1 Fourier transform

Definition 1.1 (Fourier transform). For f € L'(R? C) we call its Fourier transform the
function defined by the following formula

~

F6) = 2m) 4 /R e () (1.1)

We use also the notation Ff(£) = F(€).
Ezxample 1.2. We have for any € > 0

2 ) 212
e = (2%5)_3/ e 6= 5 g (1.2)
R4
We set also
d .
FHI(E) = (2m) 8 /R () (1.3)

We have what follows.

Theorem 1.3. The following facts hold.

~

(1) We have |f(§)] < (271)_%||f||L1(R47C). So in particular we have

_d
| F fll oo ra,cy < (2m) 72| f|| 1 (re0)- (1.4)

~

(2) (Riemann— Lebesgue Lemma) We have 5lim f(&) =o.
— 00

(8) The bounded linear operator F : L'(RY,C) — L>(R%,C) has values in the following
space Co(R?, C) c L=(R?,C)

Co(R%,C) := {g € C°'(R%,C) : xlggog(x) = 0}. (1.5)

(4) F defines an isomorphism of the space of Schwartz functions S(R?, C) into itself.

(5) F defines an isomorphism of the space of tempered distributions S'(R?, C) into itself.
We have F[O,, f] = —i&;F f.

(6) For f,g € L*(R% C) we have

Theorem 1.4 (Fourier transform in L?). The following facts hold.



(1) For a function f € Ll(Rd’C) OL2(Rd,C) we have that fe LQ(Rd,C) and Hf”L? _
| f|lz2- An operator

F:L*(R%C) - L*(R%,C) (1.6)
remains defined. For f € L?>(R%,C) for any function p € C.(R%,C) with ¢ = 1 near
0 set

Ff():= lim (271)51/ e T f(x)p(z/N)da
A oo Rd
. . (1.7)
= lim (27 2/ e T f(x)dw.
tmen [ g

Then (1.7) defines an isometric isomorphism inside L*(R%,C), so in particular we
have

IFflle2@ecy = I fll z2mac)- (1.8)

(2) The inverse map is defined by

Fei(w) = Jim (e [ € p(€)ole N "
— lim (27)? e . '
= Jimen? [ s

(8) For f € LY(RY,C) N L?(RY,C) the two definitions (1.1) and (1.7) of F coincide (by
dominated convergence). Similarly, for f € L'(R%,C) N L*(R?,C) the two definitions
(1.3) and (1.9) of F* coincide.

The above notions extend naturally to vector fields. So we have a Fourier transform f —
7 from (L1(RY))? — (Co(RD)", from (LA(RD)? — (L2(RI))? , from (S(RD)! — (S(RY))?
and more generally from (S'(R%))? — (S’(R%))?. Notice that all these maps excepts the 1st
are isomorphisms, and all are one to one maps.

The Fourier transform extends to the spaces LP(R?, C) for p € [1,2].

Theorem 1.5 (Hausdorff-Young). For p € [1,2] and f € LP(R? C) then (1.7) defines a

function Ff € L’ (R, C) where p' = p%l and an operator remains defined which satisfies

—d l_%
IF £l 1 gy < (27) (-3 >\|f||Lp(Rn7@). (1.10)

We know already cases p = 2 and p = 1. This implies that Theorem 1.5 is a consequence
of the Marcel Riesz interpolation Theorem, which we discuss now.

Theorem 1.6 (Riesz-Thorin). Let T be a linear map from LP°(RY) N LP*(RY) to L% (RY) N
LT (RY) satisfying
ITflle < Mjl|fllpes for j=0,1.



Then fort € (0,1) and for p; and g defined by

11—t ¢ 11—t t

bt Pbo b1 qt q0 q1

we have
IT fllpa < (Mo) " (My)!|| fl|zwe for f € LP(RT) N LP(RY).

Proof of the Hausdorff-Young’s Theorem. We have % = % +t fort = % — 1. Hence
1—t:2(1—1/p):][% and}%:l% L and

).

Proof of Riesz—Thorin’s Interpolation Theorem. First of all notice that if f € L N LY
with a < b then f € L€ for any ¢ € (a,b). To see this recall Holder

Y e

IFl oo < (277)7glt = (QW)_%(%_1> = (27r)d(%_%> = (27T)d<%+5_1) = (277)_[1(%—

1 1 1
HngLT < HfHLpHgHLq for - = -4+ =
r P q

. 1 _ ¢t
Then, since ¢ = -

Fllze = WAL N ze < WA g ATA e, = IANZa AL
LT—¢

+ Lt for t € (0,1) from |f| = |f[!|f['~" we have

For p; = pp = p1 = oo (in fact we can repeat a similar argument for p; = py = p; any fixed
value in [1, c0]) we then have

IT e < ITFIZar 1T F 7m0 < (Mo)' ™" (M) | f | oo

So let us suppose p; < oco. Then it is enough to prove
| / Tfgde| < (Mo) = (M| £l Igll oy = (Mo)'~*(M)"

considering only || f|[r = [|g||,, = 1 for simple functions f = >7"", a;xp, where we can

L%
take the Ej; to be finite measure sets mutually disjoint. If ¢; < oo we can also reduce to
simple functions g = Z]kvz1 bixF, where the Fj are finite measure sets mutually disjoint.
The case ¢; = oo reduces to the case p; = oo by duality. In fact, see Remark 16 p. 44 [2]

HT||£(LP757L1) = HT*HE(LOO7LP,,5)

Notice that if both pg < oo and p; < oo and since we are treating qg = g1 = 1 then

I Tl zersi Ly = HT*HL(LOo A < M; and so one reduces to the case p; = oo. If, say,

po = oo, then [|T||ze 1y = ||T*H£( < M since p1 < oo, but ||T|zpro,r1y =

Loo,LP1)
IT* | (zoo,(Looyy < Mo, so in other words, we don’t get a Lebesgue space. However, the



issue is to bound for f € LPPNL>® a T*f € L' N (L>®) = L' where ||T* f||(zooy = |T* f| 1,
so that one can still apply the above argument used for p; = oc.

Let us turn to the case p; < oo and ¢ < oo. For a; = €l%|a;| and by, = €¥*|b;| the polar
representations, set

n a(z) . 1—=z2 z
fz = a;|°® %y with a(z) == —
z ;| J| J ( ) o P
N
1-B(2) . 1 —
g, = Z |bg| 1@ €lkaFk with B(z) := S
1 40 qn

Notice that since we are assuming ¢; < oo, then ¢; > 1 and so 5(t) = q—lt < 1, so that g, is

well defined. Similarly, since p; < oo we have a(t) = p% > 0, so also f, is well defined.
We consider now the function

F(:) = [ Th.g.de

Our goal is to prove |F(t)| < My~ *M;.
F(z) is holomorphic in 0 < Re z < 1, continuous and bounded in 0 < Re z < 1. Boundedness
follows from estimates like

R z
l|a; | Co) | =|aj| @  which is bounded for 0 < Rez < 1.

We have F(t) = [T fgdx since f; = f and g, = g.
By the 3 hnes lemma, see below, which yields |F(z)| < M] R#Mfe? our theorem is a
consequence of the following two inequalities

|F(2)] < My for Rez=0;
|F(2)] < Mj for Rez=1.

For z = iy we have for pg < oo

- L
[fiy|” = ZHayl g "Xk —Z!lagl o " x &,

m

Pt
Z \ypt )Iaj!”o P XxE; = Z |aj[*xe; = fIP".
This implies
1 1
Il = ([ 1oy = ([ 15mdayn = 1. -
R Re

Notice that we have also || fiy|loc = 1 when py = oo.



