Corso di GEOMETRIA - PROVA SCRITTA Dipartimento di Ingegneria ed Architettura Università degli Studi di Trieste - A.A. 2017/2018

Trieste, 19 gennaio 2018

Prof. Fabio Perroni

Tutte le risposte vanno adequatamente motivate.

1.

- i) Per quali valori del parametro $k \in \mathbb{R}$ il vettore $w = \begin{pmatrix} 2 \\ k \\ -1 \end{pmatrix}$ è combinazione lineare dei vettori $v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ e $v_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$? Per ogni tale k si determinino $a, b \in \mathbb{R}$ tali che $w = av_1 + bv_2$.
- ii) Esiste una base \mathcal{B} di \mathbb{R}^3 che contenga i vettori v_1 e v_2 del punto precedente? Nel caso affermativo si determini una tale base \mathcal{B} .
- 2. Si consideri lo spazio vettoriale \mathbb{C}^3 sul campo dei numeri complessi \mathbb{C} .
 - i) Si dimostri che esiste un unica funzione lineare $f: \mathbb{C}^3 \to \mathbb{C}^3$, tale che

$$f\begin{pmatrix}1\\i\\0\end{pmatrix}=\begin{pmatrix}1\\1\\1\end{pmatrix}\;,\quad f\begin{pmatrix}1\\0\\1\end{pmatrix}=\begin{pmatrix}0\\0\\0\end{pmatrix}\;,\quad f\begin{pmatrix}0\\0\\i\end{pmatrix}=\begin{pmatrix}2\\1\\0\end{pmatrix}\;,$$

dove $i \in \mathbb{C}$ è l'unità immaginaria, $i^2 = -1$.

- ii) Si determini la matrice $\mathcal{M}_{\mathcal{B}}^{\mathcal{B}}(f)$ che rappresenta f rispetto alla base canonica \mathcal{B} di \mathbb{C}^3 .
- iii) Si determini il rango di f, una base di ker(f) ed una base di im(f).
- **3.** Si consideri la funzione lineare $f: \mathbb{R}^3 \to \mathbb{R}^3$ definita come segue:

$$f\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+y \\ x+z \\ y+z \end{pmatrix}.$$

Si dimostri che f è autoaggiunta rispetto al prodotto scalare standard di \mathbb{R}^3 e si determinino una base ortonormale \mathcal{B} di \mathbb{R}^3 che diagonalizza f e la matrice $\mathcal{M}_{\mathcal{B}}^{\mathcal{B}}(f)$ che rappresenta f rispetto a \mathcal{B} .

(Continua sul retro del foglio)

- **4.** Nello spazio affine $\mathbb{A}^3(\mathbb{R})$ con il riferimento canonico, si considerino il punto $P = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ e la retta $r : \begin{cases} x + y z &= 1 \\ x + 2z &= 0 \end{cases}$.
 - i) Si determini il piano Π contenente la retta r ed il punto P (in forma Cartesiana o parametrica).
 - ii) Si determini l'intersezione tra il piano Π e la retta r' : $\begin{cases} x &= 1+t \\ y &= 2 \\ z &= 0 \end{cases}$
 - iii) Si dica se esiste una retta $\tilde{r} \subset \mathbb{A}^3(\mathbb{R})$ che passa per il punto P ed interseca le rette r ed r'. Nel caso affermativo si determini \tilde{r} .