Modulo 15
metabolismo dei lipidi
Il metabolismo cellulare dei lipidi

CATABOLISMO
- Trigliceridi
 - lipolisi
 - glicerolo + acidi grassi
 - β-ossidazione
 - AcetilCoA
 - Ciclo di Krebs
 - CO₂, H₂O e energia (ATP)

ANABOLISMO
- AcetilCoA
 - colesterolo
 - e. chetonici
 - Biosintesi (citoplasma)
 - Acidi grassi fino a 16 C
 - desaturazione
 - Allungamento (mitocondri)
 - AG insaturi escluso AGE
 - AG a lunga catena
 - (AG = acido grasso)
 - AGE = AG essenziale

Nei mitocondri di tutte le cellule escluso globuli rossi e cervello

Sintesi AG e fosfolipidi in tutte le cellule
Sintesi trigliceridi solo in intestino, fegato, t. adiposo gh. mammaria
TABELLA 23.1 Combustibile metabolico immagazzinato in una persona di 70 kg

<table>
<thead>
<tr>
<th>Costituente</th>
<th>Energia (kJ/g di peso secco)</th>
<th>Peso secco (g)</th>
<th>Energia disponibile (kJ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grasso (tessuto adiposo)</td>
<td>37</td>
<td>15.000</td>
<td>555.000</td>
</tr>
<tr>
<td>Proteine (muscolo)</td>
<td>17</td>
<td>6.000</td>
<td>102.000</td>
</tr>
<tr>
<td>Glicogeno (muscolo)</td>
<td>16</td>
<td>120</td>
<td>1.920</td>
</tr>
<tr>
<td>Glicogeno (fegato)</td>
<td>16</td>
<td>70</td>
<td>1.120</td>
</tr>
<tr>
<td>Glucosio (fluido extracellulare)</td>
<td>16</td>
<td>20</td>
<td>320</td>
</tr>
<tr>
<td>Totale</td>
<td></td>
<td></td>
<td>660.360</td>
</tr>
</tbody>
</table>
Figura 3. Principali vie di utilizzazione degli acidi grassi.
1. Bile salts emulsify dietary fats in the small intestine, forming mixed micelles.

2. Intestinal lipases degrade triacylglycerols.

3. Fatty acids and other breakdown products are taken up by the intestinal mucosa and converted into triacylglycerols.

4. Triacylglycerols are incorporated, with cholesterol and apolipoproteins, into chylomicrons.

5. Chylomicrons move through the lymphatic system and bloodstream to tissues.

6. Lipoprotein lipase, activated by apoC-II in the capillary, releases fatty acids and glycerol.

7. Fatty acids enter cells.

8. Fatty acids are oxidized as fuel or reesterified for storage.
Tabella 12.11
Contenuto medio di lipidi e di lipoproteine del plasma umano

<table>
<thead>
<tr>
<th>Lipidi</th>
<th>mg/100 ml di plasma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totali</td>
<td>460-630</td>
</tr>
<tr>
<td>Trigliceridi</td>
<td>100-170 (uomini)</td>
</tr>
<tr>
<td></td>
<td>80-130 (donna)</td>
</tr>
<tr>
<td>Fosfolipidi</td>
<td>200</td>
</tr>
<tr>
<td>Colesterolo totale</td>
<td>160-230 (uomini)</td>
</tr>
<tr>
<td></td>
<td>170-240 (donna)</td>
</tr>
<tr>
<td>Colesterolo libero (%)</td>
<td>30</td>
</tr>
<tr>
<td>Colesterolo esterificato (%)</td>
<td>70</td>
</tr>
<tr>
<td>Acidi grassi liberi</td>
<td>70</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lipoproteine</th>
<th>mg/100 ml di plasma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chilomicroni</td>
<td>100-250</td>
</tr>
<tr>
<td>VLDL</td>
<td>130-200</td>
</tr>
<tr>
<td>LDL</td>
<td>200-400</td>
</tr>
<tr>
<td>HDL</td>
<td>50-130</td>
</tr>
</tbody>
</table>
Digestione ed assorbimento e utilizzazione dei lipidi

90% dieta triacilgliceroli
10% colesterolo, fosfolipidi ac.grassi

Lipasi linguale e gastrica stabile al pH acido: acilgliceroli con ac.grassi a catene corta e media (grassi del latte)

Lipasi pancreatica: idrolizza leg. estereo in posizione 1 e 3

Colesterol estere idrolasi: aumenta la sua attività in presenza di Sali biliari

in risposta all’ ingresso di lipidi e di proteine cellule della mucosa del digiuno e del tratto inferiore del duodeno producono CCK

Mentre altre rilasciano secretrina (rilascio di bicarbonato)
Gli acidi grassi liberi, il colesterolo libero e i 2-monoacilgliceroli sono i prodotti principali della degradazione dei lipidi.