Proceeding similarly, using 1 — §(z) = 1(1—,2
0

2 for z = iy and ¢, < oo we have

w(g-2) &
f N 1-8Gy) , N qli o qTO N , ,
iy |0 =D " |[bk] T [Bxm = bl (bl % [Pxp, =) bkl %xm, = lg]%.
k=1 k=1 J=1
This implies ) )
||giy||q0 = (/Rd |giy| 0 dz) 0 = (/Rd lg|%dx)% = 1. (1.12)
Notice that we have also ||giy|/cc = 1 when ¢f = oo..
Then
‘F(Iy)‘ < HTfinquginqg < MOHfinpnginqo = Mp.
By a similar argument
[ freiyl”t = 117
914+ = [g]%.
) = 4y iy
Indeed by a(1 +iy) = =¥ — 2
Aol -)
| fraiy[?t = Z llaj| N !mXE = Z |laj Pe P XE;
i bt
= llag|» P xs, = Z |a;[PxE; = |fI""
j=1 j=1
andbyl—ﬁ(l—l—ly):%—%
. vl 2 .
/ 1-p(+iy) , 1 s / ,
914l ™ =Y bl TEO [Dxm =D (bl bkl % s =) bkl %xm, = [g]%
k=1 k=1 j
Finally
Pt i
[F(L+iy)] < IT fiviglla lg1+iylly, < Millfiviyllp, l91+illy; = Mallfllz gl = M.

O
Here we have used the following lemma.

Lemma 1.7 (Three Lines Lemma). Let F(z) be holomorphic in the strip 0 < Rez < 1,
continuous and bounded in 0 < Rez <1 and such that

|F'(2)] < My for Rez=0;
|F'(2)] < Mj for Rez=1.



Then we have |F(z)| < My~ %¢*MEe? for all 0 < Rez < 1.

Proof. Let us start with the special case My = M; = 1 and set B := ||F||p~. Set he(z) :=
(1 + €2)~! with € > 0. Since Re(1 + €z) = 1 +ex > 1 it follows |hc(2)| < 1 in the strip.
Furthermore Im(1 + ez) = ey implies also |h.(z)| < |ey|™*. Consider now the two horizontal
lines y = £B/e and let R be the rectangle 0 < z <1 and |y| < B/e. In |y| > B/e we have

<2<z
= eyl = 1eB/d

[F'(2)he(2)

On the other hand by the maximum modulus principle

sup |F(z)he(2)| = sup |F(2)he(2)| < 1,
R OR

where on the horizontal sides the last inequality follows from the previous inequality and
on the vertical sides follows from |F(z)| <1 for Rez = 0,1 and from |h.(z)| < 1.
Hence in the whole strip 0 < x < 1 we have |F(2)he(z)| < 1 for any € > 0. This implies

lim [F(2)he(2)] = |F(2)] <1

in the whole strip 0 < z < 1.
In the general case (M, M) # (1,1) set g(z) := My~ *M7. Notice that

g(z) _ e(l—z) logMoezlong = |g(z)] _ Méf:lex -
min(Mo, M1) < [g(2)| < max(Mo, My).

So F(z)g~!(z) satisfies the hypotheses of the case My = M1 = 1 and so |F(2)| < |g(2)| =
Mol—ReleRez

]
We consider now for A := 3, % and for f € S'(R%,C) the heat equation
J
uw—Au=0, u0,z)=f(x). (1.13)

By applying F we transform the above problem into
U+ € =0, @(0,8) = f(&).

This yields @(t, &) = e~ f(£). Notice that since f € S'(R?,C) and e~I'* € S(R, C) for

any t > 0, the last product is well defined. Furthermore, we have 7i(t, -) € C°([0, +00), S’(R¢, C))

and, as a consequence, since F is an isomorphism of S’(R?, C) also u(t, -) € C°([0, +00), S’ (R™, C)).
o~ T 2 o~ ~

We have e~lé" = G(t, ¢) with G(t,z) = (2t)_%6_%. Then, from u(t,§) = G(t,£)f(&) it

follows u(t, z) = (277)7gG(t, ) * f(x). In particular, for f € LP(R?,C), we have

_lz—y|?

ta) = tamt) 4 [ 5 pa.
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Notice that by (1.2) we have

We will write

2
et f(x) = (47Tt>7% / e f(y)dy. (1.14)
Notice that for p > 1 we have HetAfHLp(Rd) < [[fllzr(mey and for f € L'(R%) and any x € R?

y|?

e f(a)] < (4mt) 4 / T fy)ldy < (4mt) S / F@)dy = (@dt) 4]l 1s oy,
R4 R4

|2
We set also Ky(x) := (47rt)7%ef%. Then e f = Ky * f. Ki(x — y) is the Heath Kernel.
As a corollary to the Riesz—Thorin Theorem we obtain the following result.

Corollary 1.8. For any ¢ > p > 1 and any f € LP(R?) we have

d
A — =2 ===
1 llagey < () 2678l gy, (1.15)
Proof. Notice that (1.15) is true for p = ¢ and for ¢ = co and p = 1. For ¢ > p =1
11
1 — =
Riesz—Thorin and — = L+ 2 yields
q 00 1
1 1 i 1
5 q
e sz < 125 e g < ()07 = (amt) ™37 witn o = 2o
Next, f0r1<p<qwehave%Z@%-I_Ta:é—l-%s.t. a:q/@—%). Then
_d _d(1_1
[€Alimn < 12181 gl 1577 0 < (mt) 3" = (ay $(570).
O
Theorem 1.9. p € L' (RY) be s.t. fp = 1. Set p(x) := e ¥p(x/e). Consider

C.(R% C) and for each p € [1,00] let Co(R?,C) (C)p be the closure of C.(R%, C) in LP(RY,C),
so that C.(R?,C), = LP(R%,C) for p < oo and C.(R4,C) = Co(R%,C) & L>(R?, C).
Then for any f € C'C(]Rd,C)p we have

limpe s f=f i LP(R ,C). (1.16)
In particular we have

lim e’ LP(R?

lim e f = fan (R, C). (1.17)



a e

Proof. Clearly, (1.17) is a special case of (A.10) setting € = v/t and p(z) = (47w) 2e¢” 4 .
To prove (A.10) we start with f € C.(R%,C). In this case

po f@) = 1) = [ (fo =) = 1oty

so that, by Minkowski inequality and for A(y) := ||f(- —y) — f(:)||zr, we have

e * F(@) — F(@)l|e < / (W) Ae y)dy.

Now we have lim,_,0 A(y) = 0 and A(y) < 2| f||r. So, by dominated convergence we get
sy | )  F(a) e =ty [ 1p(0)|ACe )y =0,

So this proves (A.10) for f € C.(R?, C). The general case is proved by a density argument.
O

2 Some spaces of functions

We start by defining L? Sobolev spaces. We will introduce the homogeneous Sobolev spaces
H*(R%) and the standard Sobolev spaces H¥(R?). For ¢ € R? let (£) = /1 + [€|? be the
Japanese bracket. For a tempered distribution u we denote by w its Fourier transform. The
following spaces are formed by tempered distributions u s.t. @ is in L} (R?) for s € R:

1o (RY) defined with [[ul gy = €1 2 (21)
H*(R?) defined with [wll s (ray = [(€)°Ull L2 (may - (2.2)
The following lemma is elementary.

