CHIMICA ANALITICA II CON LABORATORIO

(AA 2018-19)

8 C.F.U. - Laurea triennale in Chimica

CROMATOGRAFIA LIQUIDA

INTRODUZIONE

- La fase mobile è <u>LIQUIDA</u>;
- Nella LC classica (Tswett, 1906) venivano utilizzate colonne di vetro con diametro interno tra 1 e 5 cm e L = 50 500 cm;
- Per garantire velocità di flusso adeguate alla operatività in laboratorio (fino a 1 ml/min) si utilizzavano particelle di dimensione di 150-200 μm (per particelle di dimensioni inferiori le separazioni erano molto lente);
- Aumento di velocità con pompe o applicazione di vuoto <u>non migliorava le prestazioni</u> (aumento di velocità lineare implica aumento H);
- <u>Per aumentare l'efficienza di colonna le particelle della f.s. andavano ridotte</u>, ma al tempo non c'erano dispositivi per applicare alle colonne una pressione sufficiente da garantire una certa velocità di eluizione anche con impaccamento così "denso".
- Alla fine degli anni '60 del secolo scorso si iniziarono ad utilizzare particelle di diametro di 3-10 µm e nuovi
 moduli strumentali con adeguate pompe per far flussare la fase mobile -> High Performance Liquid
 Chromatography (HPLC).

> Tecniche

tecnica meccanismo principale di separazione

cromatografia di adsorbimento cromatografia in fase normale, NPLC cromatografia in fase inversa, RPLC cromatografia di scambio ionico, IEC cromatografia di esclusione dimensionale, SEC adsorbimento
partizione/adsorbimento
partizione
ionico
esclusione dimensionale

NPLC = Normal Phase LC; RPLC = Reverse Phase LC; IEC = Ion Exchange Chromatography; SEC = Size Exclusion Chromatography

- ✓ <u>La prima tecnica utilizzata è stata basata sull' adsorbimento, LSC (Liquid Solid Chrom.).</u> La f.s. è un solido adsorbente di materiale polare (silice o allumina), l'eluente (o f.m.) è un solvente non polare. Serve a separare composti, isomeri o classi di composti non polari (es.idrocarburi alifatici o alcol alifatici);
- ✓ In **NPLC** e **RPLC** (<u>che sono LLC Liquid-Liquid Chrom.</u>) si usano fasi stazionarie chimicamente legate ad un supporto solido e queste cromatografie si chiamano "a fasi legate" (<u>bonded-phase chromatography</u>), i principi della partizione sono importanti per queste tecniche;
- ✓ Oggigiorno la LC più diffusa è la RPLC in cui la fase stazionaria è meno polare del solvente (al contrario di NPLC), la separazione dell'analita è basata prevalentemente sulla partizione di esso tra le due fasi;
- ✓ In IEC (e anche in cromatografia ionica IC, che ne è la sua moderna evoluzione ad alte prestazioni) la fase stazionaria è un supporto solido carico (positivamente o negativamente) e l'eluente è di solito una soluzione tampone;
- ✓ In **SEC** la fase stazionaria è un materiale solido poroso, con porosità finemente controllata, che <u>non trattiene molecole</u> <u>grandi</u>, le quali vengono eluite velocemente rispetto a molecole piccole che vengono trattenute negli interstizi del materiale poroso (effetto setaccio molecolare);
- ✓ Come regola raramente i meccanismi di separazione agiscono in modo isolato, ma piuttosto simultaneamente, pur con grado diverso.
- ✓ La scelta della tecnica dipende dalla matrice del campione e dalle componenti da separare:
 - per molecole con MM <2000 g/mol, insolubili in acqua, struttura aromatica o alifatica, NPLC o RPLC;
 - per molecole idrofile o cariche vanno bene RPLC e IEC;
 - SEC per molecole MM>2000 g/mol

> Influenza delle dimensioni del materiale di supporto (f.s.)

