

Introduction to the Micro and Nano Fabrication: WET ETCHING

Simone Dal Zilio

facility of nano **J**abrication

Purpose of Etch

- To remove material from areas identified by the lithography process
 - * Areas of photoresist exposed to light
 - * Developing leaves only these areas open
 - * Etching removes substrate areas not masked
- To create structures for functional use
- To remove oxide layers below features to allow for motion

ETCHING

"The material is removed from the solid surface directy into gas phase"

Plasma chemical etchingSputter etchingIon beam etching

Wet etching

"Etching using liquid chemicals"

Why use wet etching?

Simplest etching technology: all you need is a container of liquid chemicals!

- Good for thin films
- Selectivity

There are complications

• Selectivity:

 \rightarrow Must find mask that will not dissolve (Poor resolution)

- Undercutting!
- Geometries.

Etch Parameters

• Etch Rate:

- rate of material removal (μ m/min)
- function of concentration, agitation, temperature, density and porosity of the thin film or substrate,...
- Etch Selectivity:

-relative (ratio) of the etch rate of the thin film to the mask, substrate, or another film

- Pattern Geometry
- Etch mask!
 - Selection of right mask for each material

WET ETCHING

Isotropic Wet Etching

Anisotropic Wet Etching

- Etch rate is independent of direction
- Isotropic etch profile

Mask undercut, rounded etch profile

Applications

- Flow channels \rightarrow microfluidic devices
- Removal of sacrificial layers in surface micromachining

Provides a high degree of selectivity and etch rate: can be controlled by composition, temperature, dopant concentration.

- Etching proceeds by
 - 1. Reactant transport to surface
 - 2. Surface reaction
 - 3. Reaction product transport from the surface

Prefer to be reaction rate limited – higher etch rates, better controlled

ETCHANTS

→ Mixtures of acids, bases, solutions in water or solvents HF, H3PO4, H2SO4, KOH, H2O2, HCl, ..

→ Can be used to etch many materials Si, SiO₂, Si₃N₄, Al, Au, Cr...

MASK

Can be used:

- ✓ Photoresist (or polymeric resist)
- ✓ Metals (gold, chromium, nickel)
- ✓ Ceramics (oxides, nitrides)

Silicon oxide (glass,quartz...)

Hydrofluoric Acid

 $SiO_2 + 6HF \rightarrow H_2SiF_6(aq) + 2H_2O$

•Selective - etches SiO2 and not Si -will also attack Al, Si3N4,..

• Etch Geometry -completely isotropic

SiO,

• Dangerous !

penetrate skin (adsorption) and attacks slowly

• Rate: depends strongly on concentration

- maximum: 49% HF ("concentrated) ~ >2 μ m/min
- controlled: 5 to 50:1 ("timed") ~ <0.1 $\mu m/min$

Buffered HF (**BHF**), also called Buffered oxide etch (**BOE**) addition of NH_4F to HF solution: it replenishes the depletion of the fluoride ions to maintain stable etching performance

Silicon nitride (glass,quartz...)

- Selectively
- etches SixNy and not Si or SiO₂
- etches Al and other metals much faster
- Rate
- Slow ! Rate>0.0050 μ m/min for H₃PO₄ at 160°C
- Tough masking materials needed
- PR will not survive
- Oxide is typically used

Gold

- aqua regia: HCl/HNO3

Mixtures of nitric acid and hydrochloric acid (in a mixing ration of 1 : 3). The very strong oxidative effect of this mixture stems from the formation of nitrosyl chloride (NOCl) via $HNO_3 + 3 HCl \rightarrow NOCl + 2 Cl + 2 H_2O$

- KI/I_2 Gold and iodine form gold iodide via 2 Au + $I_2 \rightarrow 2$ Aul

- Cyanides

Aqueous solutions of the very toxic sodium cyanide (NaCN) or, respectively, the also very toxic potassium cyanide (KCN) dissolve gold via the formation of the soluble cyano-complex [Au(CN)2].

It's a mixture of nitric (HNO3), hydrofluoric (HF) and acetic (CH3COOH) acids

1. HNO3 oxides Si Si + $4HNO_3 \rightarrow SiO_2 + 2H_2O + 4NO_2$

2. HF removes SiO2 SiO₂ + 6HF \rightarrow H₂SiF₆ + 2H₂O

acetic acid (CH $_3$ COOH) is preferred because it prevents HNO $_3$ dissociation

WET ETCHING

Isotropic Wet Etching

Anisotropic Wet Etching

Figures of merit: anisotropy

Isotropic: etch rate is the same along all directions. Anisotropic: etch rate depends on direction, usually vertical vs. horizontal.

Figures of merit: anisotropy

Figure 10–3 Etch profiles for different degrees of anisotropic, or directional, etching: (a) purely isotropic etching; (b) anisotropic etching; (c) completely anisotropic etching.

Generally speaking, chemical process (wet etch, plasma etch) leads to isotropic etch; whereas physical process (directional energetic bombardment) leads to anisotropic etch. Isotropic:

- Best to use with large features when sidewall slope does not matter, and to undercut the mask (for easy liftoff).
- Large critical dimension (CD, i.e. feature size) loss, generally not for nano-fabrication.
- Quick, easy, and cheap.

Anisotropic:

- Best for making small features with vertical sidewalls, preferred pattern transfer method for nano-fabrication and some micro-fabrication.
- Typically more costly.

Anisotropic wet etching of Silicon

- Depends on having a singe-crystal substrate
- The effect depends on the different etch rates of different exposed crystal planes
- Silicon etchants for which <111> planes etch slowly
 - -Strong bases (KOH, NaOH, NH₄OH)
 - TMAH
 - Ethylene diamine pyrochatechol
 - Hydrazine

Silicon Crystal Planes

Etch rate of Si in KOH Depends on Crystallographic Plane

(left) Silicon etch rate as a function of temperature at fixed concentration of 40% (right) Silicon etch rate as a function of concentration at fixed temperature of 60°C From "Efficient process development for bulk silicon etching using cellular automata simulation techniques", J. Marchetti et al.

http://www.ee.byu.edu/cleanroom

Dissolution of silicon in hydroxydes:

1. Oxidation of silicon by hydroxyls to form a silicate:

 $Si + 2OH^{-} + 4h^{+} \rightarrow Si(OH)_{2}^{2+}$

For (100) and (110) surfaces there will be two dangling bonds, for (111) there will only be one

2. Reduction of water:

 $4H_2O \rightarrow 4OH^- + 2H_2 + 4h^+$

3. If sufficient energy available (thermal) Si-Si bonds break and silicate further reacts with hydroxyls to form a water soluble complex:

 $Si(OH)_2^{2+} + 4OH^- \rightarrow SiO_2(OH)_2^{2-} + 2H_2O$

The (111) surface requires 3 bonds to be broken => lower etch rate

4. Overall redox reaction is:

 $Si + 2OH^{-} + 4H_2O \rightarrow Si(OH)_2^{2+} + 2H_2 + 4OH^{-}$

Bulk Micromachining

AFM (atomic force microscope) tips