Lemma 2.1. The following statements are true.

o L2(RY) — H*(RY) defined by f — F* (d;) is an isometric isomorphism and all the

H*(R) are Hilbert spaces with inner product (f,g)ms = ((€)F, (€)59) 12 -
o We have S(R?) C H*(RY) if and only if s > —d/2.
o The H*(RY) have an inner product defined by (f, 9) s = (]5\5]?, 1€]°9) 2

While the H S(Rd) have an inner product, in general they are not complete topological
vector spaces.

Proposition 2.2. For s < d/2 the space'Hs(]Rd) is complete and the Fourier transform
establishes an isometric isomorphism F : H*(R?) — L2(RZ,|£|?5d¢).



The above proposition is a consequence of the following lemma.

Lemma 2.3. Let s < %l. Then we have the following facts.

o LX(RY,[E[*d€) C Lj,.(R?, dE)

loc

o L2(RY,[¢]de) C S'(RY)

o The Fourier transform F : S'(RY) — S'(R?) is s.t. ]-'(HS(Rd)) = L%(RY,|€]>5d¢)

and establishes an isometry between these two spaces.

Proof. Let g € L*(R%,|¢]?*d¢). Obviously g € L} (RN\{0},d¢). Let now B = {¢ € R? :
|€] < 1}. Then

2s 2 % —2s %
INCLE ( ISR d&) ( [ 1 d&)
B B B
b ies . 1 vol(§4-1)
< Vol(Sd‘”(/0 rt 2dr)2HgHL2(Rd’|§2$df):\/7d(_25HgHLQ(Rde%df)'

Next, we check that L2(R?, |€[2%d¢) ¢ S'(RY). We split ¢ = xBg + xBeg. Then xpg €
LY(R?, d¢) implies xpg € S'(R%). On the other hand we have ypcg € L%(R?, (£)?%d¢). This
in turn implies xpcg € S'(R?), where the embedding L?(R?, (€)2°d¢) ¢ S'(R?) for any
o € R follows from

[ 1©0(©ds = [ (O OO0 < I iagear [ (672 0(6)0)}

Rd

< Wz eear( | (€724 Al

for m chosen s.t. 20 +m > d. O]

Remark 2.4. For s > %l the space HS(]Rd) is not a complete space for the norm indicated.
: F

In particular, the Fourier trasform defines an embedding H*(R%) < L?(R%, |£]?*d¢) with

image which is strictly contained and dense in L?(R?,|£|?*d¢). The fact that the image

is dense can be seen observing that Cg° (R9\{0}) is dense in L?(R%, [£]?°d¢) and we have
FH*(RT) 2 C22(RN{0}).

For s = ¢ + o with g9 > 0, if we pick f € C2°(R?) with £(0) # 0, then | J’c Cff)o is a Borel
2
2
2
function not contained in L} (R, d¢). But |¢[* |£J’i§f)€0 = :g |(f)s|0 e LY(RY, d¢) implies
2
f(é) 2 /md 2s
that I € L*(RY, €[> d¢).



X okd

For s = g consider f(&§) = Z TX[3/475/4}(2]“]§\). Notice that for each &, at most one term
k=1

of the sum is non zero, because [27%3/4,27%5/4) N [2773/4,2775/4] = ) for j # k. Indeed,
if j < k then
27%5/4 < 270U=V5/4 < 2773/4 where the latter follows from 5 < 6.

Then [¢]2[£(€)] € L*(RY, d€) since

— 1 — 1
/R el Pas = ; 2 /R el s /a/0(2MEDdE = kZ_l = /IR el s /a0 (1€)d€ < 00

but f, which is supported in the ball B(0,5/4), is not in L'(R% d¢) since otherwise we
would have

~ 1 — 1 n—00
o> [ (@l =3 2 i o IEDE =D 7 | txsasalghds "5 oo

Given a vector field u = (uj)? | € (S'(R%))? its divergence is

)
divu =V -u = —l .
2o
J=1
Notice that dive = —i Z;-lzl &7 so that a u is divergence free, that is dive = 0, if and only

if Y20, 907 = 0.
We define now an operator P by

d
(F(Pu)) =a/ — |£1’2 > ggar. (2.3)
k=1

Lemma 2.5. Let s < . Formula (2.3) defines a bounded operator from (H*~1(R4)9) into
itself.

P is a projection with image Range(P) represented by the divergence free elements of (H*~1(R%))%).
It is the orthogonal projection.

We have ker P = VH*(R?).

Proof. First of all for P defined by (2.3) we have
d ' d ' d o
IPull oz = D NP [l o = Y IEFTF@u 2 = D NI€P @ ~ R > &gkt e
j=1 7=1 =1 k=1

d d d d
e §ik 1k ; k
< Z|H€|s | 2 + Z 1252 | oo [[1€]° 7 0¥ 2 < Z [ || gro—1 + Z u"ll o1 < (d+ 1) Jull go-a-
i=1

7,k=1 j=1 J,k=1

10



Hence this is a bounded linear operator from (H*~'(R%))? — (H*~'(R%))?. In fact it is a
projection (so ||[Pul| g.—1 < [Jul|z:—1) as we will see in a moment. But first observe that

d d .
F(divPu) =1y E(FPu)y =iy ¢l — —

which shows that the image of IP is formed by divergence free vector fields. Notice also that
if divu = 0, and hence Z?Zl &) =0, we have

. . 1 d )
(F@u)Y = — 8 > Gak =1,
k=1

- 0
and so Pu = u.
Now we check that P2 = P. We have
. g &
(F(P?u)) = (F(Pu))’ — @ D G(F(Pu))
k=1

where we use the fact checked above that divlPu = 0.

All the above steps show that (2.3) defines a projection in (H**(R%))? whose image is
formed by the divergence free operators in (H*~*(R%))%.

Pick now V € H®. Then VV e (H*'(R%))? and we have

(FBVV)) (s] z ﬁfg) —0.

Hence ker P O VH*(R?). We now show ker P C VH*(R?).
If Pu = 0 then
W= —i§j17(§) where V &) : \5‘2 Z&’k
It is easy to see that V € L2(R?, [€|2°d¢) and in view of the identification of this space with
H*(R?%) through the Fourier transform when s < %l we conclude that V € H*(R?) with

VV =u.
O]

For u € H¥(R?) and A > 0 let us set Pyu := F* (X|¢[<rFu). Notice that this map sends
L?(R%) into itself since

Pxull gr gy = 1€ X1 Full c2may < NEFFull ey = llull g gay -

11



Notice that P is a projection, that is Pi =P,, by
Plu =Py oPyu= F(xjgcaFPru) = F*(XjgjenFu) = F*(xjg<rFu) = Pau.
If diva = 0 then also divPyu = 0. Indeed
(divu=0& > & @ =0) = F(divPyu) = > &xga = x> & @ =0,
j=1 j=1 j=1

which in turn implies divP\u = 0.