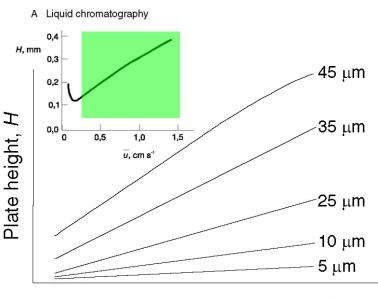
$$H = C_{M} \cdot u + \frac{B}{u} + C_{S} \cdot u$$

$$B = 2.k_D \cdot D_M$$

poco importante in LC coefficiente di DIFFUSIONE LONGITUDINALE

$$C_M = \frac{f(d_D^2, d_c^2)}{D_M}$$

$$q \cdot \mathbf{k} \cdot d_f^{\; 2} \; _ \; 2 \cdot t_d \cdot \mathbf{k}$$
 coefficier


se f.s. è liquida se f.s. è solida

coefficiente di TRASFERIMENTO DI MASSA

"da e verso" la fase mobile

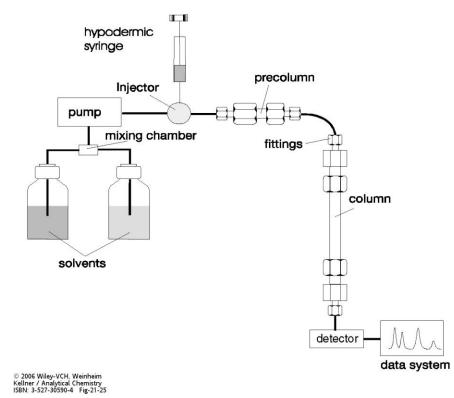
"da e verso" la fase stazionaria

Linear velocity of the mobile phase, \overline{u}

© 2006 Wiley-VCH, Weinheim Kellner / Analytical Chemistry ISBN: 3-527-30590-4 Fig-21-24

•	Velocità lineare della fase mobile	u
•	Coefficiente di diffusione nella f.m.	D _M
•	Coefficiente di diffusione nella f.s.	D _S
•	Diametro del materiale di impaccamento	d_D
•	Spessore del rivestimento liquido della f.s.	d_f
•	Tempo di desorbimento dell'analita	t _d
•	Diametro della colonna	d _c

•	Fattore di ritenzione della sostanza	k
•	Costanti	k _D , q
•	Dipendenza funzionale ("funzione di")	f


Dalla teoria cinetica della cromatografia, si deduce che <u>H</u> <u>diminuisce al diminuire delle dimensioni del materiale di supporto</u>, aumentando quindi l'efficienza.

In applicazioni reali, per LC, non è praticabile posizionarsi sul minimo della curva H(u), poiché corrisponderebbe a velocità di flusso piccole e non operativamente utilizzabili.

La strumentazione

La strumentazione consiste nelle seguenti componenti:

- Sistema di pompaggio;
- Riserve di solvente;
- Sistema di iniezione del campione;
- Colonna cromatografica;
- Rivelatore

- ✓ La pompa flussa l'eluente (solvente o miscela di solventi) attraverso la colonna a una determinata velocità di flusso (eventuale gradiente di polarità di solventi = stesso effetto di gradiente di temperatura in GC);
- ✓ Il **campione** è introdotto in uno speciale iniettore e il solvente passa attraverso l'iniettore trasportando il campione in colonna;
- ✓ Gli analiti sono separati nella colonna (che può anche essere termostatata);
- ✓ Per minimizzare l'allargamento di picco (peak broadening) il volume morto deve essere il minore possibile, specialmente nell'iniettore e nel rivelatore.

Fasi mobili ...

Pompe ...

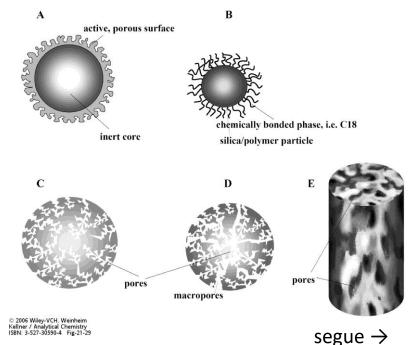
Iniettori ...

Vedi slides della lezione precedente

Ε

https://chem.libretexts.org/Textbook Maps/Analytical Chemistry/ Supplemental Modules (Analytical Chemistry)/Chromedia

https://chem.libretexts.org/Textbook Maps/Analytical Chemistry/Book%3A Analytical Chemistry 2.0 (Harvey)/12 Chromatographic and Electrophoretic Methods/12.5%3A High-Performance Liquid Chromatography


