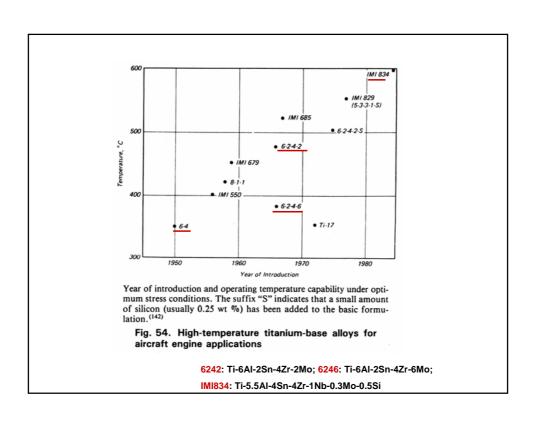

Ni-base superalloys

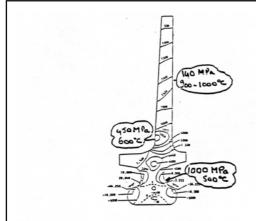
Superalloys: a broad class of metals with especially high strength at elevated temperatures

- Ni-based used above 500°C in oxidizing and corrosive environment
- 2. Cobalt-based
- 3. Iron-based

control system

Principle components of aircraft gas turbine exposed to high loads and temperatures


Aircraft engine


Compressor, Up to 550°C and 550 MPa

Combustion chamber, Weak loaded; gas temp. 1700 °C; under air cooling 1100-1300 °C; main lifetime limiting factors: corrosion and thermal fatigue.

Turbine discs, up to 750 °C, centrifugal force up to 500MPa; a high yield strength and high fatigue strength are required.

Turbine blade, withstand a combination of high stress and high temperature; high yield strength and high creep resistance are required in combination with thermal fatigue resistance and hot corrosion resistance

Blade edge, 150 MPa , 650-980°C, Blade root, 275-550 MPa, 750 °C,

Figure 2. Temperature and stress distribution in a turbine blade.

An Overview of the Ni-base superalloys

1. Nickel matrix,

fcc, good ductility, $\label{eq:tau_state} \mbox{without phase transformation up to $T_{\rm m}$}$

2. g precipitates

up to 60 vol% (volume fraction), particle size < 0.5 $\mbox{\em mm}$ Precipitation hardening

Ni₃M, cubic structure, M: Al and/or Ti

3. g' precipitates

Precipitation hardening Ni₃ Nb, bct structure

- 4. *Carbides
- 5. d-phase, Ni_3Nb , ordered orthorombic, transformed from g' phase
- 6. Undesirable phases, s-phase containing Cr, Mo, W etc., formed after long term thermal exposure

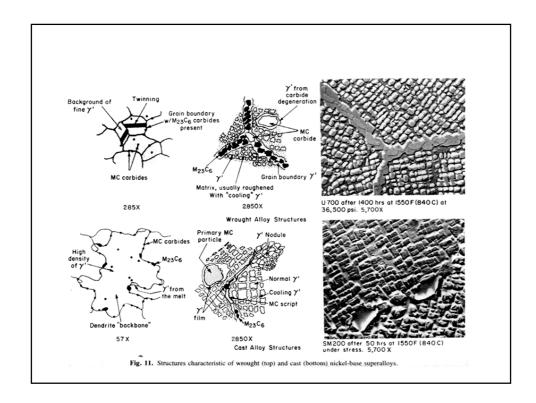
Carbides

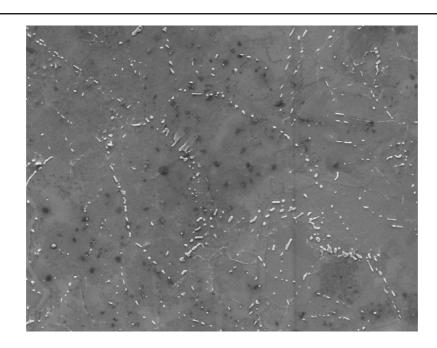
MC carbides, M: Ti, Nb, Ta (tantalum)

Coarse, inside in the Ni-matrix

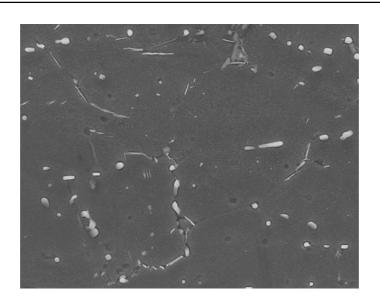
Stable up to higher temp. than g' and g'

Provide dispersion strengthening at high temp.