3 Hardy Littlewood maximal function and Sobolev esti-
mates

Let f € L}, .(R?) and consider (for B(z,r) the ball of center = and radius r in R?) averages

1
VOI(B<$7 7")) /B(J:,r) f(y)dy

Notice that for any r > 0 the function x — A, f(z) is continuous. Indeed, fix dp > 0 and
consider dx € B(0,0p). Then by the triangular inequality B(x + dz,r) C B(z,r + dp). So,
for 6z € B(0,dp)

A f(z) =

1

Ay f(z)—Ay f(z+0z) = ol(BO, 1)) /B(M%O) (XB(2)\Batow,) U) = XBatsz.\Br) ) fy)dy

with for any y

|6x]—0
(XB(2)\Batom,) U) = XBat62.0)\Bar) U)) XBarto0) W) f(y) = 0.
By dominated convergence A, f(x) — A, f(x + dx) — 0. We define
M f(z) = sup Ar|f|(x). (3.1)

r>0

From the definition we conclude that M f is lower semi continuous that is {z : M f(z) > a}
is open for any a. It also obvious that M is sub additive:

M(f +g)(z) < Mf(z)+ Mg(x).
We have the following obvious estimate

|M f(@)] < [f|peo(ma)- (3.2)

12



One important fact is that it is not true that A maps L'(R?) into itself. Indeed if say
K C R%is any compact set and if B(0, ¢y) D K, then since for |z| > ¢y we have B(z, 2|z|) D
B(0, |z]) D K, we have computing at r = 2|z|

_ ~ol(Blz,r)NK) vol(X)
MXK(“")_EEE vol(B(0, 1)) = vol(B(0,1))29| x|

which shows that My ¢ L'(R?).
Notice that each g € L'(R?) satisfies Chebyshev’s inequality:

|9|L1(

vol({z : |g(x)| > a}) < aRd) for any oo > 0 (3.3)

Indeed (3.3) follows immediately from.

19121ty = / 9()ldy > / 9(y)ldy > / ady = avol({z : |g(x)] > a})
R4 {z:]g(z)|>a} {z:]g(z)|>a}

If T: LY(R?Y) — LY(R?) satisfies 1T fllrray < Allfll 1 ey for all f € LY(R?) and for a fixed
constant A, from (3.3) it is easy to conclude that

A
vol{z : |T'f(x)| > a}) < E|f|L1(Rd) for any o > 0 and any f € L'(R%).

Unfortunately we have seen that M does not map L'(R?) into itself. However we will show
that it satisfies the last property. Indeed we will prove now that M is weak (1,1) bounded,
that is there exists a constant A > 0 (in fact we will prove A = 39) s.t.

vol({x : M f(x) > a}) < g’fh/l(Rd) for any a >0 . (3.4)

To prove this we consider the set {x : M f(xz) > a}. Then, for any x in this set, there is a
ball with center in z, which we denote by B, with [ |f| > avol(B). Pick any compact
subset K of the above set, and cover it with such balls B,. Extract now a finite cover,
corresponding to finitely many points z1, ...xy. We have the following covering result,
which we state without proof.

Theorem 3.1 (Vitali’s lemma). Let By, ,...,Bz, be a finite number of balls in R%. There
exists a subset of balls

{B1,....; B} C{By,,..., Bay} (3.5)
with the Bi...By, pairwise disjoint, s.t.

v0l(By, U+ U Byy) < 34> " wol(B). (3.6)
j=1
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We consider balls Bj...B,, as in (3.5) and from
K C By, U---UBg, = vol(K) <vol(Bg, U---UBy,),

from (3.6) and from the definition of the B,, we get
374ol(K) < ivol(Bj) < i 1/ If] < @ (3.7)
et oot @

(3.7) implies vol(K) < 3%~ f|;. By vol({z : |[M f(x)| > a}) = SUPK  {2:| M f (2)|>a} VOL(K)
for compact sets K, then (3.7) implies (3.4).

(3.2) and (3.4) imply by the Marcinkiewicz Interpolation Theorem 3.2, proved below,
M fllzrray < Apllfll Lo (waey for all p € (1,00] . (3.8)

We will use this result in the proof of the Hardy-Littlewood-Sobolev Theorem, and of
Sobolev’s estimates.

Before introducing the Marcinkiewicz interpolation Theorem, we recall that for a mea-
surable function g : R* — R the distribution function is

Ma) :=vol({x € R?: |g(z)| > a}).

Notice that A : [0,00) — [0, 00] is decreasing. This implies that it is measurable.
For a function g € LP(R?) with 1 < p < oo we have

lg()] 00
/ \g(m)]pdx—/ dx/ pap_ldoz—/ dapozp_l/ dx
R4 Rd 0 0 {zeR%:|g(z)|>a}

(3.9)
o0
= / paP I\ (a)da
0
where the 1st equality is elementary, the last follows immediately by the definition of A(«),
and the 2nd follows from Tonelli’s Theorem applied to the positive measurable function

F(z,a) = |af~Ixz, (lg(x)] — @)xr, ().

Theorem 3.2 (Marcinkiewicz Interpolation). Let T : L*(RY) + L>®(R%) — L} (R%) be a
sublinear operator s.t. for two constants A1 and As and for all f
T fl oo may < Aooll | oo (mey (3.10)
A
Hz : |Tf(z)| >a}| < E]-’f‘Ll(Rd) for any o> 0 . (3.11)

Then for any p € (1,00) there is a constant A, such that for any f € LP(RY) we have

T fllr ey < Apllfll Lo (wa)- (3.12)

14



Proof. Dividing T by a constant, we can assume Ay, = 1. Fix p € (1,00) and f € LP(R%).

For a > 0 arbitrary set
_ @) it |f(z)] = §
hilz) = { 0 otherwise.

Notice that f; € L'(RY) by

/ il dx_/{xﬂxn g

2

x)|Pdx.

Using (3.10), we get |T'f(z)| < |T'fi(z)| + §, since ||f — fill peo(ray < 5. Then

{o:|Tf(2)] > a} € {a: [THE) > 5}

We have, using (3.11),
vol({z: [TA()| > 3} < 42 / fi@)ldz = a2 [ 1 (@)d.
{wlf(@)|>$}
Substituting g = T'f in (3.9)

/ |Tf(x)|Pdx = /Oopaplvol({a: T f(z)| > a})da
Rd 0
< [Tl rn) > o <2y [Tt [l

2}
2| f(2)] 2Pp
= 2pA1/ d$|f(1,‘)|/ P 2da = Al/ |f(x)|Pdx.
Rd 0 p—1 " Jpe
—_—

2P 1| f(z)|P—1
p—1

O
We will use the properties of the Hardy Littlewood Maximal function, and specifically
the definition and (3.8), to prove the following important theorem.

Theorem 3.3 (Hardy-Littlewood-Sobolev inequality). For any

1 1 d-—
G(O,d)(md1<p<q<oowith};:§+# (3.13)

there exists a constant C s.t.

I ] £ =l o) < O laoisay (3.14)
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Proof. For an R > 0 to be chosen momentarily, we split

/ flz—y)ly|'dy = / flxz—y)lyldy + / flx —y)ly|dy.
Rd ly|<R ly|>R
We claim that

[ Sl < s [l 7y = eRi £ ), (3.15)

y|<R lyl<R

We assume for a moment this claim and complete the rest of the proof. By Hélder we have
[ =l < s ol Xt L ey
ly|>R
We have |y|™7X{y:yl>R} € i (RY) exactly if yp’ > d. The latter inequality is true because

1 d
:—7<O:>’yp'—d:£>0.
q q

SRS

1
y
In this case
p’ d

/ — _d
|||y|_7X{y:|y\>R}HLP/(]Rd) = <V01(Sd_1)/ RT_A/p +d_1dr> =cRV ' =cR .
>

Hence

_d
[ £ =yl S R @) + sy R

Now we choose R so that the two terms on the r.h.s. are equal:

Mf(z) _ py-a-2 _ -2
HE
Then we get
d.%
[ 7= lal ] S RN+ g B =20 g ()

— 2 (Mf (@) 15
Then

_ 1-2 p 1—2 v
| /Rd f@ =)Wyl dyllpoway S e N ) lla = [fllze IO S N Fllze-

To complete the proof we need the inequality in (3.15). More generally, we prove that if
® € LY(R?) is radial, positive and decreasing, then

[ fa =0yl < b5(e) [ s (3.16)

R4
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Then (3.15) is just (3.16) for ®(y) = |y[~7 X {y:|y|<R}-
Notice that (3.16) is true for radial functions of the form

=3 ajxg
J

for a; > 0, B; a ball of center 0. Indeed

vol

LN, Yol(B)) ol(B _
o 15wy = >0 [, 15wy < 2 ol B M) = M) [ van

In the general case the result follows from the fact that ¢ can be approximated by these
functions.