Colonne cromatografiche

- Possono essere costituite da diversi materiali: acciaio inossidabile; tubi in vetro spesso contenuti in tubi in metallo; PEEK (polyether ether ketone);
- La superficie interna non deve essere ruvida poiché diminuisce l'efficienza di separazione; Dimensioni: L = 1-30 cm; diametro interno (ID= 2.1-7.6 mm);
- **PEEK** In Micro HPLC vengono utilizzate colonne lunghe di tipo capillare (ID < 1 mm);
- Materiale di impaccamento solido con dimensioni di 3-10 µm;
- Il materiale d'impaccamento viene trattenuto all'interno della colonna tramite due setti di materiale sinterizzato posti alle estremità;
- N è approssimativamente 50'000 per metro di lunghezza;
- Per ridurre l'uso di solventi/f.m. si utilizzano colonne miniaturizzate: L = 30-75 mm, ID 1 mm; N fino a 100'000/m per $d_D = 3 \mu m$ (HPLC "microbore").
- Si impiegano corte "pre-colonne" per proteggere la colonna separativa (ID=4.5mm, L=30 mm, impaccamento 10-30 um, per evitare cadute di pressione significative);
- Riempire una colonna con particelle di dimensioni < 20 µm è problematico (elevata energia superficiale e cariche superficiali ostacolano il riempimento a secco; se si usa un liquido, vanno evitati i gradienti di dimensioni per le particelle, associati a fenomeni di sedimentazione). Quindi si sospende il materiale dell'impaccamento in un liquido per riempire la colonna; ancor meglio se si usano "sospensioni galleggianti" o slurry; le differenze in densità tra fase solida e liquida possono essere compensate da un agente disperdente opportuno (es. CH₂Br₂).

segue \rightarrow

Materiali di impaccamento

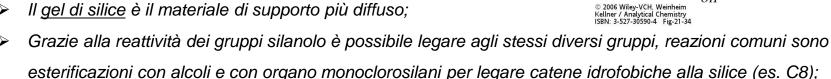
- Più lunga e sottile la colonna e minori le dimensioni dell'impaccamento, migliore è la separazione.
- Purtroppo, la contro-pressione della colonna cresce sensibilmente al diminuire del ID (diametro interno) e del d_D
 (diametro particelle) e al crescere di L.
- La possibilità di pompare la f.m pone limiti pratici alle dimensioni di colonne e impaccamento;
- Materiale per l'impaccamento si sceglie in base alla tecnica cromatografica;
- Forma, dimensioni, porosità e distribuzione dimensionale delle particelle del materiale di supporto sono importanti per le caratteristiche della f.s.
- <u>Il materiale di supporto può essere: non poroso (pellicolare o con fase legata), di particelle porose o perfuse, colonne monolitiche;</u>
- Particelle sferiche si impaccano meglio di particelle irregolari;
 l'efficienza con distribuzioni uniformi di d_D è alta;
- La distribuzione dimensionale (gaussiana) di d_D deve essere la più stretta possibile poiché valori di d_D piccoli determinano la permeabilità della colonna, valori più grandi determinano H;
- Le particelle porose possono essere completamente porose, o avere uno strato poroso e una parte intera (nocciolo/core) inerte, ad esempio vetro.
- Le colonne monolitiche consentono elevate velocità della f.m.;
- I materiali monolitici sono completamente porosi.

Gascromatografia: colonne

Silice

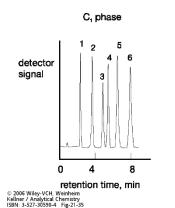
- Le f.s. basate su silice sono al momento il materiale d'impaccamento più popolare in HPLC.
- La silice da sola si impiega nella cromatografia d'adsorbimento, ma più spesso, è usata come materiale di supporto per materiali chimicamente modificati - ai gruppi silanolo (SiOH) - con alta efficienza di colonna e resistenza meccanica e chimica (cromatografia "a fasi legate");
- <u>Le caratteristiche delle particelle in silice</u> (dipendenti dal processo di produzione) sono: forma, dimensione, porosità e dimensione dei pori, area superficiale.
- Ci son vari tipi di gruppi silanolo (liberi, geminali, associati). <u>I silanoli liberi hanno natura</u>

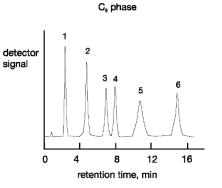
 <u>molto acida</u> (e possono generare fenomeni di tailing di picchi relativi a analiti basici).
- La purezza della silice è importante, specie per l'analisi di componenti polari: ioni Fe³⁺, Al³⁺, Ni²⁺, Zn²⁺ contaminanti la silice possono formare complessi con specie chelanti, alterando la forma dei picchi:
- I materiali basati su silice si impiegano a pH di solito compresi tra 2 e 8. A pH maggiori la silice inizia a disciogliersi nell'eluente e a bassi pH si rompono i legami con i gruppi chimicamente legati. Miglioramenti si sono avuti con materiali ibridi silice/gruppi organo-silossani (pH 2-11).