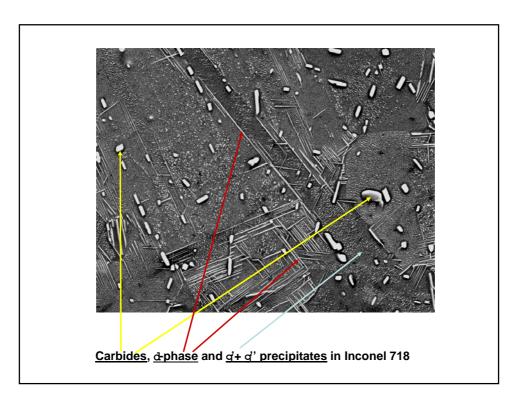

Complex carbides

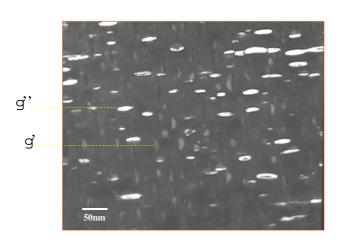

 $\mathrm{M_7C_3},\,\mathrm{M_6C}$ and $\mathrm{M_{23}C_6}$

M: Mo, Cr, W, also Co, Fe and/or Ni


Form at intermediate temp.

 $\mathrm{M}_{23}\mathrm{C}_{6},$ along GB, provides resistance to GB sliding but also a risk of brittleness

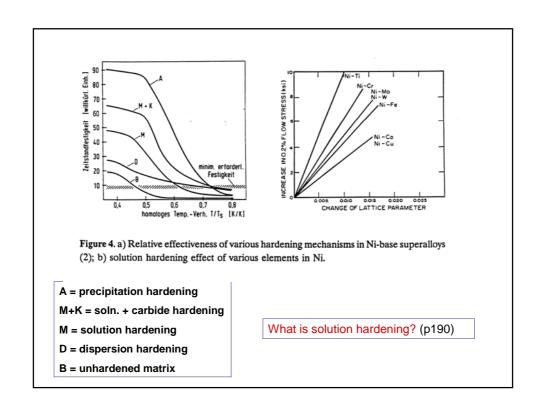


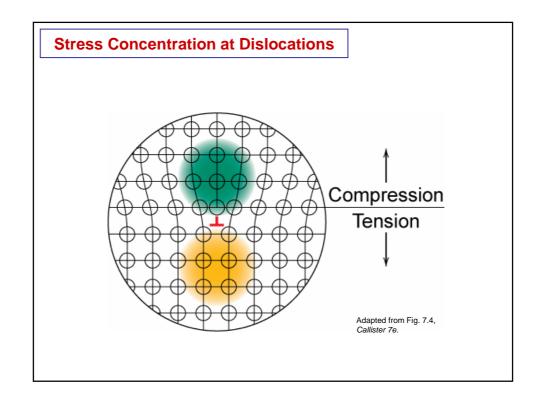


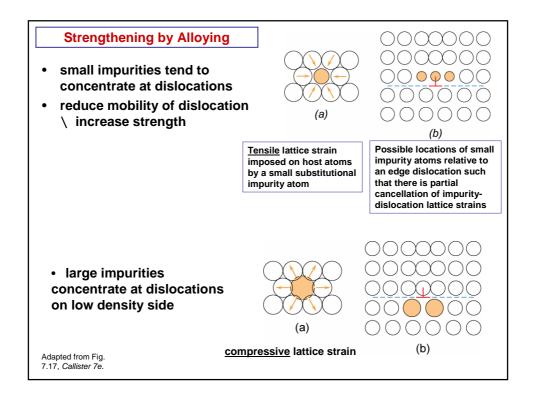
Carbides formed in a superalloy Inconel 718. SEM/SEI

