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Introduction

Introduction

One of the key concerns of Statistics is drawing conclusions from
observed data (Inferential Statistics).

These data usually are obtained by a representative sample of
individuals of a population and then they are used to draw
conclusions about the entire population.

In the following, we assume that we have to draw conclusions
about some numerical quantity associated to each individual of
the population. For example, the height of the individuals in a
human population.



Introduction

We give a mathematical structure to this problem in the following
way.

Consider the experiment, where an individual is randomly selected
in the population and let X be the random variable that gives the
numerical quantity of interest associated to this individual.

The sample space of this experiment is the set P of the individuals
in the population.

We assume that the distribution of X belongs to a family of
distributions. Any distribution in this family is determined by
parameters.

The particular parameters that determine the distribution of X are
unknown and they have to be estimated.

This is the mathematical form of an Inferential Statistics problem.



Introduction

The experiment of the random selection of an individual from the
population is like to select a card from an urn and then read the
number written in the card.

Observe that the numbers in the cards are written independently
of the random selection experiment.

Indeed, we are interested to have information on the manner with
which these number are written in the cards.

For this reason, now we adopt another point of view.
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The numerical quantities of interest associated to each individual
in the population are considered as IID random variables
Y1,Y2, . . . ,Ym, where m is the number of individuals of the
population.

As an example, we suppose Y1,Y2, . . . ,Ym the heights of the
individuals in a human population.

The experiment relevant to these random variables Y1,Y2, . . . ,Ym
is the formation process as adults of the individuals of the
population.

We have seen that it reasonable to assume that the common
distribution of Y1,Y2, . . . ,Ym belongs to the family of the normal
distributions.

The parameters of a normal distribution are the mean µ and the
standard deviation σ. The particular µ and σ that determine the
distribution of Y1,Y2, . . . ,Ym are unknown and have to be
estimated.
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Now, let X be the random variable height of an individual randomly
selected in the population.

Observe that the experiment relevant to X (random selection of an
individual) is different from the experiment relevant to
Y1,Y2, . . . ,Ym (formation process of all individuals ).

Since the population is finite, X is a discrete random variable. The
range X (Ω) of X is the set of the heights of the individuals in the
population, which are particular realizations of the random
variables Y1,Y2, . . . ,Ym.

Let x ∈ R. Since the individual is randomly selected, we have

FX (x) = P(X ≤ x) =
number of individuals with height ≤ x

m
.
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By thinking the process of formation of all individuals in the
population as repetitions of the process of formation of one
individual we have, since m is very large and the Strong Law of
Large Numbers (or the frequentist interpretation) holds, that

FX (x) = P(X ≤ x) =
number of individuals with height ≤ x

m
≈ P(Y ≤ x) = FY (x)

where Y is the random variable height of one individual in the
population: Y1,Y2, . . . ,Ym are IID random variables distributed as
Y .

So, the distribution function of X is very close to the common
distribution function of Y1,Y2, . . . ,Ym.

Therefore, we can assume that X has the common distribution of
Y1,Y2, . . . ,Ym by transforming X in a continuous random variable.
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Of course, this is valid in general not only for the specific example
of the heights. We can assume that:

I the random variable X giving the numerical quantity of interest
associated to a randomly selected individual in the population has
the same distribution of the IID random variables Y1,Y2, . . . ,Ym
giving the numerical quantity for the m individuals in the population.

Therefore, when we are estimating the parameters that determine
the distribution of X , we are also estimating the parameters that
determine the common distribution of Y1,Y2, . . . ,Ym.
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Sampling statistics
Let X be the random variable that gives the numerical quantity of
interest associated to the individual randomly selected in the
population.

How to determine the unknown parameters of the distribution of
X?

We use another experiment, where we randomly select n times an
individual in the population and each selection is independent of
the others. The selected elements are called the sample.

The sample space of this other experiment is the set Pn.
Therefore, each selected element is not put aside but it is put back
into play and can be chosen for the successive selections.

Now, we observe, for each individual in the sample, the numerical
quantity of interest. These observed numerical quantities are the
data.



Sampling statistics

By using the data, we try to estimate the unknown parameters by
means of sampling statistics.

In the example of the height, we randomly select from the
population n individuals. The n selected individuals are the
sample.

Then, we measure the heights of the individuals in the sample.
The n measured heights are the data.

