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Introduction

Introduction

Immediately after the closure of an election, one can watch on TV
the first exit polls and, later, the projections obtained by scrutinized
votes.

We can hear statements as: "the party A has 32.4% of the votes
with a margin of error of ±2.2%".

What does it mean this statement?

Moreover, how is it possible do such a prevision only by a small
number of interviews (exit polls) with respect to the number of
voters or by analyzing only a small part of the votes (projections)
with respect to the total number of votes?

Here, we answer questions like these.



Introduction

One of the tasks of the Inferential Statistics is to estimate
unknown parameters of a distribution belonging to a given family,
by using sampling statistics on a sample of observed values from
that distribution.

We recall the definition of an estimator.

Definition
Let θ be one of the unknown parameter of the distribution. An
estimator of θ is a sampling statistic τ : Rn → R providing an estimate
of θ: if xobs =

(
xobs

1 , xobs
2 , . . . , xobs

n
)

is the sample, i.e. the n−tuple of the
observed values of the Sample X = (X 1,X 2, . . . ,X n), then τ

(
xobs

)
is

the estimate of θ.

We have already seen examples of estimators: the sample mean
is an estimator of the mean, if the mean is one of the unknown
parameters, and the sample variance is an estimator of the
variance, if the variance is one of the unknown parameters.
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Example. Consider a population of notebook batteries and
assume that the lifespan of such a battery is a random variable
normally distributed of unknown mean.

Suppose that we are interested in estimating such an unknown
mean.

We take a sample of the population and compute the sample
mean of the observed lifespans of the individuals in the sample
(recall that we call "sample" both these observed lifespans and the
selected individuals).

This sample mean (it could be 3.5 years) is the estimate of the
unknown mean of the normal distribution.



Introduction

Now, we introduce the concept of an unbaised estimator.

Definition
An estimator τ of the parameter θ is said unbiased if E (τ (X )) = θ,
where τ (X ), with X = (X1,X2, . . . ,Xn) the Sample, is the Estimator
(Sampling Statistic) relevant to the estimator (sampling statistic) τ .

We have seen that the sample mean is an unbiased estimator of
the mean and the sample variance is an unbiased estimator of
the variance.
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Also

τ (x) =

n∑
k=1

(xk − µ)2

n
, x ∈ Rn,

is an unbiased estimator of the variance, to be used when the
mean µ is known.

On the other hand,

τ (x) =

n∑
k=1

(xk − x)2

n
, x ∈ Rn,

is an estimator of the variance, but it is not unbiased: its mean is
n−1

n σ2, not σ2, where σ2 is the variance,
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Interval Estimates

An estimate given by the value of an estimator is called a point
estimate.

On the other hand, in the above situation of the election, the
statement: "the party A has 32.4% of the votes with a margin of
error of ±2.2%" gives an example of an interval estimate.

Here, we are saying that the percentage of the votes for the party
A is in the interval between 32.4%− 2.2% = 30.2% and
32.4% + 2.2% = 34.6%.

At each interval estimate, we attach a level of confidence for that
interval, i.e. the probability that the interval contains the
parameter.
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Definition
Let X = (X1,X2, . . . ,Xn) be a Sample from a distribution with an
unknown parameter θ ∈ R.

If τ is an estimator of θ and xobs is the sample, then τ
(
xobs

)
is the

point estimate of θ.

An interval estimate of θ with level of confidence C% ∈ [0,1], called
a C% confidence interval of θ, is an interval I

(
xobs

)
, which depends

on the sample xobs, such that

P (θ ∈ I (X )) = C%.

Observe that the level of confidence is the probability that the
random Interval I (X ) contains the nonrandom (but unknown)
parameter θ.
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How to obtain an interval estimate of θ?

Consider an unbiased estimator τ of θ and let σn be the standard
deviation of the Estimator τ (X ). σn is called the standard error of
the estimator τ .

We consider interval estimates of θ of the form

I(xobs) = τ
(
xobs)± kσn :=

(
τ
(
xobs)− kσn, τ

(
xobs)+ kσn

)
,

where k > 0.

Such an interval estimate is an interval centered at the point
estimate τ

(
xobs

)
of radius kσn. This radius is called the margin of

error of the interval estimate.
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The level of confidence of this interval estimate is

P
(
θ ∈ I(X ) = τ

(
X
)
± kσn

)
= P (|τ (X )− E (τ (X ))| < kσn) .

In fact

P (θ ∈ τ (X )± kσn) = P (θ ∈ (τ (X )− kσn, τ (X ) + kσn))

= P (τ (X )− kσn < θ < τ (X ) + kσn)

= P (−kσn < τ (X )− θ < kσn)

= P (|τ (X )− θ| < kσn)

= P (|τ (X )− E (τ (X ))| < kσn) ,

where the last equality follows from the fact that τ is an unbaised
estimator for θ.

The Chebyshev’s inequality says that

P (|τ (X )− E (τ (X ))| < kσn) ≥ 1− 1
k2

and so when k = 2 the level of confidence is at least 1− 1
4 = 75%

and when k = 3 it is at least 1− 1
9 = 88.9%.
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Estimating means
Consider the situation where the distribution from which the
Sample is taken depends on a unique unknown parameter, which
is the mean of the distribution.