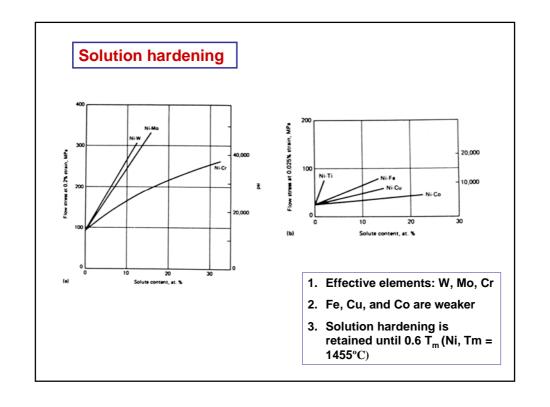
Carbides formed in superalloy Inconel 718. SEM/SEI

Precipitation of both g' and g phases after aging 24h at 750 °C in a spray-formed IN 718. TEM, dark field, using a 100 diffraction beam.


Addition	Function
Nickel	fcc matrix; forms y'
Cobalt	solution strengthening; affects γ'; affects carbides
Iron	
Chromium	oxidation resistance; solution strengthening; $M_{23}C_6$
Molybdenum	solution strengthening; affects \(\gamma'; \) affects carbides
Tungsten	- " - " - " - " - " - " - " - " - " - "
Titanium	forms γ'; forms MC
Zirconium	forms MC; improves grain boundary strength
Niobium	forms γ"; forms MC
Tantalum	solution strengthening; forms MC; affects γ'
Aluminium	forms γ'; oxidation resistance
Carbon	carbide former


The main superalloys can be classified into four groups:


- 1 only solution and carbide hardened
- $2 \gamma'$ precipitation hardened
- 3γ " precipitation hardened
- 4 oxide dispersion strengthened


solution treatment is utilised in all four groups

- Wrought alloys
- Cast alloys used in the as-cast condition

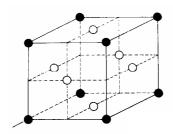
Alloy	Composition (wt.%)										
designation	С	Si	Mn	(Cr)	Fe	Ti	Al	(Co)	Mo	W	V
Inconel 600	0.1	0.5	0.5	15	8.5						
Nimonic 75	0.12	1	1	19	5.0	0.4	-		-	-	-
Hastelloy C	0.01	0.1	1	16	7.0	-	-	2.5	-	-	0.35
Hastelloy W	0.12	1	1	5	5.5	-	-	-	24.5	-	0.6
Hastelloy N	0.08	1	1	8	17	Ti+Al	0.5	0.2	-	0.5	-
Hastelloy X	0.1	0.5	0.5	22	18	-	-	1.5	9.0	0.6	-
C 242	0.3	0.3	0.3	22	-	-	-	10	10	-	-
Inco 617	0.1	1	1	22	3		1.5	12.5	9	-	

Carbide precipitation

- 1. Strengthening effect at RT is slight
- 2. Significant influence on creep resistance at around 650°C by reducing GB sliding
- 3. The strongest carbide formers in the order of strength:

Hf (hafnium), Zr, Ti, Nb, Ta (tantalum), V, Mo, W

4. MC formed in the melt during casting, but decomposition could occur at temp. between 750-1000°C


(Ti,Mo)C + (Ni, Cr, Al) fi
$$Cr_{21}Mo_2C_6 + Ni_3(Al,Ti)$$

MC matrix M23C6 g,

- 5. M_6C [e.g. (NI,Co) $_3Mo_3C$, (Ni,Co) $_2W_4C$] are stable at temp. up to 800-1000 °C, formed through the decomposition of MC carbides.
- 6. M₇C₃ formed in alloys with relatively low Cr contents