Finally, starting from the data, the unknown mean and standard
deviation are estimated by means of suitable sampling statistics.
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Example. Consider a manufacturer producing a new type of
battery to be used in a particular electric-powered car. We
assume that each battery will last for a random number of
kilometers with an unknown normal distribution.

To estimate mean and the standard deviation of this distribution,
the manufacturer randomly selects from the produced batteries
some batteries and test them on the road. These selected
batteries are the sample.

We record the number of kilometers of use of each selected
battery. These numbers are the data.

Finally, starting from the data, the unknown mean and standard
deviation of the normal distribution relevant to the duration of the
new type of battery are estimated by means of suitable sampling
statistics.

Exercise. In this example, what is the experiment relevant to the
random variables Y1,Y2, . . . ,Ym?
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In the following definition, X1,X2, . . . ,Xn are the IID random
variables distributed as X giving the numerical quantity of interest
for the individuals 1,2, . . . ,n selected in the sample.

Observe that in order to have X1,X2, . . . ,Xn IID random variables
distributed as X is necessary that each selected element is put
back into the play for the next selections.

However, the probability of selecting two times a same individual
is very small.

Exercise. Compute this probability.
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Definition
Let X1,X2, . . . ,Xn be IID random variables, all with a same distribution
determined by unknown parameters. The n−tuple X = (X1,X2, . . . ,Xn)
is called a Sample of size n from that distribution.

If xobs
1 , xobs

2 , . . . , xobs
n are the observed values of X1,X2, . . . ,Xn, then the

n−tuple xobs =
(
xobs

1 , xobs
2 , . . . , xobs

n
)

is called a sample of size n from
that distribution.

A sampling statistic based on a sample of size n is a function
τ : Rn → R: τ

(
xobs

)
is the number provided by the statistic.

Let θ be one of the unknown parameters of the distribution. An
estimator of θ (based on a sample of size n) is a suitable sampling
statistic τ (based on a sample of size n) providing an estimate of θ: the
number τ

(
xobs

)
is the estimate of θ.
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At each sampling statistic τ is associated the Sampling Statistic
random variable τ(X1,X2, . . . ,Xn).

We use the rule that a sampling statistic is denoted by a name
with lower-case initial letters, whereas the corresponding
Sampling Statistic random variable is denoted by the same name
with upper-case initial letters.

For example, now we will see the sampling statistic called "sample
mean", whose corresponding Sampling Statistic is called "Sample
Mean".

Observe that the same rule is used when we call
X = (X1,X2, . . . ,Xn) "Sample" and xobs =

(
xobs

1 , xobs
2 , . . . , xobs

n
)

"sample".

Note that the names "Sample" and "sample" are not exactly
correct, because they denote the numerical quantities relevant to
the individuals selected in the sample, not the individuals. Better
names are "Data" and "data", but we do not use these names.
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Sample mean
Let us consider a Sample X = (X1,X2, . . . ,Xn) from a distribution
of mean µ and standard deviation σ.

The sampling statistic

τ (x) = x :=
x1 + x2 + · · ·+ xn

n
, x ∈ Rn,

is called the sample mean.

The Sampling Statistic

τ (X ) = X :=
X1 + X2 + · · ·+ Xn

n

is then called the Sample Mean.

Observe that xobs := τ
(
xobs

)
= xobs is the mean (seen in

descriptive statistics) of the data xobs.
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Now, we determine mean and standard deviation of the Sample
Mean.

We have

E
(
X
)

= E
(

X1 + X2 + · · ·+ Xn

n

)
=

E (X1 + X2 + · · ·+ Xn)

n

=
E (X1) + E (X2) + · · ·+ E (Xn)

n
=
µ+ µ+ · · ·+ µ

n

=
nµ
n

= µ.

Since X1,X2, . . . ,Xn are independent, we have

Var
(
X
)

= Var
(

X1 + X2 + · · ·+ Xn

n

)
=

Var (X1 + X2 + · · ·+ Xn)

n2

=
Var (X1) + Var (X2) + · · ·+ Var (Xn)

n2

=
σ2 + σ2 + · · ·+ σ2

n2 =
nσ2

n2 =
σ2

n
.



Sample mean

Finally, we have

SD
(
X
)

=

√
σ2

n
=

σ√
n
.

By summarizing:

I the mean of the Sample Mean is the mean µ of the distribution from
which the Sample X = (X1,X2, . . . ,Xn) is taken;

I the standard deviation of the Sample Mean is smaller by the factor
1√
n than the standard deviation σ of the distribution from which the

Sample X is taken.