❖ Particelle polimeriche

- I materiali polimerici sono stabili a variazioni di pH, ma l'efficienza di colonna e la resistenza meccanica e solubilizzazione in alcuni solventi è peggiore rispetto alla silice;
- Materiali comuni sono polistirene/divinilbenzene e metacrilato;
- L'impiego di questi materiali è più diffuso in cromatografia ionica.

Gascromatografia: colonne


Cromatografia su fasi legate (NPLC e RPLC)


- Sono cromatografie liquido-liquido (LLC);
- In **NPLC** il meccanismo è sia di partizione che di adsorbimento;
- In RPLC il meccanismo è puramente di partizione;
- RPLC è molto più diffusa (circa il 75% delle applicazioni);
- Il gel di silice è il materiale di supporto più diffuso;

- Non tutti i silanoli reagiscono (dipende dall'ingombro sterico), rimane circa il 50% libero che, con ulteriori trattamenti, si riduce di molto, ma non viene azzerato;
- Silanoli rimasti liberi possono legare fortemente gruppi polari di molecole di analita generando fenomeni di tailing nei picchi.
- In **NPLC** i composti polari vengono eluiti per ultimi (trattenuti dalla f.s.);
- In **RPLC** i composti polari vengono eluiti per primi (sono più affini alla f.m.):
- Effetto della (lunghezza della catena alifatica della) fase stazionaria in RPLC:

Si CH_2

 CH_2

Cromatografia liquida: solventi

Cromatografia di adsorbimento

- Sono cromatografie liquido-solido (LSC);
- La fase stazionaria è silice o allumina;
- La ritenzione si basa su processi di adsorbimento differenziati sull'adsorbente solido, quando le molecole della f.m. competono con quelle degli analiti;
- L'adsorbimento è localizzato nei centri attivi liberi della f.s.;
- Molecole fortemente polari possono deattivare la superficie della f.s. (es. H₂O);
- La forza di eluizione è una misura dell'energia di adsorbimento del solvente per unità di area superficiale;
- Tempi di ritenzione: alcheni< idrocarburi aromatici< composti alogenati e solfuri< eteri< nitrocomposti< esteri alcoli ammine <solfoni<solfossidi< amidi< acidi carbossilici. Cis- e trans- pirazoline
- LSC è adatta a separare sostanze non polari difficilmente solubili in H₂O;
- Utilizzata per separare isomeri posizionali e stereoisomeri.

$$C_6H_5$$
 C_6H_5 C_6H_5 C_6H_5

cis-phenyl

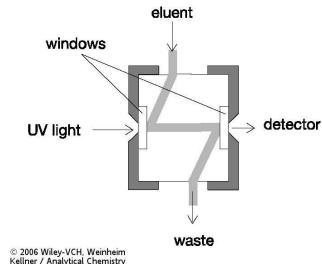
trans-phenyl

Isomeri posizionali di aza-derivati del fenantrene

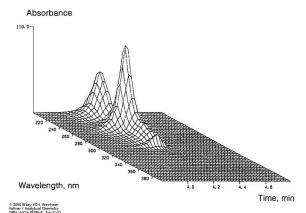
06 Wiley-VCH, Weinheim Kellner / Analytical Chemistry ISBN: 3-527-30590-4 Fig-21-38

Cromatografia liquida: solventi

Rivelatori


I rivelatori per LC si basano su due principi:

- Privelazione di una caratteristica della fase mobile (bulk property): l'analita provoca un cambiamento in un segnale "fisso" generato dalla fase mobile;
- > Rivelazione di una caratteristica dell'analita (solute property): l'analita genera un segnale quando arriva al rivelatore.
- Es. bulk property: indice di rifrazione, conducibilità.
- Es. solute property: UV, fluorescenza, corrente di diffusione ad un elettrodo, spettro di massa


Cromatografia liquida: rivelatori

Rivelatori di assorbanza (UV)

- Sono i più diffusi (per più del 70% delle applicazioni);
- Sono costituiti da un cella di flusso liquido per misurare l'assorbimento di radiazione luminosa in uscita dalla colonna;
- La cella di flusso ha forma di Z;
- Per evitare l'allargamento di picco, volume è di 1-10 µL e il cammino ottico è di 2-10 mm;
- La cella è in quarzo per misurare nel range UV;
- Le misure vengono effettuate a <u>lunghezza d'onda singola</u>.
- Si possono impiegare anche spettrometri a schiera di fotodiodi (DAD- diode array detectors). Informazione è fornita ad esempio come rappresentazione 3D (assorbanza, tempo di ritenzione, lunghezza d'onda).
- In questo modo si possono facilmente identificare le λ migliori per la quantificazione dei diversi analiti.
- Bisogna operare in intervalli di λ in cui i solventi non assorbono.

