Electrons in crystals Final written test academic year 2008/2009 January 12, 2009

(Time: 3 hours)

Exercise 1: Examples of Fermi gases

- 1. Liquid ³He (it liquifies at about 3 K), the light isotope of helium, has spin $1/2$ and so is a fermion. Treating ³He as a perfect gas (which is only approximately right) and noting that its density is 0.081 g cm^3 , calculate the Fermi energy E_F . What is the corresponding Fermi temperature (i.e., the Fermi energy expressed in temperature units)?
- 2. Calculate the Fermi energy for electrons in tungsten $(Z=2, \text{ density } 10.3 \text{ g cm}^{-3})$.
- 3. Long-chain molecules with some mobile electrons give 1D organic conductors. Derive expressions for E_F for a 1D conductor with n free electrons per unit length. Evaluate E_F for an atomic spacing of 2.5 Å between donor atoms and 0.5 free electron per atom.

Exercise 2: Bravais lattices with basis and structure factors

A crystal is formed of two types of atoms, A and B. The atoms are placed in such a way that they form a cubic lattice with the atoms A sitting in the corners and the atoms B sitting in the centers of the cubes. For this crystal:

- 1. Describe and sketch the primitive cell writing the formula unit $(A_nB_m \text{ with } m = \ldots,$ $m=\dots$?), a possible choice of the primitive translation vectors $\{a_i\}$ and the basis vectors $\{d_i\}$; write the primitive translation vectors of the reciprocal lattice $\{b_i\}$.
- 2. Assuming that the atomic form factors are f_A and f_B calculate the geometrical structure factor $S(K)$ on the reciprocal lattice vectors, and specify the conditions that need to be satisfied to have interference maxima.
- 3. Show how one can determine experimentally the atomic form factors by measuring the structure factors $S(2\pi/a(1,1,0))$ and $S(2\pi/a(1,0,0))$.

Exercise 3: Band structures

Assume that the dispersion relation of the conduction band of a 1D semiconductor within the first Brillouin zone is cosine-function shaped with (i) a minimum at $k=0$, (ii) an amplitude of 25 meV, and (iii) a full-period width of $2\pi/a = 2\pi/(5\text{\AA})$. Assume further that the semiconductor has an energy gap $E_q = 2.5$ eV and set equal to zero the valence band top.

- 1. Sketch the dispersion relation of the conduction band within the first Brillouin zone and write the corresponding expression for $E(\mathbf{k})$.
- 2. Calculate the effective mass of electrons near the minimum at $k=0$.

Exercise 4: Semiclassical electron dynamics

Consider a FCC crystal with lattice parameter a and a tight-binding singleorbital s-type energy band $\epsilon(\mathbf{q}) = -4\gamma[\cos(q_xa/2)\cos(q_ya/2) + \cos(q_xa/2)\cos(q_za/2) +$ $cos(q_u a/2)cos(q_u a/2)$, having properly chosen the zero of the energy. The solid is in a static uniform magnetic field $\mathbf{H} = H\hat{z}$.

- 1. Write the condition to be satisfied for the orbits in **q**-space, for $q_z = 0$ and energy $\epsilon(\mathbf{q}) = E.$
- 2. For such orbits, write explicitely the expression of the velocity in the (x,y) plane for an electron in the given band.
- 3. For $E = -4\gamma[3 \delta^2/4]$ and $\delta \ll 1$, sketch the section of the first Brillouin zone and the orbit in the (q_x, q_y) plane and write its expression.
- 4. Estimate the period of that orbit if $\gamma a^2 = \hbar^2/2m^*$, with $m^* = 0.067m_e$.

NOTE:

- Give all the steps necessary to understand in detail the solution procedure. Answers with the final result only or with insufficient details will not be considered valid.
- When required, numerical evaluations should be given exactly with 3 significant figures, if not otherwise indicated.