We can conclude that the Sample Mean is centered around µ and
its spread becomes more and more reduced as the sample size n
increases.

Indeed, we known from the Central Limit Theorem that, for n large,
the Sample Mean is approximately distributed as N(µ, ( σ√

n )2) and
so

P
(
|X − µ| ≤ 2

σ√
n

)
≈ 95% and P

(
|X − µ| ≤ 3

σ√
n

)
≈ 99.7%.
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We also know that if the distribution from which the sample is
taken is normal, then , for any n, the Sample Mean is exactly
distributed as N(µ, ( σ√

n )2) and so

P
(
|X − µ| ≤ 2

σ√
n

)
= 95% and P

(
|X − µ| ≤ 3

σ√
n

)
= 99.7%.

Therefore, the sample mean can be considered as an estimator of
the mean µ, if µ is one of the unknown parameters.
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Examples.

I In the case of the height of an individual of a human population, an
estimate of the unknown mean µ of the normal distribution is given
by the mean of the observed heights of the individuals in the
sample.

I In the case of the new type of battery for electric-powered cars, an
estimate of the unknown mean µ of the normal distribution is given
by the mean of the observed durations of the batteries in the
sample.
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Estimating proportions
Before considering the estimating proportions problem, we
introduce the notion of a Bernoulli distribution.

Definition
A discrete random variable Y is said to have the Bernoulli
distribution Bernoulli (p), where p ∈ [0,1], if Y (Ω) = {0,1} and

P (Y = 1) = p and P (Y = 0) = 1− p =: q.

Let Y be a random variable with distribution Bernoulli(p),
p ∈ [0,1]. The mean of Y is

µ = 1 · P(Y = 1) + 0 · P(Y = 0) = p

and the variance is

σ2 = E(Y 2)−µ2 = 12 ·P(Y = 1)+02 ·P(Y = 0)−p2 = p−p2 = pq.
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Example of random variables with Bernoulli distribution: given a
Bernoulli process of lenght n with outcomes α and β at any trial,
the independent random variables

Xi =

{
1 if the outcome of the i−th trial is α
0 if the outcome of the i−th trial is β

, i ∈ {1, . . . ,n},

have distribution Bernoulli(p), where p is the probability of the
outcome α at any trial.
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Here is the problem of the estimating proportions.

Consider the situation where we have a population whose
individuals have or have not a certain characteristic.

An example could be the left handedness in a population of
human individuals.

Another example could be the support to a given party in a
population of voters for an election.

Let p ∈ [0,1] be the proportion of the individuals in the population
that have this characteristic. Suppose that the proportion p is
unknown and we are interested in estimating it.

Now, we give to this problem the form of an Inferential Statistics
problem.
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Consider the experiment where an individual is randomly chosen
from the population P with m individuals.

The random variable

X (ω) =

{
1 if the individual ω has the characteristic
0 if the individual ω has not the characteristic , ω ∈ P,

has distribution Bernoulli (p). In fact

P (X = 1) =
number of individuals in the population with the characteristic

m
= p.

Exercise. What are the random variables Y1,Y2, . . . ,Ym in this
situation of estimating proportions? What is the experiment
relevant to the random variables Y1,Y2, . . . ,Ym in case of left
handedness and in case of supporting a given party in the
election.

Now, in order to estimate p we select n times an individual from
the population with each selection independent of the others.
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We obtain a Sample X1,X2, . . . ,Xn from the distribution
Bernoulli (p), where

Xk =

{
1 if the k − th selected individual has the characteristic
0 if the k − th selected individual has not the characteristic

k ∈ {1,2, . . . ,n} .

Since the mean of the distribution Bernoulli (p) is p, the sample
mean is an estimator of the unknown parameter p.

So, we estimate p, the proportion of the individuals in the
population with the characteristic, by the Sample Mean

X =
X1 + X2 + · · ·+ Xn

n

=
"number of individuals in the sample with the characteristic"

n
,

i.e. by the proportion of the individuals in the sample with the
characteristic.
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Exercise. Consider a shipment of 10K pieces. Explain how to
estimate the proportion of defective pieces in this shipment.
Assume that these pieces are produced by a machine. Explain
why this is also an estimate of the probability that the machine will
produce a defective piece.
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By considering the selection of the n individuals as a Bernoulli
process with outcomes 1 if the individual has the characteristic
and 0 otherwise, then

Sn = X1 + X2 + · · ·+ Xn

the number of the selected individuals with the characteristic has
distribution Binomial(n,p).