Examples are the normal distribution N(µ, σ2), with µ unknown
and σ known, and the Bernoulli distribution Bernoulli (p), where
p ∈ [0,1] is unknown.

As an unbiased estimator of the mean we consider the sample
mean x . The standard error of the sample mean is

σn = SD
(
X
)

=
σ√
n
,

where σ is the standard deviation of the distribution.

Hence, the interval estimates of the mean have the form

xobs ± k
σ√
n
,

where k > 0.
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A classic situation, where we have a normal distribution with
unknown mean and known standard deviation, is the process of
measurement.

Here, the measured value can be considered as a normal random
variable with mean the unknown actual value to be measured and
known standard deviation σ, related to the precision of the
measure instrument: more precise the instrument, smaller the
standard deviation.
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Example. Consider the previous example of the astronomer
measuring the distance of a star from the Earth.

Suppose that the following ten measures of the distance were
obtained:

10.2, 9.6, 9.7, 10.1, 10.0, 9.8, 10.2, 9.8, 9.6, 9.8

all expressed in light years.

The standard deviation is known to be σ = 0.3 light years.

We can compute the point estimate xobs by hand. Since

xobs = 10 +
1
10
· (2,−4,−3,1,0,−2,2,−2,−4,−2) ,

we have

xobs = 10 +
1
10
· 2− 4− 3 + 1 + 0− 2 + 2− 2− 4− 2

10
= 10− 0.12 = 9.88 light year.
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Hence, the interval estimates of the actual distance have the form

9.88± k
0.3√
10

= 9.88± 0.09k light year, k > 0.

Of course, each interval estimate has its own level of confidence.
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The case of the normal distribution
In case, as in the previous example, of a normal distribution
N
(
µ, σ2), where µ is unknown and σ is known, we can easily

determine the level of confidence of an interval estimate.

In fact, in this case the Sample Mean has the normal distribution

N

(
µ,

(
σ√
n

)2
)
.

Thus, the level of confidence of the interval estimate

xobs ± k
σ√
n
,

where k > 0, is

P
(
µ ∈ I(X ) = X ± k

σ√
n

)
= P

(∣∣∣X − µ∣∣∣ < k
σ√
n

)
= P

(∣∣∣∣∣X − µσ√
n

∣∣∣∣∣ < k

)
= 2Φ (k)− 1.

since X−µ
σ√

n
has the standard normal distribution.
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In particular:

I for k = 1, the level of confidence is 68.26%;

I for k = 2, the level of confidence is 95.44%;

I for k = 3, the level of confidence is 97.74%.

In the example of the astronomer measuring the distance of the
star from the Earth, we have the following interval estimates:

I 9.88± 0.09 light year with level of confidence 68.26%;

I 9.88± 0.18 light year with level of confidence 95.44%;

I 9.88± 0.27 light year with level of confidence 97.74%.
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Most of times, we are in a situation where a given level of
confidence C% ∈ (0,1) is assigned. Then, we can determine k > 0
in order to have an interval estimate

xobs ± k
σ√
n

with level of confidence C%.

We have

C% = P
(
µ ∈ I(X ) = X ± σ√

n

)
= 2Φ (k)− 1

for
k = Φ−1

(
1 + C%

2

)
.

So k is the
100

1 + C%

2
=

100 + C
2

th percentile

of a standard normal random variable.

Exercise. Show that for C% = 90%,95%,99%, we have
k = 1.65,1.96,2.58, respectively.
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Sometimes, we are interested in obtaining an interval estimate

xobs ± k
σ√
n
,

with a given level of confidence C% (and so with a given k ), such
that

k
σ√
n
≤ ε,

i.e. the margin of error is not larger than a fixed tolerance ε > 0.

In order to obtain this, it is sufficient to take a Sample of size n
such that √

n ≥ kσ
ε
,

i.e.

n ≥
(

kσ
ε

)2

.
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Therefore, one can take

n =

⌈(
kσ
ε

)2
⌉
.

Exercise. Prove that with this choice, the margin of error k σ√
n

satisfies √
1− 1

n
· ε < k

σ√
n
≤ ε.

Note that, we can obtain interval estimates with an arbitrarily small
margin of error ε and with an arbitrarily high level of confidence
C%, i.e. with an arbitrarily large k , by taking a Sample of a
sufficiently large size n.

But, of course, by taking a Sample of large size has a cost.
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Example. Once again, consider the case of the astronomer
measuring the distance of the star from the Earth.

Suppose that the astronomer wants to be 99% confident that the
margin of error is not larger than 0.1 light years.

To obtain this. it is sufficient to have

n =

⌈(
kσ
ε

)2
⌉

=

⌈(
2.58 · 0.3

0.1

)2
⌉

= 60.

measurements. Since the astronomical measurement requires a
careful preparation, this number is quite large.
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Exercise. Find the size n of the Sample in order to have a 99%
confidence interval with margin of error not larger than m times
the standard deviation σ. Compute n for m = 1

10 ,
1
4 ,

1
3 ,

1
2 ,1,2.
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In the case of a Sample from a general distribution with unknown
mean µ, what we have established up to now for a normal
distribution continues to be valid, although only approximately and
for n large.