g precipitation hardening

Al or Ti atoms

○ Ni aloms

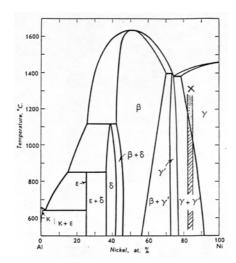
Ordered atomic cell of g structure

Cubic structure: ordered fcc

Coherent with the matrix, misfit: ±1%

 $Misfit = (a_p - a_m)/a_p,$

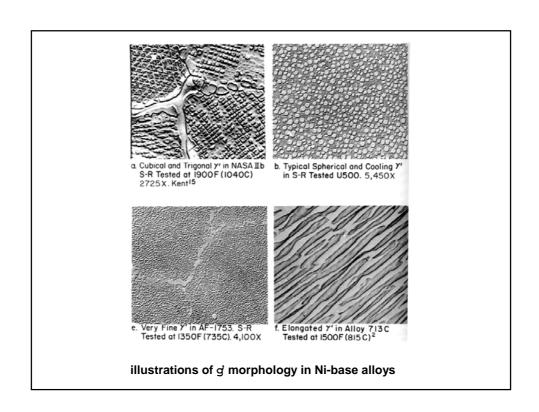
 a_p : lattice parameter of the precipitation

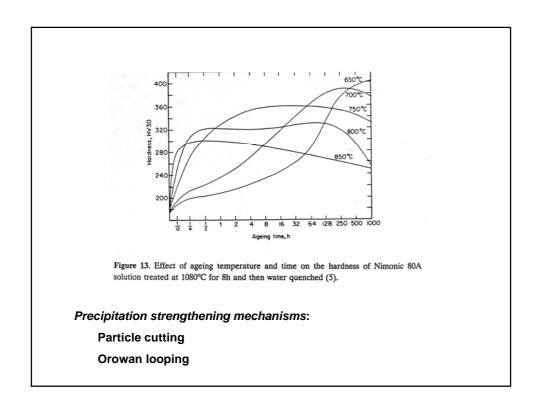

a_m: lattice parameter of the matrix

Coherent interface

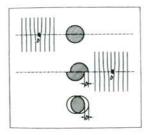
 Ni_3AI e.g. $(Ni_{0.98}Cr0._{016}Mo_{0.04})_3(AI_{0.71}Nb_{0.1}Ti_{0.05}Cr_{0.1})$ in 713C (Ni-12.5Cr-4.1Mo-2Nb-6AI-1Ti)

Precipitation processes

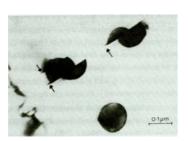


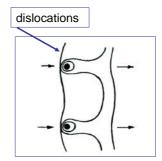

The Ni-Al phase diagram indicating alloy compositions suitable for g' precipitation

Solution treatment: ~ 1000-1100 $^{\rm o}{\rm C}$

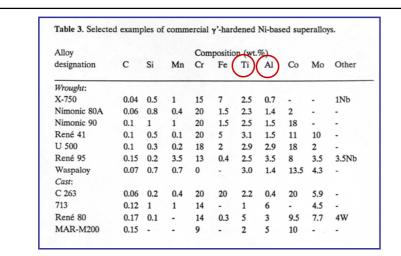

Around X composition, giving \sim 50 vol % g'

Aging temperature, 650-850°C

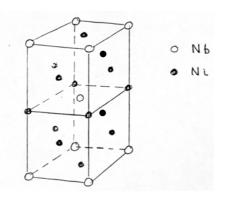




precipitation-hardening mechanisms


Particle cutting

Orowan looping


Sheared g particles in Ni-19Cr-6Al aged 540h at 750°C and deformed 2%

The influence of g on creep strength

- 1. To inhibit the grain boundary sliding process
- 2. To provide barriers to dislocation climb

g' precipitation hardening

The bct unit cell of g'

Lattice parameters of phases in IN 718

g' (Ni₃Nb) a = 0.3626 nm c = 0.7416 nm g', a = 0.3607 nm Ni matrix, a = 0.3616 nm

	Table 4.	Selected	y"-hardened	su	perallo	ys.
--	----------	----------	-------------	----	---------	-----

Alloy designation	С	Si	Mn	Cr	Fe	Ti	Al	Co	Nb
Inconel 706	0.03	0.2	0.2	16.	40	1.8	- 4	-	2.9
Inconel 718	0.04	0.2	0.2	19	19	0.9	0.5	-	5.1
Incoloy 903	0	0		-	41	1.4	0.7	-	3.0
Incoloy 909	0.01	0.4		-	42	1.5	0	-	4.7