O
For the above proof see [14] p.354, while for the next one see [13] p.73.

Exercise 3.4. Check that, for v, p and ¢ as above, the operator
Tif(x) = (z —y)lyl " dy
ly|>t
satisfies T,f "5 0 in LY(RY) for any f € LP(RY) but that it is not true that T; el

in the Banach space of linear bounded operators from LP(R?) to LI(R?) (that is, there is
strong convergence but not uniform convergence to the 0 operator).

Lemma 3.5. For any v € (0,d) there exists ¢y > 0 s.t.
F(-17)(6) = e, le (3.17)
Proof. Tt is enough to show that for any ¢ € S(R?) we have

/ 2] (2)dz = e, / EPad(e)de. (3.18)
Rd Rd

Starting from (1.2) and Plancherel we have

/n etem 5 o(x)dx = /]Rd e_gga(g)df.

d—y
dee™5
€

0o 2 d R o 2 g
/ dfl:(ﬁ(l:)/ 57%67‘2‘5 j :/ dé—(z)(é-)/ EdTvefg%j
R4 0 € Rd 0 p

ayla| = bylglr =

Now we apply to both sides fooo and commuting order of integration we obtain

for appropriate constants a, and b,.
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Theorem 3.6 (Sobolev Embedding Theorem). For any 0 < s < g there exists a C' s.t. for
1 s

% = 5 — g we have
11y < CUF e ey (3.19)
Proof. For f € S(R?) we have for some fixed c

d
2

f(x) = (2m)” /R g (1elFe)) de = e /R =y g(y)dy where (¢) = [¢°F(€)

where we used m = (2%)%¢5 T which holds for ¢ € S(RY) and T € S'(R%).
Since g € L?(R%), by the Hardy-Littlewood-Sobolev Theorem we have that f € LI(RY) for
1 1 d—(d—s)

1
g 2 d 2

_5
d
This extends to all f € H*(R?) by the density of S(R%) in H*(R?) for 0 < s < %.

4 Assorted inequalities

Lemma 4.1 (Interpolation of Sobolev norms). For any s € [0,1] and any k = sk1+(1—s)ka
we have

1 izt ey < F s gy 1 s gy For amy | € H®H(RE) 0 HE (RY). (4.1)
In particular, for s € [0,1] and any f € H'(R?)
11 ey < 112 Gy 1 5 ey (4.2)
Proof. (4.2) follows from (4.1) for k; = 1 and ko = 0. So let us turn to (4.1).

Obviously there is nothing to prove for s = 0,1, so we can assume s € (0,1). Notice that

for p = % we have p' := p% = 1%. Now, we have

1 1-s
10y = [ (P 1FQP) (IR Flg) 20 ag
sk1 s (1—s)ka| T (1-s)
< NPT 3 g NEP 2 FOPN
= 11 L FONZ ey €1 TG = 1 W, oy Lt ey
[

then there exists C

> . (4.3)

Theorem 4.2 (Gagliardo—Nirenberg). If p € [2,00) is s.t.
8.1.

-

1
>3

S

N =
Y=

1 sy < I sy where s =
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Proof. By Sobolev, for % = % — 5 we have

1o ey < ClFll s ray:
(R%)

Here s is like in the statement. Also s = d (% — %) <1l<& % — % < %. Finally, apply
(4.2). O
Remark 4.3. For p =4 and d = 2,3 we have s = d/4 and || f|| p4(rd <C’HfH17d/4 ||f||d-/4 .

0. ) L (R ) = LZ(Rd) Hl(Rd)

Lemma 4.4 (Gronwall’s inequality). Let T > 0, A\ and ¢ two functions in L'(0,T), both
>0 a.e., and C1, Co two non negative constants. Let Ao € L'(0,T) and let

o(t) < C1 + Cy /Ot)\(s) w(s)ds for a.e. t € (0,T).

Then we have ,
o(t) < C1e“2 o X&) for g6t € (0,T).

Proof. Set .
P(t) :==C1 + Cg/o A(s) p(s)ds.
Then 1 (t) is absolutely continuous and so it is differentiable almost everywhere and we have
P (t) = Col(t) p(t) < Ca(t) ¥(t) for ae. t € (0,T).

Also, the function ) (t)e¢? Jo A()ds ig absolutely continuous with

% (1/1(t)efc2 fs Ms)ds) <0 for ae. t € (0,T).
Then we have
P(t) < eC2 o My (0) = 01eC2 o MO for all ¢ € (0, 7).

Since ¢(t) < ¥(t) a.e., the result follows. O

5 Linear heat equation

For Sections 56 see [5]. .
Let T € Ry and f:[0,T] — (H* 1 (R%))Y, for d = 2,3, be an external force s.t. f =Pf
and consider the following heat equation:

u —vAu = f
V-u=0 (t,z) € [0,T] x RY (5.1)
u(0) = ug € P(H*(R%))4
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Definition 5.1. For a fixed s € [0,1) let f € L*([0,T], (H*~*(R%))?) with f = Pf. Then u
is a solution of (5.1) if
we L2([0,7], (F°(R)) , Vu € L2(0, T, (H*(R)®), (5:2)
if ‘
u is weakly continuous from [0, 7] into (H*(R%))? (5.3)

(that is, if for any ¢ € (H—*(R%))? the function t — (u(t),4), which is a well defined
function in L>([0,7],R), is in fact in C°([0,T],R) )
and if for any ¥ € C°([0,T] x R%, R?) we have

t
(u(t), ¥(t)) 2 = / (v (), AU(E)) 12 + (u(t'), 0¥ () 2 + (f(), U(t)) 12) dt’ + (uo, T(0)) 2.
0
(5.4)
The following theorem yields existence, uniqueness and energy estimate for (5.1).

Theorem 5.2. Problem (5.1) admits exactly one solution in the sense of the above defini-
tion. For any t the following energy estimate is satisfied:

t t
) By oy +20 | I @ = ol ay + 2 [ 0Dt (5:5)

Furthermore we have

u e C°([0, 7], (H*(R))%)) (5.6)

and the formula .
a(t, §) = e g (¢) + / e R R €)at (5.7)

0

Proof. (Uniqueness). It is enough to show that the only solution of the case up = 0 and
f=01isu=0. Let u be such a solution. Then

(u(t), W ()2 = /0 (v(u@), AU )) 2 + (u(t'), 0,9 (t)) 12) dt’.
Let W(t,x) = ¢(z) with ¢ € C° (R4 R). Then the above equality reduces to
(w(t) 0 = [ (), A0

which extends by density to all ¢ € H~* (R4, R). In particular we can replace ¢ by P,
and get

t t

(P ult), ) 12 = / D (ull'), AP 12 < v AP . / 1Pt odt’
0 0
t

. / 1Pt .7
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where the integral fot IPLu(t)|| odt’ is well defined by P,u € L®([0,T], (H*(R%))9).
From the above formula

t
IPau(t)ll e < vn? /O 1Pt . dt

and hence ||P,u(t)| z. = 0 by the Gronwall inequality. This implies u(t) = 0 for ¢ € [0,7].
(Existence). First of all, there exists a sequence () in 00, T], (H*~* (R s.t. f, "=
fin L2([0,T), (H*~'(R%))9). This follows from the density of C°(I,X) in LP(I,X) for
p < oo for I an interval and X a Banach space, see Appendix A.