We known that, for np and nq larger than 5, the normal
approximation

N(nµ, (
√

nσ)2) = N(np, (
√

n ·
√

pq)2)

of Sn is quite good.

So, for np and nq larger than 5, also the normal approximation

N

(
µ,

(
σ√
n

)2
)

= N

(
p,
(√

pq√
n

)2
)

of the Sample Mean X = Sn
n is quite good and we have

P
(
|X − p| ≤ 2

√
pq√
n

)
≈ 95% and P

(
|X − p| ≤ 3

√
pq√
n

)
≈ 99.7%.
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Sample variance
Let X = (X1,X2, . . . ,Xn) be a Sample from a distribution of mean
µ and standard deviation σ.

The sampling statistic

τ (x) = s2
x :=

n∑
k=1

(xk − x)2

n − 1
, x ∈ Rn,

is called the sample variance.

The Sampling Statistic

τ (X ) = S2
X :=

n∑
k=1

(
Xk − X

)2

n − 1
is then called the Sample Variance.

Observe that
(
sobs

)2
:= τ

(
xobs

)
= s2

xobs is the variance (seen in
descriptive statistics) of the data xobs.



Sample variance

Of course, the sampling statistic

τ (x) = sx =

√
s2

x =

√√√√√ n∑
k=1

(xk − x)2

n − 1
, x ∈ Rn,

is called the sample standard deviation and the Sampling
Statistic

τ (X ) = SX =
√

S2
X =

√√√√√ n∑
k=1

(
Xk − X

)2

n − 1

is called the Sample Standard Deviation.

Observe that sobs := τ
(
xobs

)
= sxobs is the standard deviation

(seen in descriptive statistics) of the data xobs.
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Now, we determine the mean of the Sample Variance.

We have
n∑

k=1

(
Xk − X

)2
=

n∑
k=1

(
Xk − µ−

(
X − µ

))2

=
n∑

k=1

(
(Xk − µ)2 − 2 (Xk − µ)

(
X − µ

)
+
(
X − µ

)2
)

=
n∑

k=1

(Xk − µ)2 − 2 ·
n∑

k=1

(Xk − µ)︸ ︷︷ ︸
=

n∑
k=1

Xk−
n∑

k=1
µ=n(X−µ)

·
(
X − µ

)
+

n∑
k=1

(
X − µ

)2

=
n∑

k=1

(Xk − µ)2 − 2n
(
X − µ

)2
+ n

(
X − µ

)2

=
n∑

k=1

(Xk − µ)2 − n
(
X − µ

)2
.
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So

E

(
n∑

k=1

(
Xk − X

)2
)

= E

(
n∑

k=1

(Xk − µ)2 − n
(
X − µ

)2
)

=
n∑

k=1

E
(

(Xk − µ)2
)
− nE

((
X − µ

)2
)

=
n∑

k=1

Var (Xk )− nVar
(
X
)

=
n∑

k=1

σ2 − n · σ
2

n
= nσ2 − σ2 = (n − 1)σ2.

We conclude that

E
(
S2

X
)

= E


n∑

k=1

(
Xk − X

)2

n − 1

 =

E
(

n∑
k=1

(
Xk − X

)2
)

n − 1

=
(n − 1)σ2

n − 1
= σ2.
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Is the Sample Variance concentrated around its mean σ2?

Observe that

S2
X =

n∑
k=1

(
Xk − X

)2

n − 1
=

n∑
k=1

(Xk − µ)2 − n
(
X − µ

)2

n − 1

=
n

n − 1


n∑

k=1
(Xk − µ)2

n︸ ︷︷ ︸
=A

−
(
X − µ

)2︸ ︷︷ ︸
=B


=

n
n − 1

(A− B).
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The term

A =

n∑
k=1

(Xk − µ)2

n
is the Sample Mean of the IID random variables

(X1 − µ)2 , (X2 − µ)2 , . . . , (Xn − µ)2 (1)

with common mean σ2.

So, for n large, A is concentrated around σ2 with large probability:
its distribution is close to N(σ2, ( α√

n )2), where α is the common
standard deviation of (1).
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Now we consider the other term

B =
(
X − µ

)2
.