Formano micelle miste con i Sali biliari (non quelli con catene corte o medie)

Azione catalitica della lipasi pancreatica

Le micelle interagiscono con la membrana dell’orletto a spazzola degli enterociti i quali presentano una pellicola umida ferma attraverso la quale i grassi vengono adsorbiti
Composizione

CM = chilomicroni
VLDL = very low density lipoprotein
IDL = intermediate density lipoprotein
LDL = low density lipoprotein
HDL = high density lipoprotein

Principale Apoproteina
B-48 B-100 B-100 B-100 A-I

Principale Lipide
TG (85-90%) TG (60-70%) C (30%) C (50-60%) P (45-55%)
C (20%) TG (30%) TG (8%) C (20%)

CM= trigliceridi
C= colesterolo
P= proteine
LDL

- Sono ciò che resta delle VLDL perduti molti dei Trigliceridi.
- Sono molto ricche di Colesterolo.
- Servono al trasporto del colesterolo dal centro alla periferia.
- Le LDL in eccesso vengono ricaptate dal fegato attraverso un recettore specifico e metabolizzate (solo il fegato può eliminare il colesterolo).
- Se la concentrazione eccede la capacità di captazione l’eccesso viene captato dai macrofagi che penetrano attraverso l’endotelio nella parete arteriosa e danno l’avvio al processo di aterosclerosi. al processo aterosclerotico
Meccanismo di assorbimento dei trigliceridi nella mucosa intestinale

Lipasi

Catalizzal'idrolisi dei triacilgliceroli in posizione 1e3 formando 1,2diacilgliceroli, 2-acilglicerolo e quindi glicerolo.

Fig. 12.2 Digestione ed assorbimento intestinale dei trigliceridi (A = acido grasso).
Destino dei lipidi della dieta nei vertebrati

1. I sali biliari emulsionano i grassi nell'intestino tenue, formando micelle miste
2. Le lipasi intestinali degradano i triacigliceroli
3. Gli acidi grassi e gli altri prodotti della degradazione penetrano nella mucosa intestinale e vengono convertiti in triacigliceroli
4. I triacigliceroli vengono incorporati, insieme a colesterolo, nei chilomicroni
5. I chilomicroni arrivano ai tessuti del corpo attraverso il sistema linfatico e il flusso sanguigno
6. La lipoproteina lipasi attivata i triacigliceroli in acidi grassi e glicerolo
7. Gli acidi grassi entrano nella cellula
8. Gli acidi grassi vengono ossidati per ricavarne energia o risterificati per essere conservati

Triaciglicerolo (trigliceride)
Mobilizzazione dei trigliceridi

Digiuo (Glucagone), Stress (Adrenallina)

Gli ormoni innescano la mobilizzazione delle riserve di trigliceridi

Fegato

Lipasi ormone-sensibile

Perilipina: una proteina che regola l'accesso alle gocce lipidiche

5% energia

Glicerolo

95% energia
Destino dei prodotti della mobilizzazione:

- **Glicerolo**
 - Convertito in diidrossiacetonfosfato entra nella glicolisi o nella gluconeogenesi
 - La conversione è catalizzata da:
 - Glicerolo fosfato deidrogenasi
 - Diidrossiacetone chinasi

- **Acidi grassi**
 - Ossidazione
 - Principalmente β-ossidazione
 - Produzione Acetil-CoA, NADH, FADH$_2$
 - Oppure ω-ossidazione
 - Processo aspecifico che porta alla produzione di composti idrosolubili più facili da eliminare.
Conversione dell’acido grasso in Acil-Coa

Gli acidi grassi vengono attivati in tioesteri nel citoplasma attraverso il legame con il Coenzima A dalle Acil-CoA sintetasi citoplasmatiche. Due legami anidridici vengono impiegati per l’attivazione as acil-Coa.

Lo ione carbossilato viene adenililato dall’ATP, per formare un acil-adenilato e il PPI viene immediatamente idrolizzato a due molecole di P1.

