n

Z

with distribution

N

(
nµ
n
,

(√
nσ
n

)2)
= N

(
µ,

(
σ√
n

)2
)

= N

(
µ+

σ√
n

0,
(
σ√
n

1
)2
)
.

Thus, for n large, the values of the Sample Mean are concentrated
around µ.



The Sample Mean

If X1,X2, . . . ,Xn are normally distributed, then, for any n, Sn = Yn
and so X = Yn

n is exactly distributed as N(µ, ( σ√
n )2).

In the figure we see, for several values of n, the pdfs of the
Sample Mean X when X1,X2, . . . ,Xn have the standard normal
distribution.

In this case, X has normal distribution N
(

0,
(

1√
n

)2
)

.



The Sample Mean

Since X is approximately distributed as Yn
n , whose distribution is

N
(
µ,
(
σ√
n

)2
)

, we have, for n large and for a,b ∈ R with a < b,

P
(

a < X ≤ b
)
≈ P

(
a <

Yn

n
≤ b

)
= Φ

(√
n
σ

(b − µ)

)
− Φ

(√
n
σ

(a− µ)

)
and also

P
(

a < X < b
)
≈ P

(
a <

Yn

n
< b

)
= Φ

(√
n
σ

(b − µ)

)
− Φ

(√
n
σ

(a− µ)

)
P
(

a ≤ X < b
)
≈ P

(
a ≤ Yn

n
< b

)
= Φ

(√
n
σ

(b − µ)

)
− Φ

(√
n
σ

(a− µ)

)
P
(

a ≤ X ≤ b
)
≈ P

(
a ≤ Yn

n
≤ b

)
= Φ

(√
n
σ

(b − µ)

)
− Φ

(√
n
σ

(a− µ)

)
.



The Sample Mean

In particular, for c > 0, we have, for n large,

P(µ− c < X ≤ µ+ c) ≈ Φ

(√
n
σ

c
)
− Φ

(
−
√

n
σ

c
)

= Φ

(√
n
σ

c
)
−
(

1− Φ

(√
n
σ

c
))

= 2Φ

(√
n
σ

c
)
− 1.

and also

P(µ− c < X < µ+ c) ≈ 2Φ

(√
n
σ

c
)
− 1

P(µ− c ≤ X < µ+ c) ≈ 2Φ

(√
n
σ

c
)
− 1

P(µ− c ≤ X ≤ µ+ c) ≈ 2Φ

(√
n
σ

c
)
− 1.

If X1,X2, . . . ,Xn are normally distributed, then X = Yn
n and all

previous approximations become equalities valid for any n.



The Sample Mean

Example. The blood cholesterol level of an individual randomly
selected from a population of workers is a normal random variable
X with mean µ = 202 and standard deviation σ = 14.

Suppose that a random sample of n = 36 or n = 64 workers is
selected, what is the probability that the Sample Mean X of their
blood cholesterol levels X1,X2, . . . ,Xn (IID random variables
distributes as X) will lie between 198 and 206?

We have

P
(
198 ≤ X ≤ 206

)
= P

(
µ− 4 ≤ X ≤ µ+ 4

)
= 2Φ

(√
n

14
· 4
)
− 1 =

{
2Φ
( 6

14 · 4
)
− 1 if n = 36

2Φ
( 8

14 · 4
)
− 1 if n = 64

=

{
2Φ (1.71)− 1 = 2 · 0.9564− 1 = 91.3% if n = 32
2Φ (2.29)− 1 = 2 · 0.9890− 1 = 97.8% if n = 64

Observe that if the blood cholesterol level had not a normal
distribution, then, since n is large, the previous estimates are still
valid (but only approximately).



The Sample Mean

Example. An astronomer is interested in measuring the distance
from the Earth to a distant star.

However, due to differing atmospheric conditions and random
errors, each time that a measurement is made, it will yield not the
exact distance. The value of the measurement is a normal random
variable X with mean µ the actual distance and standard deviation
σ = 3 light-years.

Thus, the astronomer plans a series of n = 10 measurements
X1,X2, . . . ,Xn (IID random variables distributed as X) and use
their Sample Mean X as an estimated value for the actual
distance.

What is the probability that the estimated value will be within 0.5
light-years of the actual distance?



The Sample Mean

We have

P
(
µ− 0.5 ≤ X ≤ µ+ 0.5

)
= 2Φ

(√
n

3
· 0.5

)
− 1 = 2Φ (0.53)− 1

= 2 · 0.7019− 1 = 40.4%.

Observe the probability can be computed without to know the
actual distance µ.