For n large, since X has distribution close to N(µ, ( σ√
n )2), we have

P
(
|X − µ| / 3

σ√
n

)
≈ 99.7%

and so with large probability we have

B =
(
X − µ

)2
/

(
3
σ√
n

)2

=
9
n
σ2 � σ2 ≈ A

So, for n large,

S2
X =

n
n − 1

(A− B) ≈ A− B ≈ A

is concentrated around σ2X with large probability.

Since the Sample Variance has mean σ2 and, for n large, it is
concentrated around σ2, the sample variance can be considered
as an estimator of the variance σ2, if σ2 is one of the unknown
parameters.
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Observe that if we defined the Sample Variance as

C =

n∑
k=1

(
Xk − X

)2

n
,

then

E(C) = E


n∑

k=1

(
Xk − X

)2

n

 =

E
(

n∑
k=1

(
Xk − X

)2
)

n
=

n − 1
n

σ2 6= σ2.

This is the reason for which we have divided by n − 1 instead of n
when we have introduced the statistic sample variance as well as
the concept of variance for data.

However, since C = n−1
n S2

X , also the values of C are concentrated
around σ2 for n large.
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If the mean µ is known, we can use the Sampling Statistic

A =

n∑
k=1

(Xk − µ)2

n

as an Estimator of the variance.

In fact,

E(A) = E


n∑

k=1
(Xk − µ)2

n

 =

n∑
k=1

E
(

(Xk − µ)2
)

n

=

n∑
k=1

Var (Xk )

n
=

nσ2

n
= σ2.

and we have previously seen that, for n large, the values of A are
concentrated around σ2.
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Sample Variance in case of the the normal distribution

Now, we determine the distribution of the Sample Variance when
the Sample is from a normal distribution.

Before to do this, we need to introduce the concept of a
chi-squared distribution and the "Principle of Orthonormalization".
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We begin with the chi-squared distribution.

Definition
Let Z1,Z2, . . . ,Zn be IID random variables each with the standard
normal distribution. The distribution of

Z 2
1 + Z 2

2 + · · ·+ Z 2
n

is said a chi-squared distribution with n degrees of freedom and it is
denoted by χ2

n.

In figure, we see the chi-squared distribution (the pdf) for some
degrees of freedom. The distribution is zero before 0.
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Now, we determine the mean and the variance of the distribution
χ2

n.

Observe that, for k ∈ {1,2, . . . ,n}, we have

E
(

Z 2
k

)
= Var (Zk ) + E (Zk )2 = 1 + 02 = 1.

So

E
(

Z 2
1 + Z 2

2 + · · ·+ Z 2
n

)
= E

(
Z 2

1

)
+ E

(
Z 2

2

)
+ · · ·+ E

(
Z 2

n

)
= 1 + 1 + · · ·+ 1 = n.
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As for the variance, we have, since Z 2
1 ,Z

2
2 , . . . ,Z

2
n are

independent,

Var
(
Z 2

1 + Z 2
2 + · · ·+ Z 2

n
)

= Var
(
Z 2

1
)

+ Var
(
Z 2

2
)

+ · · ·+ Var
(
Z 2

n
)

= n · Var
(
Z 2) ,

where Z is a standard normal variable.

Exercise. By using the moment generating function of Z , show
that Var(Z 2) = 2.

So
Var
(

Z 2
1 + Z 2

2 + · · ·+ Z 2
n

)
= 2n

and then
SD
(

Z 2
1 + Z 2

2 + · · ·+ Z 2
n

)
=
√

2
√

n.
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Now, we present the "Principle of Orthonormalization"

Theorem
(The Principle of Orthonormalization). Let
X1, . . . ,Xn,Y1, . . . ,Yn : Ω→ R be random variables such that

X = QY ,

where X = (X1, . . . ,Xn), Y = (Y1, . . . ,Yn) and Q ∈ Rn×n. If X1, . . . ,Xn
are independent standard normal random variables and Q is
orthogonal, then Y1, . . . ,Yn are independent standard normal random
variables.

The name "Principle of Orthonormalization" comes from the fact
that the vector Y is the vector of the components of the vector X
in the orthonormal basis of Rn given by the columns of Q.
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Proof.
Assume that X1, . . . ,Xn are independent standard normal random
variables and Q is orthogonal. We prove that Y1, . . . ,Yn are
independent standard normal random variables.

Since Q is orthogonal, i.e. the columns of Q constitute an orthonormal
basis of Rn and so QT Q = In, we have

‖Qx‖2 = ‖x‖2 , x ∈ Rn,

and
|det (Q)| = 1.