Kellner / Analytical Chemistry ISBN: 3-527-30590-4 Fig-21-30

Rivelatori a fluorescenza

- Hanno sensibilità 1000 volte superiore ai detector UV;
- L'eccitazione avviene con una lampada a vapori di mercurio (o a Xenon ad elevate pressioni);
- Le lunghezze d'onda di eccitazione ed emissione sono selezionate da monocromatori, o si usa uno spettrometro di fluorescenza.
- Alcune sostanze farmaceutiche, di interesse clinico o naturali sono fluorescenti.
- Per l'analisi di composti non fluorescenti questi possono essere derivatizzati legando chimicamente ad essi un gruppo fluorescente.

$$CH_3 \qquad CH_3 \qquad CH_3$$

$$O = S = O$$

$$Cl$$

$$O = S = O$$

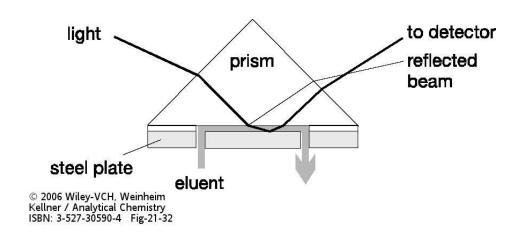
$$Cl$$

$$O = S = O$$

$$NH$$

$$R$$
© 2006 Wiley-VCH, Weinheim Kellner / Analytical Chemistry ISBN: 3-527-30590-4 Fig-21-36

Dansil cloruro

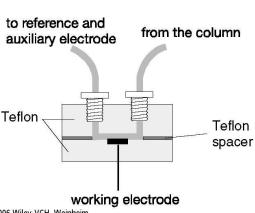

5-(dimethylamino)naphthalene-1sulfonyl chloride

Cromatografia liquida: rivelatori

Derivato fluorescente

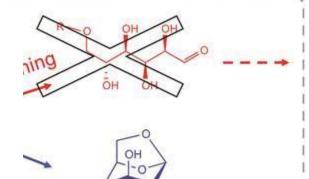
❖ Rifrattometro (RI detector)

- E' un detector universale, non specifico;
- Si basa sulla <u>differenza di indice di rifrazione tra eluente puro e eluente che contiene costituenti del campione</u>.
- Si può valutare la luce riflessa attraverso un prisma (o deflessa da un deflettore);
- La luce è rilevata dopo esser passata attraverso l'eluente ed esser stata riflessa da una lamina in acciaio (che funge anche da termostato);
- Si impiegano una cella di misura e una cella di riferimento (rifrattometro differenziale);
- E' meno sensibile di UV detector, richiede termostatazione;
- Non è utilizzabile per eluizioni in gradiente, poiché l'indice di rifrazione che rappresenta lo "zero" cambia al variare della miscela di solventi.



Rivelatori elettrochimici

- Voltammetria, amperometria, coulombometria e conduttimetria possono essere utlizzate per rivelatori elettrochimici;
- Il detector conduttimetrico è usato usualmente in cromatografia ionica;
- Il detector coulombometrico e voltammetrico sono raramente usati;
- Nel detector amperometrico si applica un potenziale costante a un elettrodo di lavoro (es. in oro, grafite o platino), e si misura una corrente limite di diffusione a un determinato potenziale, relativamente a un elettrodo di riferimento.
- Si usa per sostanze che possono essere ridotte o ossidate nell'intervallo di potenziale dell'elettrodo di lavoro impiegato;
- Viene impiegato per rilevare sostanze biochimiche;


Un problema è la possibilità di avvelenamento (cioè contaminazione non reversibile) delle superfici

dell'elettrodo

© 2006 Wiley-VCH, Weinheim Kellner / Analytical Chemistry ISBN: 3-527-30590-4 Fig-21-33 Intern. J. Environ. Anal. Chem. Vol. 90, No. 12, 15 October 2010, 934–947

Levoglucosan (LGA)

A simplified method for levoglucosan quantification in wintertime atmospheric particulate matter by high performance anion-exchange chromatography coupled with pulsed amperometric detection

Andrea Piazzalunga^{ad*}, Paola Fermo^a, Vera Bernardoni^b, Roberta Vecchi^b, Gianluigi Valli^b and Maria Antonietta De Gregorio^c