Applying P, to (5.1) and replacing f by f,, we obtain the equation

{(un)t - VPnAUn = Pnfn

Un(o) = PLug (5‘8)

Notice that P, f, € C°([0,T], (HS( ))d). Since (5.8) is a standard linear equation it
admits a solution u, € C1([0 17, (H ( 4))4). Notice furthermore that u, = P,u, and so
in particular u,, € C°([0,T], (H"(R%))?) for all r > s.

Furthermore, applying (-, u,) ;. to (5.8) and using

d

(Pnlug, un) g Z/ €757 T (8, €)2dE = — Z(&ﬁmfk@n>L2(B(o,n),|g\2sd5)

k=1

d
Z (Ekn, Exin) L2(R4 |¢|25dg) — HVUnHHw
k=1

we obtain
1d

2dt
s.t. after integration we obtain

HunH2 s T VHV’U,nHz s — <Pnfnaun>Hs

1 t 1
SOl v [ 190yt = 5Pl + / (Pofult), un(t)) ot (5.9)
The difference uy, — uy,1¢ solves

{(un - Un+€)t - VPn—i—ZA(Un - un—‘ré) = Pnfn — Pn—l—ffn—l—ﬁ
un(0) — tp1(0) = (Pn, — Pryr)uo
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Then, like for (5.9) we get

1 v [t
1a(®) = s O + 25 [ 190 = ) () =
1 t
=5 Il(Pn — P o)uoll%, + /0 Prfut') = Poiofuret), (un — unio)(t')) o dt’

1 t
< Sl Pn = Py o)uoll5., + / IPofu() = Potefre) oIV (un — tnge) ()| o at’
0

1 I v [t
< §||(Pn - Pn-i-Z)UOHi]s + 21// HPnfn(t/) - Pn-i-ﬁfn—&-ﬁ(t/)nzsfldt, +5 [AY n+4 t/)HQ‘ sdt/'
0

Hence .
[ (£) = Unpe(8)]|5. + V/o IV (tn, = tnge) (5)]|5.ds

1 t
<P = Passuolly, + 5, [ [Pafals) = Prsefisels) o 1ds
0

Since f, "=° f in L2([0,T], (H*~1(R%))%) implies also P,f, "= f therein, the last
inequality implies that (u,) is Cauchy in C([0,T], (H*(R%)%)) and (Vuy,) is Cauchy in
L2([0,T), (H*(R%))%)). Let u be the limit. Notice that u satisfies (5.2) and (5.6), and so
obviously also (5.3).

Taking the limit in (5.9) we see that u satisfies the energy equality(5.5).

Next, we check that u is a weak solution of (5.1) in the sense of Def. 5.1. We apply
(., U(t)) 12 to (5.8) with ¥ € C°(]0,00) x RY R?). Then we have

d
£<’U,n, \I1>L2 = V<A'U,n, \I/>L2 + <Pnfn, lI/>L2 + <Un, 8t\I/>L2.

Integrating we have
(un(t), ¥ (t))r2 = (Ppuo, ¥(0)) 2 — V/O (un(t'), AU () p2dt
+/O (P fn(t), U(t")) pdt! +/0 (un ('), 00V (")) 2dt’.
Taking the limit for n — oo we get
(u(t), W (t))r2 = (uo, ¥(0)) 2 — 1// <u(t’),A\IJ(t')>det'+/ (F(t), ¥ (t)) p2dt’ +/ (u(t'), 0y (1)) p2dt’.
0 0 0

which yields (11.5). Hence u is a weak solution of (5.1) in the sense of Def. 5.1.
Next, we prove the Duhamel formula (10.8). Applying the Fourier transform to (5.8)

{atﬂn(t,ﬁ) + VX e <nlEPTn(t,§) = Xjgj<nfn(t,€) (5.10)
Un(0,€) = X|¢|<ntio(§)
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Notice that suppii,(t,-) C {|¢] < n} so that xjej<nl&[*Un(t, &) = [£[*TUn(t,€). Then, by the
variation of parameters formula

t
Un(t,€) = e I 1< (€) +/0 e RN e cn falE €) . (5.11)

Now we know
Un(t,€) "7 a(t, €) in C([0,T], L*(R, [¢*d€))
Xe|<ntio(€) "= To(€) in L*(RY, [¢]**dE),
Xiej<nn(t',€) "% F(t,€) in L2([0,T] x RY, ¢~ Ddtde)

Notice that

Ty(t,£) := /0 (=g g(t',€)dt

is a bounded operator from L2([0,T] x R%, |€|26=Ddtde) into L°([0,T], L2(R, [£[?3d€). In-
deed for t € [0,T] and fixed ¢ € R? and for g € C.([0,T] x (R¥\{0}))

t 1 1 1
1.1 < ([ 0 anyi [l P < N ([t opan?

and so

s 1 s
[ emaopas < oo [ eVl oParde
Rd V J0,T)xRd
This implies
HTgHL°°([O,T],L2(]Rd,|§|25d§) < \/%”Q”L2([O,T]XRd,‘ﬂQ(s_l)dtdf)'

Since C.([0, T] x (R¥\{0})) is dense in L2([0,T] x R?, [¢[*~Ddtde) a well defined bounded
operator remains defined. Taking the limit for n — oo in (5.11) all terms converge in
L>=([0,T], L?(R4, |€]%2d€)) to the corresponding terms of

ﬁ(t, 5) — e—tu|§|2a0(£) + /t e—(t—t')u|f|2f(t/’ f)dt,.

0
O
Remark 5.3. Notice that applying the Fourier transform to (10.8) we get
t
u(t) = e"Pug + / WA £ () dt. (5.12)
0

The following theorem yields additional estimates.
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Theorem 5.4. Let f be like in Theorem 5.2 and consider the corresponding solution
we C([0,T],H%), Vue L*([0,T],H®).
Then, additionally, we have
lt)] .3 € LP(0,TL,R) for any p > 2 (5.13)

Moreover we have

2 2
v [ d|£|25(sup |a<t’,s>|) ds | < fluoll e +

1
f o1y
0<t/'<t 1 I HLQ([O,tLH )

(@)}

_1 _1
el ez Nzrozy < 2% (ol + v 21l pagozy o))

(5.14)

Proof. From the Duhamel formula (10.8) and the previous computation

ja(t, €)| < e P g (¢)] + 17, L2 0.)-

1
Vavlg|

so that

€7 sup [a(t’, &) < [€°[uo(§)| + I€]° FC )20
0<t/<t

1
V2v[g|
Taking the L?(R?, d¢) norm we get

1 -
V() < [[uo(E)ll L2 (majefzsae) + EHf”LQ((O,t),LQ(Rd,m?(S*l)dg))'

and this yields the 1st line in (5.14).
To get the 2nd line in (5.14), from the energy estimate (5.5) we obtain

lu(®)]1%. +Zu/ IVu()IF.dt" < JuollF. +2 fllf( Mggsr VVIVUE) || godt!