Exercise. Prove these two facts.
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Proof.
Let V be a Borel subset of Rn. We have

P (Y ∈ V ) = P (X = QY ∈ Q (V )) , Q(V ) = {Qy : y ∈ Rn},

=

∫
x∈Q(V )

fX1 (x1) · · · fXn (xn) dx , since X1, . . . ,Xn are independent,

=

∫
x∈Q(V )

g (x1) · · · g (xn) dx , g is the pdf of a standard normal random variable,

=

∫
x∈Q(V )

1√
2π

e−
x2
1
2 · · · 1√

2π
e−

x2
n
2 dx =

∫
x∈Q(V )

(
1√
2π

)n

e−
‖x‖2

2
2 dx

=

∫
y∈V

|det (Q)|
(

1√
2π

)n

e−
‖Qy‖2

2
2 dy , x = Qy ,

=

∫
y∈V

(
1√
2π

)n

e−
‖y‖2

2
2 dy , | det(Q)| = 1 and ‖Qy‖2 = ‖y‖2,

∫
y∈V

1√
2π

e−
y2
1
2 · · · 1√

2π
e−

y2
n
2 dy =

∫
y∈V

g (y1) · · · g (yn) dy .
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Proof.
Now, for i ∈ {1, . . . ,n} and x ∈ R, we have

FYi (x) = P (Yi ≤ x) = P (Y ∈ R× · · · × R× (−∞, x ]× R× · · · × R)

=

∫
R×···×R×(−∞,x ]×R×···×R

g (y1) · · · g (yn) dy

=

∫
R

g (y1) dy1


︸ ︷︷ ︸

=1

· · ·

∫
R

g (yi−1) dyi−1


︸ ︷︷ ︸

=1

·
x∫

−∞

g (yi ) dyi ·

∫
R

g (yi+1) dyi+1


︸ ︷︷ ︸

=1

· · ·

∫
R

g (yn) dyn


︸ ︷︷ ︸

=1

=

x∫
−∞

g (yi ) dyi .

We conclude that Yi has pdf g and so it has the standard normal
distribution.



Sample variance Sample Variance in case of the normal distribution

Proof.
Now, we prove that Y1,Y2, . . . ,Yn are independent.

For i1, . . . , ik ∈ {1, . . . ,n} distinct, we have

P (Yi1 ∈ [ai1 , bi1 ] ∩ · · · ∩ Yik ∈ [aik , bik ])

=

∫
yi1
∈[ai1

,bi1 ],...,yik
∈[aik

,bik ]

g (y1) · · · g (yn) dy

=

 ∫
yi1
∈[ai1

,bi1 ]

g (yi1 )

 · · ·
 ∫

yik
∈[aik

,bik ]

g (yik )

 · n∏
j=1

j /∈{i1,...,ik}

∫
yj∈R

g (yj ) dyj

︸ ︷︷ ︸
=1

=

 ∫
yi1
∈[ai1

,bi1 ]

gi1 (yi1 )

 · · ·
 ∫

yik
∈[aik

,bik ]

g (yik )


= P (Yi1 ∈ [ai1 , bi1 ]) · · ·P (Yik ∈ [aik , bik ]) .



Sample variance Sample Variance in case of the normal distribution

We have seen that, for a Sample from a general distribution, the
Sample Variance has mean the variance σ2 of the distribution
and, for n large, its values are concentrated around the mean σ2

with large probability.

In the next theorem, we give the distribution of the Sample
Variance in case of a Sample from a normal distribution.

A chi-squared distribution appears in the statement of the theorem
and the "Principle of Orthonormalization" is used in the proof.



Sample variance Sample Variance in case of the normal distribution

Theorem
Let X = (X1,X2, . . . ,Xn) be a Sample from the normal distribution
N
(
µ, σ2) and let S2

X be the Sample Variance. Then

Y =
(n − 1) S2

X
σ2 =

n∑
k=1

(
Xk − X

)2

σ2

has the distribution χ2
n−1. Moreover X and Y , and so X and S2

X , are
independent.

Proof.
For k ∈ {1,2, . . . ,n}, let Zk = Xk−µ

σ be the standardized form of Xk .
Since

Z =
Z1 + Z2 + · · ·+ Zn

n
=

X1−µ
σ + X2−µ

σ + · · ·+ Xn−µ
σ

n
=

X1+X2+···+Xn−nµ
σ

n

=
nX−nµ

σ

n
=

X − µ
σ

,



Sample variance Sample Variance in case of the normal distribution

Proof.
we have

Zk − Z =
Xk − µ
σ

− X − µ
σ

=
Xk − X
σ

, k ∈ {1,2, . . . ,n} .

