Electrons in crystals Final written test academic year 2008/2009 January 26, 2009

(Time: 3 hours)

Exercise 1: Drude and Sommerfeld model of free electron gas

Copper has a mass density $\rho = 8.95 \text{ g/cm}^{-3}$, and electrical resistivity $1.56 \cdot 10^{-8} \text{ ohm} \cdot \text{m}$ at room temperature. Assuming that the effective mass of electron in Cu $m^* = m_0$, $(m_0 \text{ is the free electron mass})$ calculate:

- 1. The concentration of the conduction electrons and the mean relaxation time τ
- 2. The Fermi energy E_F and the Fermi velocity v_F
- 3. The mean free path ℓ_F at the Fermi level l_F

Exercise 2: Bravais lattices with basis and structure factors

Consider the 2D lattice in the figure, constituted by 3 different atomic species A, B and C, occupying sites of a triangular lattice. Let d be the AB distance.

	В		С		А		В		С	
С		A		В		С		A		В
	В		С		A		В		С	
С		A		В		С		A		В
	В		С		A		В		С	

- 1. Describe and sketch the primitive cell, write the formula unit $(A_n B_m C_\ell \text{ with } m, n, \ell = ...?)$, a possible choice of the primitive translation vectors $\{\mathbf{a}_i\}$ and the basis vectors $\{\mathbf{d}_i\}$.
- 2. Write the primitive translation vectors of the reciprocal lattice $\{\mathbf{b}_i\}$.
- 3. Assuming that the atomic form factors are f_A , f_B and f_C , calculate the geometrical structure factor $S(\mathbf{K})$ on the reciprocal lattice vectors, and specify the conditions that need to be satisfied to have interference maxima in case of $f_A = f_B = f_C$.

Exercise 3: Electrons in 2d: Fermi surfaces, weak potential

- 1. Consider a two-dimensional metal with rectangular Bravais lattice with basis vectors $\mathbf{a_1} = (a,0)$ and $\mathbf{a_2} = (0,b)$, with a=2Å and b=2a. Give the basis vectors $\mathbf{b_1}$ and $\mathbf{b_2}$ of the reciprocal lattice (using cm^{-1}) and sketch the first Brillouin zone.
- 2. Consider free electrons, give the general expression of the Fermi "sphere" (or better, "circle", in 2d) as a function of the electron density; then, calculate explicitly the numerical value of its radius in the present case, considering one electron per unit cell.
- 3. Draw such free-electron Fermi "sphere" in the same (k_x, k_y) plot of the first Brillouin zone, showing and specifying whether it is totally within the first Brillouin zone or not. If not, make a sketch concerning *where* and *how* it would be modified by the presence of a weak periodic potential, and a sketch of a possible second band within the first Brillouin zone.

Exercise 4: Tight-binding model

Consider s-type electrons in a 1D lattice with lattice spacing a. Use a tight binding model with first and second neighbor hopping and no overlap. With reference to the definition $\gamma(\mathbf{R})$ in the texbook, consider: $\gamma(\mathbf{R}_{NN})=t$ where \mathbf{R}_{NN} is between two nearest beighbors, $\gamma(\mathbf{R}_{NNN})=t'$ where \mathbf{R}_{NNN} is between two next- nearest beighbors, otherwise $\gamma(\mathbf{R})=0$.

1. Show that the explicit expression for the energy band (using $E_s - \beta \equiv E_0$ (see again the textbook for the definition of β) is:

$$E(k) = E_0 - 2[t \cos(ka) + t' \cos(2ka)]$$

- 2. Consider t' = -t and make a plot in the first Brillouin zone, identifying and writing the maxima and minima points.
- 3. Calculate the effective mass in those points.

NOTE:

- Give all the steps necessary to understand in detail the solution procedure. Answers with the final result only or with insufficient details will not be considered valid.
- When required, numerical evaluations should be given exactly with 3 significant figures, if not otherwise indicated.