In fact, for n large, the Sample Mean has approximately the
normal distribution

N

(
µ,

(
σ√
n

)2
)
,

where σ is the standard deviation of this general distribution.

In particular, this holds for the distribution Bernoulli (p), the subject
of the next section.
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Estimating proportions
Consider the problem of estimating proportions, where the
proportion p of a characteristic of the individuals in a population
has to be estimated.

In order to do this, a sample of n individuals in the population is
selected and then the unknown parameter p is estimated by using
the Sample X = (X1,X2, . . . ,Xn) from the distribution Bernoulli (p)
given by

Xk =

{
1 if the k − th selected individual has the characteristic
0 otherwise

for k ∈ {1, . . . ,n}.

Since p is the mean of Bernoulli (p), p can be estimated by using
the sample mean and the point estimate is

p̂ := xobs,

i.e. the proportion of the individuals in the sample with the
characteristic.
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Since Sn = X1 + X2 + · · ·+ Xn has the distribution Binomial(n,p),
we know that, for np and n(1− p) larger than 5, the normal
distribution

N
(

np,
(√

nσ
)2
)

is a quite good approximation of the distribution of Sn, where σ is
the standard deviation of the distribution Bernoulli (p).

So, for such n, the Sample Mean X = Sn
n has with a quite good

approximation the normal distribution

N

(
p,
(
σ√
n

)2
)
.
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Therefore, for such n, the level of confidence of the interval
estimate

p̂ ± k
σ√
n
,

where k > 0, is

P
(
|X − p| < k

σ√
n

)
≈ 2Φ(k)− 1.

and we see that the relation between the level of confidence C%
and k is the same (but only approximately) as in case of the
normal distribution:

k ≈ Φ−1
(

1 + C%

2

)
.
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Observe that the standard deviation of Bernoulli (p) is

σ =
√

p (1− p),

and so it is given in terms the unknown parameter p.

We estimate the standard deviation by

σ̂ =
√

p̂
(
1− p̂

)
.

obtained by replacing p with its point estimate p̂.

Then, the interval estimates

p̂ ± k
σ√
n
, k > 0,

are approximated by the estimated interval estimates

p̂ ± k
σ̂√
n
, k > 0.
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Observe that, when the normal approximation is valid, we have
with large probability (99.7%)∣∣p̂ − p

∣∣ < 3
√

p (1− p)√
n

and then ∣∣∣∣ p̂ − p
p

∣∣∣∣ =
|p̂ − p|

p
<

3
√

1−p
p√

n
.

Given a function f : D ⊆ R→ R, D open, and x ∈ D, it is known that
if x is perturbed to x̃ and so the result y = f (x) is perturbed to
ỹ = f

(
x̃
)
, then the relation

εy ≈ K (f , x) εx ,

holds, where
εx =

x̃ − x
x

and εy =
ỹ − y

y
are the relative errors of the perturbations x̃ and ỹ and

K (f , x) =
xf ′ (x)

f (x)

is the condition number of f at x .
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Exercise. By considering the function

f (x) =
√

x (1− x), x ∈ (0,1) ,

shows that, when the normal approximation is valid, the
estimated margin of error k σ̂√

n has with large probability (99.7%) a
relative error ∣∣∣∣∣k

σ̂√
n − k σ√

n

k σ√
n

∣∣∣∣∣ =

∣∣∣∣ σ̂ − σσ
∣∣∣∣

which is approximately smaller than

3
( 1

2 − p
)√

p (1− p)
· 1√

n
.

This shows that the estimated interval estimates are good
approximations of the interval estimates.
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Now, we present two examples involving interval estimates for
proportions.

Example. In a sample of n = 100 students at an university, 82 of
them are nonsmokers. Based on this, construct 90%, 95% and
99% confidence intervals of p, p being the proportion of all the
students at the university that are nonsmokers.

The point estimate of p is p̂ = 82
100 = 0.82.

Observe that np̂ = 82 and n(1− p̂) = 18 are both larger than 5
and so the normal approximation can be considered valid.
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The estimated interval estimates are

p̂±k
σ̂√
n

= 0.82±k

√
0.82 (1− 0.82)√

100
= 0.82±k0.0384 = 82%±k3.84%.

For C% = 90%,95%,99%, we have k = 1.65,1.96,2.58,
respectively, and so

90% confidence interval: 82%± 1.65 · 3.84% = 82%± 6.3%

95% confidence interval: 82%± 1.96 · 3.84% = 82%± 7.5%

99% confidence interval: 82%± 2.58 · 3.84% = 82%± 9.9%.
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Example. On December 24, 1991, The New York Times reported
a poll where it was said that 46% percent of the US population
were in favor of the economic politics of the President George
Bush with a margin of error of ±3%.

In this case, the level of confidence is not indicated. It is common
practice for media to present 95% confidence intervals. Indeed,
there is the following rule: unless it is mentioned otherwise, the
interval estimate has 95% level of confidence.

How many people were contacted for the poll?
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The point estimate of the proportion p of the US population were
in favor of the economic politic of the president is p̂ = 46%.

With a level of confidence C% = 95%, we have k = 1.96.