So

Y =

n∑
k=1

(
Xk − X

)2

σ2 =
n∑

k=1

(
Xk − X
σ

)2

=
n∑

k=1

(
Zk − Z

)2
.

Now, note that

n∑
k=1

(
Zk − Z

)
=

n∑
k=1

Zk −
n∑

k=1

Z = nZ − nZ = 0.

and so the vector random variable ∆ := (Z1 − Z ,Z2 − Z , . . . ,Zn − Z ) lies
on the hyperplane H of equation x1 + x2 + · · ·+ xn = 0 , which is a
subspace di Rn of dimension n − 1.



Sample variance Sample Variance in case of the normal distribution

Proof.
Let u(1), . . . ,u(n−1) be an orthonormal basis of H and let C1, . . . ,Cn−1
be the random variables components of ∆ in such basis, i.e.
C1, . . . ,Cn−1 are the scalars such that

∆ =
n−1∑
i=1

Ciu(i) = Qn−1C,

where Qn−1 ∈ Rn×(n−1) is the matrix of columns u(1), . . . ,u(n−1) and
C = (C1, . . . ,Cn−1). The coefficients C1, . . . ,Cn−1 are such that

n∑
k=1

(
Zk − Z

)2
= ‖∆‖2

2 =
n−1∑
i=1

C2
i

Exercise. Prove this fact by considering the matrix QT
n−1Qn−1 and

observing that QT
n−1Qn−1 = In−1.



Sample variance Sample Variance in case of the normal distribution

Proof.
Now, by setting 1 = (1,1, . . . ,1) ∈ Rn, observe that

(Z1,Z2, . . . ,Zn) =
(
Z ,Z , . . . ,Z

)
+ ∆

= Z · 1 +
n−1∑
i=1

Ciu(i) =
(√

n · Z
) 1√

n
+

n−1∑
i=1

Ciu(i)

= Q(
√

n · Z ,C1, . . . ,Cn−1),

where Q ∈ Rn×n is the matrix of columns 1√
n ,u

(1), . . . ,u(n−1).

Exercise. Prove that the vector 1√
n has unit length and, by recalling

that u(1), . . . ,u(n−1) belong to the hyperplane H, prove that 1√
n is

orthogonal to u(1), . . . ,u(n−1).

The previous exercise show that 1√
n ,u

(1), . . . ,u(n−1) is an orthonormal
basis of Rn and so Q is an orthogonal matrix.



Sample variance Sample Variance in case of the normal distribution

Proof.
We have

(Z1,Z2, . . . ,Zn) = Q(
√

n · Z ,C1, . . . ,Cn−1).

with Z1,Z2, . . . ,Zn independent standard normal variables (they are the
standardized forms of the independent normal variables X1,X2, . . . ,Xn)
and Q orthogonal. By the Principle of Orthonormalization, it follows
that

√
n · Z ,C1, . . . ,Cn−1 are independent standard normal variables.

Since C1, . . . ,Cn−1 are independent standard normal variables and

Y =
n∑

k=1

(
Zk − Z

)2
=

n−1∑
i=1

C2
i ,

we have that Y has the distribution χ2
n−1.

Moreover, since
√

n · Z ,C1, . . . ,Cn−1 are independent, we have that

X = µ+ σZ = µ+ σ√
n

√
n · Z and Y =

n−1∑
i=1

C2
i are independent and so also

X and S2
X = σ2Y

n−1 are independent.



Sample variance Sample Variance in case of the normal distribution

By using the previous theorem, we can determine the standard
deviation of the Sample Variance in case of a Sample
X = (X1,X2, . . . ,Xn) from a normal distribution N

(
µ, σ2).

The previous theorem says that the Sample Variance S2
X is such

that
Y =

(n − 1) S2
X

σ2

has distribution χ2
n−1 and so

SD
(
S2

X
)

= SD
(
σ2Y
n − 1

)
=

σ2

n − 1
SD (Y )

=
σ2

n − 1

√
2
√

n − 1 =

√
2σ2

√
n − 1

.