- 1. Inconel 718 may contain 15 vol % g' + 5 vol % g'
- 2. Provide high strength at low and moderate temperatures
- 3. Rapid softening above about $700^{\rm o}{\rm C}$
- 4. g' phase could transform to d-phase at temp. above about 700°C
- 5. $ext{d-phase:}$ (Ni $_3$ Nb), orthorhombic structure, a brittle intermetallic phase

Heat treatment and thermomechanical treatment

The main purposes of heat treatment are:

- 1. To give precipitation hardening
- 2. To achieve desired precipitation of carbide
- 3. To relieve the embrittling efects of mechanical working pocesses in wrought alloys through recrystallization and grain growth
- 4. To creat optimum grain size through grain growth (in cast and wrought alloys), and through recrystallization and grain growth in conjunction with mechanical deformation so called thermomechanical processing (TMP).

Large grain size gives:

- 1. improved creep strength
- 2. reduced creep extension to failure
- 3. reduced short-term strength and failure strength

Mechanical working of wrought superalloys:

- 1. To shape the component, (forging, rolling and extrution etc.)
- 2. To homogenise the microstructures, e.g. eliminating segregation of alloying additions after casting , and distributing MC carbides

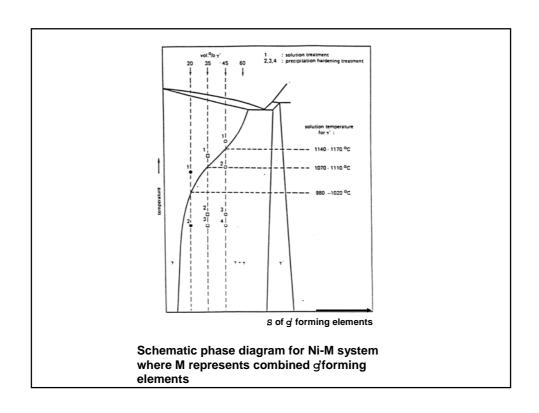
The superalloys are seldom used in the as-work state, why?

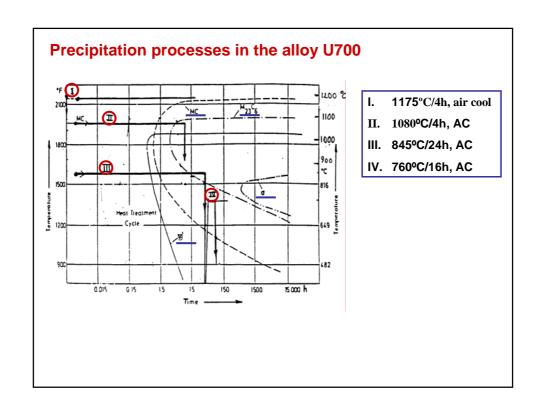
- the reduced ductility (residual stress)
- the worked structure is always unstable in high-temperature situations

How to perform precipitation-hardening treatment

1. Solution treatment

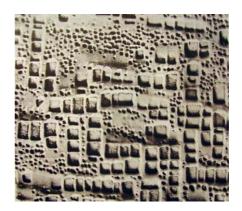
Heated to the single-phase region, e.g. the gregion. Precipitation of grain boundary carbides with suitable morphology often requires a higher temperature (1100-1200°C)


2. Quenching


rapid cooling to room temperature to form a supersaturated solid solution (SSSS*)

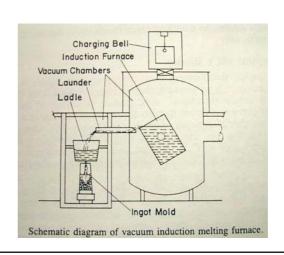
3. Aging

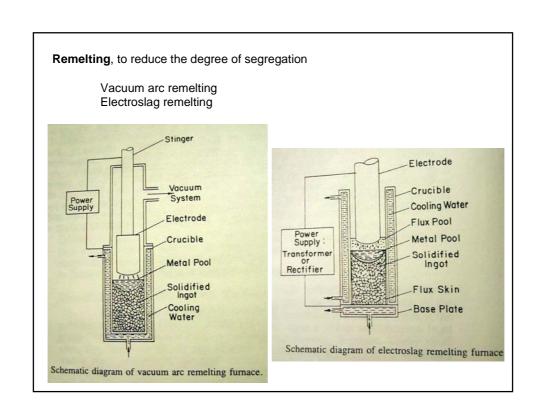
Decomposition of the SSSS in the two-phase field - to form the fine precipitates