The margin of error is

k
σ̂√
n

= k

√
p̂
(
1− p̂

)
√

n
= 3%.

and then

n =

k

√
p̂
(
1− p̂

)
3%

2

= k2 ·
p̂
(
1− p̂

)
(3%)2

= 1.962 · 0.46 · (1− 0.46)

(0.03)2

= 1060.3.

A typical poll contacts around one thousand persons.
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Exercise. In the example of the election, where the result of the
poll is that "the party A has the 32.4% of the votes with margin of
error ±2.2%", find the size of the sample in case of the following
levels of confidence C% = 90%,95%,99%.
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We have presented the formula

n =

⌈(
kσ
ε

)2
⌉

for determining a priori the size of the sample in order to have the
margin of error not larger than a fixed tolerance ε.

In case of the distribution Bernoulli (p), we have the problem that
the estimate σ̂ = p̂

(
1− p̂

)
of σ =

√
p (1− p) is not known in

advance.

We observe that

the margin of error k
σ̂√
n

is ≤ ε ⇔ n ≥
(

k σ̂
ε

)2

=

k
√

p̂
(
1− p̂

)
ε

2

We also observe that p̂
(
1− p̂

)
, p̂ ∈ [0,1], takes at p̂ = 1

2 the
maximum value 1

4 .
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Since k
√

1
4

ε

2

≥

k
√

p̂
(
1− p̂

)
ε

2

,

we conclude that if

n ≥

k
√

1
4

ε

2

=

(
k
2ε

)2

then the margin of error is ≤ ε.

We take

n =

⌈(
k
2ε

)2
⌉
.
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Of course, if p̂ is far from 1
2 , the worst case, then the margin of

error is remarkably smaller than ε.

Exercise. Let r be the ratio between the margin of error and ε.
Prove that √

4p̂
(
1− p̂

)(
1− 1

n

)
< r ≤

√
4p̂
(
1− p̂

)
Exercise. Often, politicians require polls able to produce a 95%
confidence interval with margin of error not larger than 1%. Find
how many people have to be contacted in such a poll.
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One-sided interval estimates
Consider the situation of a Sample from a general distribution with
a unique unknown parameter, which is the mean µ and so the
sample mean is used as an estimator of µ.

Suppose that, instead of the previous two-sided interval
estimates (

xobs − k
σ√
n
, xobs + k

σ√
n

)
,

where k > 0, we are interested in one-sided interval estimates
of type (

xobs − k
σ√
n
,+∞

)
or
(
−∞, xobs + k

σ√
n

)
.

The ends
xobs − k

σ√
n

and xobs + k
σ√
n

in one-sided interval estimates are called a lower confidence
bound and an upper confidence bound, respectively.
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Two-sided interval estimates are used when an accurate
estimation of µ is needed.

On the other hand, one-sided interval estimates are used when
we need to compare µ with µ0, where µ0 ∈ R is given, i.e. to
decide which relation µ < µ0 or µ > µ0 holds.

We cannot decide this by comparing the point estimate xobs of µ
with µ0. In fact, we could have xobs > µ0 > µ and so decide the
wrong relation µ > µ0 because xobs > µ0, or have xobs < µ0 < µ
and so decide the wrong relation µ < µ0 because xobs < µ0.
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In order to decide which relation holds we proceed as follows.

When xobs > µ0, we consider a one-sided confidence interval

I(xobs) =

(
xobs − k

σ√
n
,+∞

)
,

where k > 0, with level of confidence C%. This level of confidence
is also said the level of confidence of the lower confidence bound
xobs − k σ√

n . If

xobs − k
σ√
n
≥ µ0, (1)

we say that the relation µ > µ0 is satisfied with level of confidence
C%.

In fact, if µ ≤ µ0, then X − k σ√
n ≥ µ0 implies µ not in the random

One-Sided Interval Estimate I(X ), an event with probability 1−C%.
So, if µ ≤ µ0, the probability of X − k σ√

n ≥ µ0, i.e. the probability of
observing (1), is not larger than 1− C% and then it is a small
probability. Thus, we can be quite confident that µ > µ0 holds.
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On the other hand, when xobs < µ0 we consider a one-sided
confidence interval (

−∞, xobs + k
σ√
n

)
,

where k > 0, with level of confidence C%. This level of confidence
is also said the level of confidence of the upper confidence bound
xobs + k σ√

n . If

xobs + k
σ√
n
≤ µ0,

we say that the relation µ < µ0 is satisfied with level of confidence
C%.



One-sided interval estimates The case of the normal distribution

The case of the normal distribution
In case of a normal distribution, the level of confidence of a lower
confidence bound xobs − k σ√

n is

P
(

X − k
σ√
n
< µ

)
= P

(
X − µ

σ√
n

< k

)
= Φ (k)

and the level of confidence of an upper confidence bound
xobs + k σ√

n is

P
(
µ < X + k

σ√
n

)
= P

(
X − µ

σ√
n

> −k

)
= 1− Φ (−k) = Φ (k) .

