Assiomi che definiscono i numeri reali

L'insieme dei numeri reali si indica con il simbolo \mathbb{R} . In \mathbb{R} sono definite due operazioni: somma (si indica con +) e prodotto (si indica con · e talvolta il simbolo viene omesso).

Le proprietà che definiscono $\mathbb R$ sono:

1. La somma e il prodotto sono associativi, cioè per ogni $a,b,c\in\mathbb{R}$ vale:

$$a + (b + c) = (a + b) + c$$
, $a \cdot (b \cdot c) = (a \cdot b) \cdot c$.

2. La somma e il prodotto sono commutativi, cioè per ogni $a,b\in\mathbb{R}$ vale:

$$a + b = b + a$$
, $a \cdot b = b \cdot a$.

3. Esiste l'elemento neutro per la somma (si indica con 0) e l'elemento neutro del prodotto (si indica con 1). Per essi valgono le seguenti condizioni, per ogni $a \in \mathbb{R}$:

$$a+0=a$$
, $a\cdot 1=a$.

4. Le due operazioni di somma e prodotto sono legate dalla seguente relazione: per ogni $a, b, c \in \mathbb{R}$ vale:

$$a(b+c) = ab + ac.$$

5. Per ogni $a \in \mathbb{R}$ esiste un elemento di \mathbb{R} , che si indica con -a (detto l'opposto di a) tale che:

$$a + (-a) = 0.$$

Per ogni $a \in \mathbb{R}$, $a \neq 0$, esiste un elemento in \mathbb{R} che si indica con a^{-1} (o con 1/a) tale che:

$$a \cdot a^{-1} = 1.$$

Nell'insieme \mathbb{R} dei numeri reali è poi definita una relazione d'ordine che si indica con < e che soddisfa alle seguenti proprietà:

6. per ogni $a, b \in \mathbb{R}$ vale una ed una sola delle seguenti condizioni:

$$a < b$$
, $a = b$, $b < a$.

- 7. (proprietà transitiva) Se vale a < b e b < c, allora vale a < c.
- 8. Se vale a < b, allora, per ogni $c \in \mathbb{R}$ vale:

$$a + c < b + c$$
.

9. Se 0 < a = 0 < b, allora 0 < ab.

Talvolta si scrive a > b al posto di b < a. Il simbolo $a \le b$ (o $a \ge b$) significa a < b o a = b (rispettivamente: a > b o a = b). Gli elementi $a \in \mathbb{R}$ tali che 0 < a si dicono positivi, gli elementi di \mathbb{R} tali che a < 0 si dicono negativi.

Definizione. Una sezione di \mathbb{R} è costituita da due sottoinsiemi non vuoti di \mathbb{R} , $A \in B$, tali che

- $i. \ A \cup B = \mathbb{R} \ e \ A \cap B = \emptyset;$
- ii. per ogni $a \in A$ e per ogni $b \in B$ si ha: a < b.

Se A, B sono una sezione di \mathbb{R} , un elemento $s \in \mathbb{R}$ si dice *elemento separatore* della sezione se per ogni $a \in A$ e per ogni $b \in B$ vale: $a \le s \le b$.

10. **Assioma di Dedekind.** Data una qualunque sezione A, B dell'insieme dei numeri reali, esiste ed è unico l'elemento separatore della sezione.