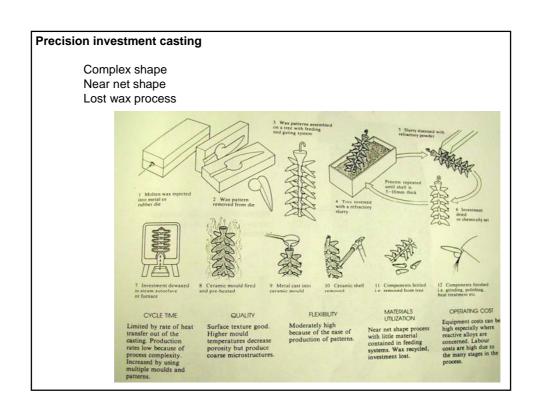

SSSS - an unstable condition and easy to form metastable phases to lower the energy of the system

Precipitation processes in the alloy U700

- I. Solution treatment dissolving all g and most carbides, air cooling to RT is sufficient to prevent significant precipitation
- II. Ageing at 1080°C causes grain boundary precipitation of M₂₃C₆.
- III. 24h at 845°C yields a rapid precipitation of significant amount of moderately sized g
- IV. At 760°C a background of finer g' is achieved.




Melting and casting of superalloys

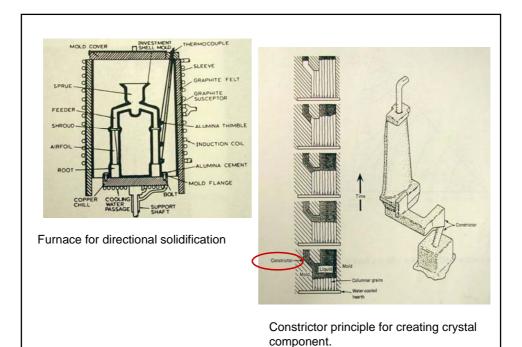

Melting

Induction melting in vacuum (VIM)

Cast into ingot in vacuum

Directionally solidified (DS) turbine blades

Columnar grains stretching from the bottom to the top


Keep the mould hot

Water cooling its base at the same time, to create a planar solidification front and a steep temperature gradient

Single crystal (SC) blades

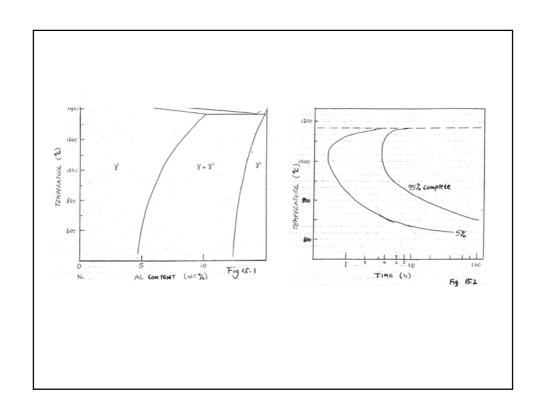
To eliminate grain boundaries completely, by using a similar directional solidification procedure

Groeth through a constrictor (a zig-zag pipe) – reduce the number of growing grains to one.

Assignment, Ni-base superalloys

Precipitation and Heat Treatment

- a) Fig 15.1 shows a part of the phase diagram for the Ni-Al system.
 - (i) Considering precipitation strengthening, what is a suitable solution temperature for an alloy of Ni-8wt% Al?
 (ii) What amount of precipitates can be expected in an alloy aged
 - at about 700°C?
- b) Figure 15.2 shows a precipitation-time-temperature diagram for the kinetics of precipitation while Figure 15.3 indicates the time and temperature dependence of precipitate particle growth. Use these figures to predict the microstucture of a Ni-8wt% Al alloy subject to the following heat treatment:


1160°C 4h + fast cool to RT

1085°C 4h + fast cool to RT

925°C 24h + fast cool to RT

760°C 16h + fast cool to RT

The heating process can also be assumed to be fast