This means that, fixed a given level of confidence C%, we have

k = Φ−1 (C%) ,

i.e. k is the Cth percentile of the standard normal distribution.
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Observe that, given a level of confidence C% ∈ (0,1), we have, for
the same sample xobs, the two-sided C% confidence interval(

xobs − k
σ√
n
, xobs + k

σ√
n

)
, k = Φ−1

(
1 + C%

2

)
,

as well as the one-sided C% confidence intervals(
xobs − k

σ√
n
,+∞

)
and

(
−∞, xobs + k

σ√
n

)
, k = Φ−1 (C%) .

Since
C% <

1 + C%

2
and then

Φ−1 (C%) < Φ−1
(

1 + C%

2

)
,

the margin of error k σ√
n is smaller for one-sided confidence

intervals.
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Exercise. For a fixed level of confidence C% and a fixed tolerance
ε > 0, find the size n of the Sample guaranteeing a margin of error
not larger than ε in the one-sided confidence intervals and the size
of the Sample guaranteeing the same in the two-sided confidence
interval. What is the larger size?
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Example. The life of tires of a certain brand is a random variable
normally distributed with unknown mean µ and known standard
deviation σ = 5.30 · 103 km. The mean of the lifes of a sample with
size n = 10 of such tires is xobs = 45.1 · 103km.

An advertisement says: “With 95 percent certainty, the expected
life of the tires is over 42000 km ”(consider 42000 = 42.0 · 103). Is it
true this advertisement?

The 95% lower confidence bound, which has

k = Φ−1 (C%) = Φ−1 (95%) = 1.65,

is

xobs − k
σ√
n

= 45.1 · 103 − 1.65 · 5.30 · 103
√

10
= 42.3 · 103 km

and it is larger than 42.0 · 103km.

Thus the advertisement can be considered true.
Exercise. Find the 95% two-sided interval estimate. Can the
advertisement be considered true by using this estimate?
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Exercise. In the example of the astronomer measuring the
distance of the star from the Earth, find the level of confidence of
the upper confidence bound 10 light year.
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The case of estimating proportions

Of course, in case of a general distribution the previous
considerations are still valid, but only approximately and for n
large, i.e. when the normal approximation of the distribution of the
Sample Mean is valid.

In particular, this is true for a Bernoulli distribution Bernoulli(p),
p ∈ (0,1), when np and n(1− p) are larger than 5.
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Now, we present two examples with the Bernoulli distribution
where estimated one-sided interval estimates are involved.

Example. Suppose that one wants to known whether or not the
percentage of all workers in a large city that are unsatisfied with
their working conditions are over 25%.

A sample of 125 workers indicates that 42 are unsatisfied.

So, the point estimate of the percentage of the unsatisfied workers
is

p̂ =
42

125
= 33.6%.

and we have p̂ > 25%.

Are we sure with level of confidence 95% that the true percentage
is over 25%?
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We are interested in the estimated lower confidence bound

p̂ − k
σ̂√
n
.

with level of confidence C% = 95% and so k = Φ−1 (95%) = 1.65.

Such a bound is

p̂ − k

√
p̂
(
1− p̂

)
√

n
= 0.336− 1.65 ·

√
0.336 (1− 0.336)√

125
= 26.6%.

Therefore, we are sure with level of confidence 95% that the true
percentage is over 25%.
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Exercise. Are we sure with level of confidence 99% that the true
percentage is over 25%?

Exercise. If the unsatisfied workers were 20, are we sure with
level of confidence 95% that the true percentage is under 25%?
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Example. The Aid to Families with Dependent Children (AFDC)
program was an assistence program in US from 1935 to 1996. It
provided financial assistance to children whose familiy has low or
no income.

However, since errors cannot be avoided, not every family funded
by AFDC met the eligibility requirements.

The California state considered its counties responsible for
overseeing the eligibility requirements and it had set a maximum
error rate of 4%. The error rate is equal to number of ineligible
funded cases divided by number of funded cases.

If more than 4% of the funded cases in a county were found
ineligible, then a financial penalty was placed upon the county,
with the amount of the penalty determined by the error rate.

Since the California state did not have the resources to check
every case for eligibility, it used a random sample to estimate the
error rate in each county.
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In 1981, a random sample of 152 cases was chosen in Alameda
County, California, and 9 were found to be ineligible. So, the
estimated rate error was

p̂ =
9

152
= 5.9%.

Since this value is larger than the maximum error rate 4%, a
penalty of 949597$ was imposed to the county by the state.

But, the county appealed to the courts, arguing that 9 errors in
152 trials were not sufficient evidence to prove that the rate error
exceeded 4%.

With help from statistical experts, the court decided that it was
unfair to take only the point estimate p̂ = 5.9% of the true rate
error p of the county. The court decided it would be fairer to use a
95% lower confidence bound of p.
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The 95% percent lower confidence bound is

p̂ − k

√
p̂
(
1− p̂

)
√

n
= 0.059− 1.65

√
0.059 (1− 0.059)√

152
= 5.9%− 3.15% = 2.75%.

Since this value is less than the maximum error rate of 4%, the
court overturned the state’s decision and ruled that no penalty
was due.
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Estimating the mean when the standard deviation is
unknown

Consider the situation of a Sample from the normal distribution
N
(
µ, σ2), where now both the parameters µ and σ are unknown.

We want give interval estimates for the mean µ in this situation.