t
< ol +v [ Ut Tt + % [ 1010

This yields

t
O+ [ IVt < ool + 5 [ 15 s

and hence

_1
HU”Loo([o,T],Hs) < lluoll s +v72 HfHLz([QTLHs)

_1 _1
el o N2y < v % (ol o + v 31 2 go,m i ) -
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So by the interpolation of Sobolev norms Lemma 4.1 for 2 < p < o0

2 2 2

=3 =3
Hlull oe2 ey < HIIuHHS IVull 2 ey < llull, .
_2

HU’H P[OT]’HS HVUHLQ([OT Hs) S vor (HU’OHHS tv 2HfHLQ ({0,171, Hs)> :

2
wo.1.119y VUl gl 2o 0,7)

6 The Navier Stokes equation

We will only deal with the Incompressible Navier Stokes (NS) equation:

u+u-Vu—vAu=—-Vp
V-u=0 (t,z) € [0,00) x RY (6.1)
u(0,z) = up(z)

where v : [0,00) x R? — R? with u = Z;-lzl u/e; with e; the standard basis of R?,

N Lo 9
:;M?’V'UZZ%M’U'V”:ZW%U'

Here v > 0 is a fixed constant. We could normalize v = 1. p is the pressure and its function
is simply to absorb the divergence part of the Lh.s. of (6.1).

We can write
u - Vu = div(u ® u) for div(u @ v)’ := Z O (uFv7) since (6.2)
k=1

div(u @ u) = Oy (uFu) Z uF o’ + u? dlvu =u- Vi

k=1 O

ol
-
3

So we rewrite (6.1) and

ug + div(u @ u) — vAu = —Vp
V-u=0 (t,z) € [0,00) x RY (6.3)
U(O,ZL‘) = Uo(l')
Definition 6.1 (Weak solutions). Let ug be in L?(R%). A vector field u € L ([0, 00) x R%)

which is weakly continuous as a function from [0,00) to (L?(R%))¢ is a weak solution of
(6.3) if for ¥ € C([0,00) x R% R?) with divll = 0 we have

(ult), (1)) 2 = / (ut'), AT(E)) 2 + (u(t'), BT (L)) 12
—(div(u ® u)(t'), U(t')) 12) dt’ + (ug, T(0)) .

(6.4)
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Notice that formally (6.4) is obtained from (6.3) writing

t t t
ur + div(u ® u —VAu-\Il:—/ Vp-\Il://pV-\II.
/O/Rd(t ( ) ) 0 JRd 0 Jrd Ty

So integrating by parts (which is formal if u is not sufficiently regular) we have

t t t t
O:/ u- v —// u-@t\li—}—/ ak(ujuk)\l']—y// u- AU
R4 0 0 JRd 0 JRd 0 JRd
t t t , . t
:/ u- v // u'Bt\IJ// ujukak\lij// u- AW
R4 0 0 JRd 0 JRd 0 JRd

which gives the desired result. In particular, (6.3) implies (6.4) when u is regular.
But the opposite is also true, and when w is regular (6.4) implies (6.3). Indeed, suppose
that u is regular and that it satisfies (6.4) for all the ¥ as in Def. 6.1. Then

t
/ u(t,z) - U(t, x)dx — / uo(z) - ¥(0,)dz = / / (vu- AV +u®u: VU +ud¥) (¢, z)dedt
R4 R4 0 JRd

_ /Ot /Rd (vAu — div(u® u) — Oyu) - T + /Rd u(t, ) - Ut z)dz — /Rd w(0, 2) - (0, 2)dx.

Hence we get

/Rd up(x) - ¥(0,z)dw = /Ot /Rd (Opu — vAu+diviu @ u)) - ¥ + /Rd (0, 2) - W (0, 2)da.

Taking ¥ = ()1 (x) with ¢ € C°((0,T),R) and ¢ € C°(R?, R?) and divergence free, we
conclude that

t
/ o (t) / (O — v + div(u ® u)) - (x)] da
0 R
This implies that for all ¢
(vAu — div(u ® u) — Opu, P) p2(gay = 0

for any t and for any divergence free vector field v € C°(R?% R?). Formally, this implies
that the above holds for 1) = PO for any vector field © € C°(R¢,R?). Then, by P* = P,
we conclude that

(P(vLAu — div(u ® u) — dyu), ) 2 (gay = 0 for all © € CZ*(R?, RY).
This implies
PvAu—div(u @ u) — ) =0 = us +u - Vu —vAu = —Vp

for some p, see Lemma 2.5.
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Then we get

/Rd up(x) - (0, z)dz = / w(0, ) - U(0, )dx

R4
and so u(0,x) = ug(z).
Let us now formally take the inner product of the first line of (6.1) with u and integrate
in R?
1d
2dt
We have, summing on repeated indexes,

lullz2 + (u - Vu,w) 2 — v(Du,w) 2 = —(Vp, u)pa

(u-Vu,u)2 = / wukdjutde = 2_1/ w 0 (uFuP ) de = —271 lul2dive dz = 0 and
R4 R4 R4

(Vp,u)r2 —/ ujajpda; = —/ pdivu dx = 0.
R4 Rd

So, formally (rigorously if u is regular and we can integrate by parts), we get

1d

5@”“”%2 +v||Vul7. =0

This in particular yields the following energy equality

t
”U(t)H%%Rd) + 2’//0 HVu(t’)H%g(Rd)dt’ = HUOH%Z(Rdy (6.5)

Theorem 6.2 (Leray). Let ug € L>(R?) for d = 2,3 be divergence free. Then (6.3) admits
a weak solution with u(t) € L>®(Ry,L?) N L} (Ry, H') such that the following energy
inequality holds:

t
nww@mﬂ+wénwmw;®wﬂswwéwy (6.6)
We will also see the following.

Theorem 6.3 (Case d = 2). When d = 2 the solution in Theorem 6.2 is unique, it satisfies
(6.5) and u(t) € CY(]0,0), L?).

Notice that if we apply formally the operator P to equation (6.3) we obtain formally

{ut —vAu = Qng(u,u)

u(0,) = up(z) (0¥ € [0,00) X BT (6.7)

where we set

Ons(u,v) = —%P(div(u 2 v)) — %P(div(v 2 u)). (6.8)
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Here notice that
d 1 d
. P 1 A 1k
P(div(u ® v))! = lE 1 %) ((u ) — x kgl 0;0k (u'v )) . (6.9)

Before starting the proof of Theorem 6.2 we need some preliminary results on 1st order
ODE’s in Banach spaces.

Definition 6.4. Given a Banach space X a function F': X — X is locally Lipschitz if for
any M >0 3 L(M) € (0,+00) s.t.

|F(@) — F(y)| < LOM)|z — y]| for all 2,y with [lz] < M and [y <M. (6.10)

Now consider the system
w=F(u), u(0)== (6.11)

u(t) == —|—/0 F(u(s))ds. (6.12)

Proposition 6.5. Let F' be as in Definition 6.4. Then for any M > 0, for Th; defined by

1
T 2L(2M + |[F(0)]) + 2

Tar (6.13)

and for any v € X with ||z|| < M there is a unique solution u € C°([0,Ty], X) of (6.12).
Proof. Set K =2M + ||F(0)|| and

E = {uc C%0,Ta), X) : |u(t)| < K for all t € [0, Tas]}
with distance dg(u,v) := supg<;<7,, [[u(t) —v(t)||. (£,dE) is a complete metric space. Next
consider the map v € £ — @,

O,(t) =z + /Ot F(u(s))ds for all t € [0,Th].