Observe that
SD
(
S2

X
)
→ 0, n→∞.

and so S2
X concentrates its values around its mean σ2, as n

increases, as we have already seen in the general case without
determining the distribution of S2

X .



Sample variance Sample Variance in case of the normal distribution

Exercise. By using the Chebyshev’s inequality find a lower bound
for the probability

P

(∣∣∣∣∣S2
X − σ2

σ2

∣∣∣∣∣ < ε

)
,

where ε > 0 and S2
X−σ

2

σ2 is the relative error when we estimate σ2

by S2
X .

Exercise. What is the normal distribution close to the distribution

of Y =
n−1∑
i=1

C2
i , when n is large? The Cis are in the proof of the

previous theorem. Then, what is the normal distribution close to
the distribution of S2

X , when n is large?



Sample variance Sample Variance in case of the normal distribution

Exercise. In case of a Sample from a normal distribution N
(
µ, σ2),

where µ is known, the Sampling Statistic

A =

n∑
k=1

(Xk − µ)2

n

is used as an Estimator of the variance. Prove that

nA
σ2 =

n∑
k=1

(Xk − µ)2

σ2

has distribution χ2
n and then compute the standard deviation of A.



Normal data

Normal data

Consider a Sample X = (X1,X2, . . . ,Xn) and the corresponding
sample xobs =

(
xobs

1 , . . . , xobs
n
)
, where n is large, from a normal

distribution N
(
µ, σ2).

We recall that a data x is called normal if there is an histogram for
the data such that:

I the histogram is symmetric with respect to an interval called the
middle interval, i.e. xhist is symmetric about the middle point c of the
middle interval and c is the mean of xhist.

I the middle interval has the highest frequency, i.e. xhist has mode c;

I the frequencies decrease from the middle interval in a bell-shaped
fashion, i.e. 68%,95%,99.7% of the components of xhist lie in the
intervals between c − ks and c + ks with k = 1,2,3, respectively, s
being the standard deviation of xhist.



Normal data

Now we prove that xobs is an approximately normal data.

Let h > 0 be a small number. Consider the points

yi := µ+ ihσ, i ∈ Z.

and then the histogram based on the class intervals

Ii = (yi , yi+1], i ∈ Z.

Since n is large, by the Strong Law of the Large Numbers (or the
frequentist interpretation), we obtain, for i ∈ Z,

relative frequency of the i th interval

=
number of components of xobs in Ii

n
≈ P (Y ∈ Ii ) = FY (yi+1)− FY (yi ) ,

where Y has distribution N
(
µ, σ2).



Normal data

Now

FY (yi+1)− FY (yi ) = Φ
(yi+1 − µ

σ

)
− Φ

(yi − µ
σ

)
= Φ ((i + 1) h)− Φ (ih) ≈ Φ′ (ih) h = fZ (ih) h since h is small,

where fZ is the pdf of a standard normal variable Z .

Therefore

relative frequency of the i th interval ≈ fZ (ih) h, i ∈ Z.

This means that the histogram has approximately the maximum
frequency in the middle interval I0 and the frequencies are
approximately symmetric with respect to I0: this follows from the
fact fZ has the maximum at 0 and it is symmetric with respect to 0.



Normal data

Since n is large, we can assume that xobs ≈ µ e (sobs)2 ≈ σ2 and
so sobs ≈ σ.

Let c and s be mean and standard deviation, respectively, of the
histogram version xhist of xobs. Since h is small, we have
c ≈ xobs ≈ µ and s ≈ sobs ≈ σ.

The histogram has approximately the bell-shaped fashion
decrease: since n is large and h is small, we have, for k > 0,

number of components of xhist in the intervals between c − ks and c + ks
n

=
number of components of xobs in the intervals between c − ks and c + ks

n

≈ number of components of xobs in (µ− kσ, µ+ kσ]

n
≈ P (Y ∈ (µ− kσ, µ+ kσ]) = Φ(k)− Φ(−k) = 2Φ(k)− 1 =: c(k)%.

and

c(k)% =


68% if k = 1
95% if k = 2
99.7% if k = 3.



Normal data

Now, we can understand our previous observation that:

I if the data represents some biological characteristic (for example
heights, weights, blood pressure,...) of a sample taken from an
homogeneus population of human beings, or other living beings,
and its size n is large, then it is approximately normal, and it
becomes normal as n→∞.

The data is normal because it is a sample from a normal
distribution: the biological characteristics of the individuals in the
population are normally distributed random variables.
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