Above, we considered the situation where σ was known. In that
case, we had two-sided interval estimates

xobs ± k
σ√
n
, k > 0,

with levels of confidence

P
(∣∣X − µ∣∣ < k

σ√
n

)
= P (|Z | < k)

determined as a probability for the standard normal variable

Z =
X − µ

σ√
n
.
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When σ is unknown, we have the point estimate

sobs
x =

√√√√√ n∑
k=1

(xobs
k − xobs)2

n − 1
.

of σ given by the estimator sample standard deviation.

As in the case of the Bernoulli distribution, we could use estimated
interval estimates, i.e. to consider σ as known since it is
approximated by sobs

x .
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Exercise. Recall that the Sample Variance S2
X has standard

deviation
√

2σ2
√

n−1
. By using the Chebyshev’s inequality, find an

upper bound for the relative error∣∣∣∣∣∣k
sobs

x√
n − k σ√

n

k σ√
n

∣∣∣∣∣∣ =

∣∣∣∣sobs
x − σ
σ

∣∣∣∣
of the margin of error in estimated interval estimates that holds

with probability ≥ 95%.
Exercise. Now, recall that S2

X has, for n large, distribution close to

the normal distribution N
(
σ2,
( √

2σ2
√

n−1

)2
)

(we saw this in a

previous exercise). Find, for n large, a bound for the relative error
of the margin of error in estimated interval estimates that holds
with probability ≥ 99.7%.

The previous two exercises show that estimated interval estimates
should be used when n is large.
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When n is not large, we consider a two-sided interval estimate

xobs ± k
sobs

x√
n
, k > 0,

not as an estimated interval estimate, i.e. not as an
approximation of

xobs ± k
σ√
n
,

but as a new type of two-sided interval estimate.
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The level of confidence of this new two-sided interval estimate is

P
(∣∣X − µ∣∣ < k

SX√
n

)
= P (|Tn−1| < k) ,

where SX is the Sample Standard Deviation and

Tn−1 :=
X − µ

SX√
n

.

Here, the level of confidence is determined by the random variable
Tn−1 not by the standard normal random variable Z = X−µ

σ√
n

.
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By recalling the random variable

Y =
(n − 1) S2

X
σ2 ,

whose distribution is χ2
n−1, we obtain

Tn−1 =
X − µ

SX√
n

=
X − µ
σ
√

Y
n−1√
n

=

X−µ
σ√

n√
Y

n−1

=
Z√

Y
n−1

Moreover, by recalling that X and Y are independent, we have
that Z = X−µ

σ and Y are independent.
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The Student t distributions

The distribution of the random variable Tn−1 is a Student t
distribution.

Definition
A continuous random variable T is said to have the Student t
distribution with ν degrees of freedom, denoted by tν , where ν is a
positive integer, if

T =
Z√

Y
ν

,

where Z is a random variable with the standard normal distribution, Y
is a random variable with the chi-squared distribution with ν degrees of
freedom and Z and Y are independent.
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Some Student t distributions, along with the standard normal
distribution, are given in the next figure.
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A Student t distribution, like a standard normal distribution, is
symmetric around the mean zero.

It looks similar to a standard normal distribution, although it is
more spread out: it has “larger tails.”

As the number ν of degrees of freedom increases, the distribution
becomes more and more similar to the standard normal
distribution.
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Now, we prove all these properties.

We begin by giving a formula for the pdf of a random variable

Tν =
Z√

Y
ν

with distribution tν .



Estimating the mean when the standard deviation is unknown The Student t distributions

We have, for x ∈ R,

P (x < Tν ≤ x + dx) =

∫
w>0

P

x <
Z√

Y
ν

≤ x + dx ∩ w <

√
Y
ν
≤ w + dw


=

∫
w>0

P

(
x <

Z
w
≤ x + dx ∩ w <

√
Y
ν
≤ w + dw

)

=

∫
w>0

P

(
wx < Z ≤ wx + wdx ∩ w <

√
Y
ν
≤ w + dw

)

=

∫
w>0

P (wx < Z ≤ wx + wdx) · P

(
w <

√
Y
ν
≤ w + dw

)

where the last equality follows by the independence of Z and
√

Y
ν .
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Thus

fTν (x) dx = P (x < Tν ≤ x + dx)

=

∫
w>0

P (wx < Z ≤ wx + wdx) · P

(
w <

√
Y
ν
≤ w + dw

)

=

∫
w>0

fZ (wx) wdx · f√ Y
ν

(w) dw

and so
fTν

(x) =

∫
w>0

fZ (wx) wf√ Y
ν

(w) dw .

Now, we can prove the properties of the Student t distribution.
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fTν is symmetric around zero: for x ≥ 0, we have, since fZ is
symmetric around zero,

fTν (−x) =

∫
w>0

fZ (−wx) wf√ Y
ν

(w) dw =

∫
w>0

fZ (wx) wf√ Y
ν

(w) dw = fTν (x) .