Il gruppo tiolico del coenzima A attacca l’acil-adenilato (un’anidride mista), spiazzando l’AMP e formando l’acil-CoA, un tioestre.

\[\Delta G^{\circ} = -19 \text{ kJ/mole} \]
\[\Delta G^{\circ} = -15 \text{ kJ/mole} \] (per il processo a due tappe)
Gli acil-Coa sono trasportati nel mitocondrio

L’entrata degli acil-CoA nel mitocondrio rappresenta la tappa limitante per l’ossidazione degli acidi grassi ed anche il maggior punto di controllo della via metabolica.
Le reazioni della β-ossidazione degli acidi grassi

La β-ossidazione consiste in 4 reazioni: ossidazione, idratazione, ossidazione, acil-Coa acetiltransferasi, (tiolasi) sono simili alle ultime 4 reazioni del ciclo di Krebs.

I ciclo

- Ossidazione
- Idratazione
- Ossidazione
- Trasferimento dell’acile

II-VII ciclo

β-ossidazione

L’ossidazione degli acidi grassi insaturi o con numero dispari di carboni richiede reazioni aggiuntive.
Le fasi e i prodotti della ossidazione degli acidi grassi

Palmitoil-Coa + 7 Coa + 7 FAD + 7 NAD⁺ 7 H₂O → 8 acetil-Coa + 7 FADH₂ + 7 NADH + 7 H⁺
Destino dei prodotti della β-ossidazione

- **Acetil-CoA**: entra nel ciclo di Krebs per produrre equivalenti riducenti (NADH e FADH2) che alimentano la fosforilazione ossidativa per la produzione di ATP; nelle piante viene utilizzato per la produzione di energia solamente durante la germinazione.

- **Un Acil-CoA** più corto di due unità carboniose: rientra nel ciclo successivo di β-ossidazione.

- **FADH₂ e NADH** alimentano la fosforilazione ossidativa per la produzione di ATP.
β Oxidation
- Occurs in mitochondrion
- Fatty acyl-CoA ($C_n + 2$)
- CoA is acyl group carrier
- FAD is electron acceptor
- Enoyl-CoA
- H_2O
- 3-3-Hydroxyacyl-CoA
- L-β-Hydroxyacyl group
- NAD$^+$
- NADH + H$^+$
- β-Ketoacyl-CoA
- CoA
- Acetyl-CoA
- Fatty acyl-CoA (C_n)

Biosynthesis
- Occurs in cytoplasm
- Fatty acyl-ACP ($C_n + 2$)
- ACP is acyl group carrier
- NADPH is electron donor
- Enoyl-ACP
- H_2O
- 3-3-Hydroxyacyl-ACP
- d-β-Hydroxyacyl group
- NAD$^+$
- NADPH + H$^+$
- β-Ketoacyl-ACP
- CoA + CO$_2$
- Malonyl-CoA
- Fatty acyl-ACP (C_n)

Figure 19-23 Fundamentals of Biochemistry, 2/e © 2006 John Wiley & Sons
Fig. 12.25 Trasferimento dell’acetil-CoA dal mitocondrio al citoplasma e generazione di equivalenti riducenti.

(1) = Piruvato deidrogenasi; (2) = piruvato carbossilasi; (3) = citrato sintetasi; (4) = citrato liasi; (5) = malato deidrogenasi; (6) = enzima malico.
La biosintesi degli acidi grassi (palmitato C16:0)

Il precursore nella biosintesi degli acidi grassi è il malonil-Coa prodotto per carbossilazione dell’acetil-Coa dalla acetil-Coa carbossilasi. E’ un sito di regolazione.

Gli AG saturi a lunga catena sono sintetizzati a partire da acetil-Coa e malonil-Coa e da un complesso enzimatico citosolico Acido grasso sintasi (6 attività enzimatiche) + una proteina trasportatrice di acili (ACP).

Le reazioni della sintesi degli acidi grassi sono l’inverso delle quelle della beta-ossidazione: condensazione, riduzione, deidratazione, riduzione.

Per produrre una molecola di palmitato occorrono 7 cicli

8 Acetil-CoA + 7 ATP + 14 NADPH + 14 H⁺ →

Palmitato + 8 CoA + 6 H₂O + 7 ADP + 7 P_i + 14 NADP⁺
La regolazione della sintesi/degradazione degli acidi grassi