^aDepartment of Inorganic, Metallorganic and Analytical Chemistry, University of Milan, Via Venezian 21, 20133, Milan, Italy; ^bDepartment of Physics, University of Milan and INFN-Milan, Via Celoria 16, 20133 Milan, Italy; ^cEnvironmental Protection Agency of Lombardy Region, Department of Milan, Via Juvara 22, 20133 Milan, Italy; ^dDepartment of Environmental Science, University of Milan-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy

(Received 21 January 2009; final version received 6 May 2009)

Levoglucosan, a tracer for the assessment of the biomass burning contribution to atmospheric particulate matter (PM) concentrations, was determined by means of high-performance anion-exchange chromatography (HPAEC) with pulsed amperometric detection (PAD). In this work we propose a modification in the instrumental set-up aiming at an improvement in the detector response by adding NaOH after chromatographic separation to increase the pH. The comparison between this technique and the gas chromatography/mass spectrometry (GC/MS) method commonly used showed good agreement. Repeatability is 4.8% RSD, limits of detection for pevoglucosan, mannosan and galactosan are in the range 0.001-0.002 ug mL⁻¹ in solution, corresponding to 3-4 ng m⁻³ for 24 m³ of air sampled. PM10 samples were characterised for levoglucosan and for organic and elemental carbon contents. The preliminary results reported here for five sites in the Lombardy region (Northern Italy) are, as far as we know, the first data on levoglucosan contribution to OC in Italy. The levoglucosan concentrations observed in Lombardy vary in the range 173-963 ng m⁻³ with an average levoglucosan-C to OC ratio ranging from 1.5% to 2.5%.

Keywords: atmospheric aerosol; levoglucosan; HPAEC-PAD; anhydrosugars;

Annuncio ricerca laureando per attività di tesi sperimentale presso ARPA FVG - lab chim TS > Posta in arrivo x

Tolloi Arianna <arianna.tolloi@arpa.fvg.it> 隂 a me, Giannì, Mistaro 🔻

Buongiorno Gigi,

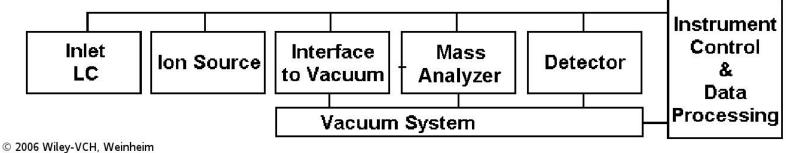
come va? Spero sempre tutto ok!

In merito a quanto in oggetto, ti giro la proposta che il collega Mistaro e il suo dirigente Giannì hanno confezionato:

Argomenti:

- Analisi di levoglucosano nel PM10 con tecnica IC- PAD
- Analisi di IPA e alchil-IPA nel PM10 con tecnica GC/MS/MS
- Analisi dei dati sperimentali mirata all'individuazione del contributo della combustione della biomassa (in particolare, caminetti a legna) al PM10

Condizioni:


- Data di inizio; quanto prima, ma successiva al 23 novembre 2018
- Disponibilità a frequenza prolungata (cioè almeno 1-2 mesi: non poche settimane) in laboratorio per la parte analitica (quindi, trattandosi di un lungo periodo, tale proposta è più mirata ad iscritti al corso di laurea magistrale, che hanno anche maggiore pratica di laboratorio, ma vanno bene anche laureandi triennali purché volenterosi)

Restando in attesa di buone nuove saluto caramente.

Arianna

Spettrometro di Massa (MS)

Gli spettrometri di massa accoppiati a sistemi cromatografici sono strumenti costituiti da cinque blocchi:

© 2006 Wiley-VCH, Weinheim Kellner / Analytical Chemistry ISBN: 3-527-30590-4 Fig-25-04-01

- 1. introduzione del campione;
- 2. ionizzazione degli analiti;
- analisi della massa;
- 4. rilevazione;
- 5. elaborazione dell'informazione

Per LC è necessaria una camera di rimozione del solvente (Interface to vacuum) prima di entrare nel sistema ad alto vuoto (~ 10⁻⁶ torr)

L'accoppiamento più comune di un LC è con un **MS a ionizzazione elettronica spray (ESI) quale sorgente di ionizziazione, singolo quadrupolo quale analizzatore di massa** e elettromoltiplicatore quale rivelatore. Altri tipi di MS sono utilizzabili.

Cromatografia liquida: rivelatori