As a consequence of the symmetricity around zero of fTν , we have
that the mean of the distribution is zero: this is proved exactly as
in case of the normal distribution.
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fTν has maximum value at 0: for x ∈ Rr {0}, we have

f ′Tν
(x) =

d
dx

∫
w>0

fZ (wx) wf√ Y
ν

(w) dw =

∫
w>0

f ′Z (wx) w2f√ Y
ν

(w)︸ ︷︷ ︸
≥0

dw

=

{
> 0 if x < 0 (we have f ′Z (wx) > 0 for all w > 0)
< 0 if x > 0 (we have f ′Z (wx) < 0 for all w > 0)

fTν (x)→ 0 as x → ±∞:

lim
x→±∞

fTν
(x) = lim

x→±∞

∫
w>0

fZ (wx) wf√ Y
ν

(w) dw

=

∫
w>0

lim
x→±∞

fZ (wx)︸ ︷︷ ︸
=0

wf√ Y
ν

(w) dw

= 0.
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fTν decays to zero, as x → ±∞, much more slowly than fZ (it has
longer tails): we have

lim
x→±∞

fTν (x)

fZ (x)
= lim

x→±∞

∫
w>0

fZ (wx) wf√ Y
ν

(w) dw

fZ (x)

= lim
x→±∞

∫
w>0

fZ (wx)

fZ (x)
wf√ Y

ν

(w) dw = lim
x→±∞

∫
w>0

1√
2π

e−
w2x2

2

1√
2π

e−
x2
2

wf√ Y
ν

(w) dw

= lim
x→±∞

∫
w>0

e
(1−w2)x2

2 wf√ Y
ν

(w) dw

= lim
x→±∞

 1∫
0

e
(1−w2)x2

2 wf√ Y
ν

(w) dw +

+∞∫
1

e
(1−w2)x2

2 wf√ Y
ν

(w) dw


= lim

x→±∞

1∫
0

e
(1−w2)x2

2 wf√ Y
ν

(w) dw + lim
x→±∞

+∞∫
1

e
(1−w2)x2

2 wf√ Y
ν

(w) dw

=

1∫
0

lim
x→±∞

e
(1−w2)x2

2︸ ︷︷ ︸
+∞

· wf√ Y
ν

(w) dw +

+∞∫
1

lim
x→±∞

e
(1−w2)x2

2︸ ︷︷ ︸
=0

wf√ Y
ν

(w) dw = +∞.
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limν→∞ fTν
(x) = fZ (x) , x ∈ R: in fact

√
Y
ν

=

√√√√√ ν∑
i=1

Z 2
i

ν

is the square root of the Sample Mean for the Sample
Z 2

1 ,Z
2
2 , . . . ,Z

2
ν from the squared standard normal distribution;

so, for ν →∞,
√

Y
ν concentrates around the square root 1 of the

mean 1 of the squared standard normal distribution and then
f√Y

ν

(w) becomes a Dirac delta function at w = 1 and thus

lim
ν→∞

fTν
(x) = lim

ν→∞

∫
w>0

fZ (wx) wf√ Y
ν

(w) dw

=

∫
w>0

fZ (wx) w lim
ν→∞

f√ Y
ν

(w)︸ ︷︷ ︸
Delta Dirac function at w = 1

dw

= fZ (1x) 1 = fZ (x) , x ∈ R.
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Exercise. By using

E
(

1
Y

)
=

1
ν − 2

shows that
Var (Tν) =

ν

ν − 2
.
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Two-sided interval estimates

Let Tν be a random variable with the distribution tν , where ν is a
positive integer.

We denote by Φν the distribution function FTν of Tν .

Exercise. Prove that limν→∞Φν(x) = Φ(x), x ∈ R, where Φ is the
distribution function of a standard normal random variable.
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For the simmetricity of the distribution tν around zero, we have

Φν(−k) = P (Tν ≤ −k) = P (Tν ≥ k) = 1−P (Tν < k) = 1−Φν(k), k > 0.

as in case of the distribution function Φ.

So, similarly to

P (|Z | < k) = 2Φ(k)− 1, k > 0,

for a standard normal variable Z , we have

P (|Tν | < k) = 2Φν(k)− 1, k > 0.
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We have previously seen that the two-sided interval estimate

xobs ± k
sobs

x√
n

of the mean µ has level of confidence P (|Tn−1| < k), where the
random variable Tn−1 has distribution tn−1.

So this level of confidence is

P (|Tn−1| < k) = 2Φn−1(k)− 1.

For a fixed C% ∈ (0,1), a C% confidence interval of µ is given by

xobs ± k
sobs

x√
n

with k = Φ−1
n−1

(
1 + C%

2

)
.

Observe that k is the

100
1 + C%

2
=

100 + C
2

th percentile

of the random variable Tn−1.
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To compute the values of inverse Φ−1
ν , ν positive integer, we can

use the quantities

tν,α := Φ−1
ν (1− α) = 100(1− α)th percentile of Tν ,

where Tν has distribution tν , given in the next table.

Exercise. Prove that, for a given level of confidence C% ∈ (0,1),
we have

k = tn−1, 1−C%
2
.
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Example. There are places in US, specially close to industrial
sites, where the milk of nursing mothers contains PCB
(PolyChlorinate Biphenil), a toxic chemical.

We assume that the amount of PCB, in the milk of a woman
randomly selected in the population of the nursing mothers at one
of these places, is a random variable with normal distribution
N
(
µ, σ2), where µ and σ are unknown.