The Sample Mean

Exercise. Consider a Bernoulli process of length n, where n is
large, with outcomes α (probability p) and β (probability q) at any
trial. For any i ∈ {1, . . . ,n}, let Xi be the random variable with
value 1 if at the i-th trial the outcome is α and value 0 otherwise.
By using the normal approximation, give an estimate of the
probability

P
(∣∣X − p

∣∣ < ε
)
,

where ε > 0. For the case where a regular coin is flipped, find
how many flips are needed to have

P
(∣∣X − 0.5

∣∣ < ε
)
≥ C%

and, for ε = 0.1 and C% = 95%, compare with the result
previously found by the Chebyshev’s inequality.
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Law of Large Numbers
Now, assume to have an infinite sequence X1,X2,X3, . . . of IID
random variables with common mean µ and common standard
deviation σ. For any n ∈ {1,2,3, . . .}, we denote by X n the
Sample Mean of X1,X2, . . . ,Xn.

Since X n has mean µ and standard deviation σ√
n , by the

Chebyshev inequality, we have

P
(∣∣X n − µ

∣∣ < k
σ√
n

)
≥ 1− 1

k2 for any k > 0.

So, given ε > 0, with

k =
ε
σ√
n

=

√
nε
σ

we have
P
(∣∣X n − µ

∣∣ < ε
)
≥ 1− 1

nε2

σ2

= 1− σ2

nε2 .



Law of Large Numbers

By passing both sides to the limit as n→∞, we have

lim
n→∞

P
(∣∣X n − µ

∣∣ < ε
)
≥ 1

and so
lim

n→∞
P
(∣∣X n − µ

∣∣ < ε
)

= 1.

This fact is called the Weak Law of Large Numbers: for any given
ε > 0 arbitrarily small, the probability to find the Sample Mean at a
distance from µ smaller than ε tends to 1, as n tends to infinity.



Law of Large Numbers

Indeed there is also the Strong Law of Large Numbers: we have

P
(

lim
n→∞

X n = µ
)

= 1.

This means that it is sure that the Sample Mean tends to µ, as n
tends to infinity.

The proof of this result is outside the scope of the course.
However, we remark an its important consequence.



Law of Large Numbers

Consider a basic experiment with sample space Ω and a measure
of probability P.

Now, consider the super-experiment given by a sequence of
independent repetitions of the basic experiment. The outcome of
this super experiment is the sequence ω = (ω1, ω2, ω3, . . .), where,
for any i ∈ {1,2,3, . . .}, ωi is the outcome of the i−th repetition of
the experiment. The sample space of the super experiment is

Ω∞ := Ω× Ω× Ω× · · ·

We assume that the measure of probability P∞ for the super
experiment is such that, for any event F relevant to the basic
experiment and for any i ∈ {1,2,3, . . .}, the event ωi ∈ F relevant
to the super experiment has probability

P∞ (ωi ∈ F ) = P (F ) .

This is the mathematical translation of the fact that the super experiment
is a sequence of repetitions of the basic experiment.



Law of Large Numbers

Moreover, we assume that, for any event F relevant to the basic
experiment, the random variables X1,X2,X3, . . . : Ω∞ → R given
by

Xi (ω) =

{
1 if ωi ∈ F
0 otherwise , ω ∈ Ω∞ and i ∈ {1,2,3, . . .} ,

are independent.

This is the mathematical translation of the fact that in the super
experiment the repetitions are independent.

Observe that X1,X2,X3, . . . are identically distributed with
distribution Bernoulli(P(F )). They have the same pmf: value 1 with
probability P (F ) and value 0 with probability 1− P(F ). The
common mean is

µ = 1 · P (F ) + 0 · (1− P (F )) = P (F ) .



Law of Large Numbers

Now, let F be a given event relevant to the basic experiment.

Since the above defined random variables X1,X2,X3, . . . relevant
to the event F are IID, the Strong Law of the Large Numbers says
that

P∞
(

lim
n→∞

X n = P (F )
)

= 1,

i.e. it is sure that

X n =
X1 + X2 + · · ·+ Xn

n
= frequency of the event F over n repetitions

tends to P (F ), as n tends to infinity.



Law of Large Numbers

So, for example, when a regular coin is flipped an infinite number
of times, it is sure that the frequency of Heads tends to 1

2 and
when a regular die is rolled an infinite number of times, it is sure
that the frequency of any score from 1 to 6 tends to 1

6 .

This is exactly the frequentist interpretation of the probability, but
now it is not an interpretation where we have to assume the
existence of the limit of the Long Term Relative Frequency of the
events: now, it is a true fact, even if we adopt the bayesian
interpretation.



Law of Large Numbers

In the common language, one often invokes the Law of Large
Numbers for saying that an event F of very small nonzero
probability P(F ) surely happens if a sufficiently large number of
(independent) repetitions of the experiment are accomplished.

Exercise. Prove that this is a consequence of
P∞

(
limn→∞ X n = P (F )

)
= 1.

So, although the probability of winning the Superenalotto is quite
small for a given individual, it is sure that someone will win if a
sufficiently large number of individuals will play the Superenalotto.

Exercise. Suppose that Medicine will find the way for living without
aging and diseases (this the goal of Medicine). Explain why it is
sure that we will die anyway.

Exercise. A guy plays every week the lottery game. After one year
without winning he says: "next year I will win, the Law of Large
Numbers says this". Explain why he is saying a wrong thing.
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