In a sample of n = 20 nursing mothers, the amounts (in parts per
million) of PCB were as follows:

16, 0, 0, 2, 3, 6, 8, 2, 5, 0, 12, 10, 5, 7, 2, 3, 8, 17, 9, 1.

We want to construct 95% and 99% confidence intervals of µ.
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We have the point estimates

xobs = 5.80 and sobs
x = 5.08

and

k = Φ−1
n−1

(
1 + C%

2

)
= tn−1, 1−C%

2

=

{
t19,2.5% if C% = 95%
t19,0.5% if C% = 99%

=

{
2.093 if C% = 95%
2.861 if C% = 99%.

A 95% confidence interval of µ is

xobs ± k
sobs

x√
n

= 5.80± 2.093
5.08√

20
= 5.80± 2.38

and a 99% confidence interval of µ is

xobs ± k
sobs

x√
n

= 5.80± 2.861
5.08√

20
= 5.80± 3.25.
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One-sided interval estimates
Observe that the levels of confidence of the one-sided interval
estimates(

xobs − k
sobs

x√
n
,+∞

)
and

(
−∞, xobs + k

sobs
x√
n

)
,

where k > 0, are

P
(

X − k
SX√

n
< µ

)
= P

Tn−1 =
X − µ

SX√
n

< k

 = Φn−1(k)

for the first and

P
(
µ < X + k

SX√
n

)
= P

Tn−1 =
X − µ

SX√
n

> −k

 = P (Tn−1 < k)

= Φn−1(k),

for the second.
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So, fixed a level of confidence C% ∈ (0,1), C% lower and upper
confidence bounds of µ are given by

xobs − k
sobs

x√
n

and xobs + k
sobs

x√
n

with k = Φ−1
n−1 (C%) .

Exercise. Prove that
k = tn−1,1−C%.
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Example. Assume that the maximum allowed amount of PCB in
the milk of nursing mother is 8 (parts for million). Is the mean µ of
the PCB amount in the milk of a woman randomly selected in the
above population of nursing mothers larger than this value?

Since the point estimate xobs = 5.80 of µ is smaller than the
maximum allowed amount 8, we are interested in an upper
confidence bound

xobs + k
sobs

x√
n
, k > 0.

With level of confidence C% = 95%, we have

k = Φ−1
n−1(C%) = tn−1,1−C% = t19,5% = 1.729

and the upper confidence bound is

xobs + k
sobs

x√
n

= 5.80 + 1.729
5.08√

20
= 7.76.
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We conclude that, with level of confidence 95%, the mean of PCB
amount is not larger than then the maximum allowed amount.

On the other hand, with level of confidence 99%, and so

k = tn−1,1−C% = t19,1% = 2.539,

an upper confidence bound is

xobs + k
sobs

x√
n

= 5.80 + 2.539
5.08√

20
= 8.68.

We cannot conclude, with level of confidence 99%, the same as
above.
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Student t distributions in MATLAB

In MATLAB, the values of the function Φν , ν positive integer, are
computed by the function tcdf:

tcdf(x , ν),

where x ∈ R, computes Φν(x).

On the other hand, the values of the inverse Φ−1
ν are computed by

the function tinv:
tinv(α, ν),

where α ∈ [0,1], computes Φ−1
ν (α).

Exercise. In the previous example of PCB, find the level of
confidence of the interval estimate 5.80± 1.
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Estimating the standard deviation
We observe that the estimation of the unknown standard deviation
σ is not as important as that of the mean µ.

The reason is that the underlying random variable X , whose
distribution is N(µ, σ2), is often seen as

X = µ+ E ,

where the important term µ is altered by a random error (random
noise) E normally distributed with mean 0 and standard deviation
σ.

Therefore, it is clear that we are much more interested in well
estimating µ than in well estimating the random error.

For the estimation of the standard deviation σ of the random error,
the point estimation sobs

x is often sufficient.
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Historical remark
The Student t distributions were introduced in 1909 by the british
statistician William Sealy Gosset (1876-1937)

employed at the Guinness brewery in Dublin. He wrote his
statistics papers under the nickname "Student", because the
Guinnes did not permit him to use his name in scientific
publications.

The introduction of the Student distributions was an important
result, because they made possible to deal with situations where
only samples of small size n were available, as it was often the
case at the Guinness brewery, where few data on the malt were
observed under the same conditions.
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Its importance, however, was not noted at the beginning, and it
was mainly ignored by the statistical community.

This was primarily because the idea of learning from samples of
small size n was against the prevailing scientific belief at the time:
namely

I if n is large, use the estimated confidence intervals

xobs ± k
sobs

x√
n
, k = Φ−1

(
1 + C%

2

)
, (2)

and the lower and upper confidence bounds

xobs − k
sobs

x√
n

and xobs + k
sobs

x√
n
, k = Φ−1 (C%) , (3)

(this agrees with "Student": when n is large, Φn−1 is close to Φ
and so the "Student" confidence intervals and the "Student"
confidence bounds become (2) and (3), respectively);

I if n is not large, you cannot use Statistics (this is not true, as
"Student" has shown).
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