By Ty = for all t € [0, Ths] we have

1
2(L(K)+1)

IF(@)] < [FO) + [F(u(®) — FO)] < [FO)]| + KL(K)
_ M ||IF)]

= [[FO)[ + 2M + [[FO)) LK) < (M +[[F(0)]]) 2 (L(K) + 1) Tor

So for t € [0, Ths] we have

[Pu(t)| < M +1

M+ [[FO)]| < oM +||F(0)] = K
Tn
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and so ¢, € F.
For u,v € E we have

1w (t) = @y (1) < /0 [1E(u(s)) = F(v(s))llds < Tar L(K)|lu = vl oo jo,1,x) = T LK) dp(u, v).

So by Ty L(K) < Ty (L(K) +1) =271
dp(®u, @) < 27 'dp(u,v)

Hence u — ®,, is a contraction in F and so it has exactly one fixed point.

O
We have the following application of Gronwall’s inequality.
Lemma 6.6. Let T >0, z € X and let u,v € C°([0,T], X) solve (6.12) then u = v.
Proof. Let M = maxo<;<7{||u(t)|],||v(t)||}. Then
t t
Jut) = o®)l < [ 1P((s) = Flo(e))ds < L) [ u(s) = ()]s
and apply Gronwall’s inequality. O

It remains defined a function T : X — (0, co] where for any z € X
T(x) =sup{T > 0: 3Ju € C°([0,T), X) solution of (6.12) }

and the interval [0,7(x)) is the largest (positive) half open interval of existence of the
(unique, by Lemma 13.6) solution of (6.12).

Theorem 6.7. We have, for u(t) the corresponding solution in C([0,T(x)), X),

1
2L([F O + 2[lu@®)]) = T =1 2 (6.14)

for allt € [0,T(z)). We have the alternatives
(1) either T'(x) = 4o00;

2) orif T(x) < 400 then lim ||[u(t)|| = +oo.
(2) or i T(x) lim (o)

Proof. First of all it is obvious that if 7'(z) < +oo then by (13.10)

lim L(||F(0)| + 2||w(t =400 = lim ||u(t)|| =+
lim LOIFO)] +2]u(t)]) lim (o)

where the implication follows from the fact that M — L(M) is an increasing function.
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We are left with the proof of (13.10), which is clearly true if T'(x) = co. Now suppose
that T'(x) < oo and that (13.10) is false. This means that there exists a t € [0,7'(x)) with

1 1
for M = ||lu(t)||, where we recall Ths := 2L(2M+\|1F(0)H)+2 in (6.13). Consider now v €

C°([0, Ths], X) the solution of
v(s) = u(t) +/ F(v(s"))ds' for all s € [0, Ty].
0

which exists by the previous Proposition 6.5. Then define

. u(s) for s € [0, ]
w(s) == {U(S —t) for s € [t,t + Ths).

We claim that w € C°([0,t + Ty], X) is a solution of (6.12). In [0,#] this is obvious since
inw=win [0,¢] and u € C°([0,1], X) is a solution of (6.12). Let now s € (¢,t + Tys]. We
have

w(s) = v(s — 1) = / Flo

—x—i—/F Das + [ Fs))ds'
:x—i-/o F(@)ds’+/t F(u(s' —t))ds
w(s’) (s)

- 1:+/ Flw(s'))ds.

0

6.1 Proof of Theorem 6.2
We will need the following elementary lemma.

Lemma 6.8. Let d = 2,3. Then the trilinear form
(u,v,) € (CERN))? x (CER))? x (CZRY)? = (div(u @ v), p) 2 € R (6.15)

extends into a unique bounded trilinear form (H'(RY)? x (HY(R®))? x (HY(R?))¢ which
satisfies for a fived C

. d d 1—4 1—4
(div(u @), p)r2 < Cl[Vul| L2 [Vl g lull 2 * vl 2 * Vel 2 (6.16)

If furthermore div u = 0 then
(div(u @ v),v)p2 = 0. (6.17)
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Proof. Recall that from (6.2) we have div(u ® v)! = Zzzl i (uFv?). Then for fields like in
(6.15) we have

d d d d
(div(u @ v)’ j>L2:ZZ(9kuvj : ZZ Rl ore?) L

1 j=1 k=1 j=1 k=1

(div(u ® v) =

d
]:

Now the r.h.s. can be bounded by
|(uFo?, Bke?) 2] < uto? || 2| Vel g2 < ]| pal|o? || Lall Vo | 2

Finally, we apply Gagliardo-Nirenberg inequality writing

d d
Kk ks oy, knl—1%
[u®][La < ClIVU®| f2|u”]] 2 *

The same equality holds for v/. Then we obtain (6.16), obviously with a different C. This
implies that that the form in (6.15) is continuous, and by density of C°(R9) in H'(R?) it
extends in a unique way.
Next, we write for ¢ = v

d d
(div(u ® v),v) 2 = — Z Z(ukvj, ! 2

d
= —2_1zz<uk,8k(vj) )12 —2_12 ((divu)v?, v7) 2 = 0.

7j=1k=1 j=1

Notice that this formal computation (the Leibnitz rule used for the 2nd equality requires
some explaining) is certainly rigorous for v € (C°(R%))4. On the other hand inequality

(6.16) yields (6.17) by a density argument also for v € (H!(R9))%. O
Remark 6.9. Notice that u,v € (H'(R9))? implies div(u ® v) € (L'(R?))¢. Indeed we have

QL

d

div(u @ v) = Z (uFo?) Z (v ot + uF o) (6.18)
k=1 k=1

where the above product rule can be proved by taking sequences (C°(R%))? 3 u, "= u

in (H'(R%)4 and (C®(R))? 3 v, "= v in (H'(R?))%. Then clearly for ¢ € (S (R%))¢

summing on double indexes
(O(u*o?), %) = — (Mo, Opp?) = — lim (uod, Op?)
= liin ((vj ol 7 + ukopul | J>> = (VI opuf + k0 7)

and this yields (6.18).
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Hence § := F(div(u ® v)) € (L®°(R%))? C (L}

loc

T € (L2(R4,|€]72d¢))?. Indeed the bilinear map

(R%))4. Furthermore, (6.16) implies that

() p2(ra ge) « L2 (R, €]72d€) x LA(RY, [¢[°d¢) — R

can be used to define an embedding

LA(RY, [¢]72dg) < (L*(RY, [¢[*dg))
by f = (f,*)L2(ra,4¢)- Furthermore we have the commutative diagram
f—><fa> 2(rd
LPRY g 72dg) " T AT (LR [Py
F=1etrd 1 (6.19)

h*)<h7'>L2 Rrd 4
_>( ,dg)

L*(RY, dg) (L*(R?, dg))

where the 1 is the map (L*(R?, d€))’ — (L*(R?, |¢[2d€))' given by (g, ) r2(ra.ae) = (€179, ") 12 (re ¢j24e)
where the latter map is an isomorphism since it closes the diagram

2R, de) L2(RY, [¢[2de)
f= i) r2maae 4 V= {f ) 2me g
(L*(RY, dg)) --» (L*(R?, [¢]2d¢))’

Since the other maps in (6.19) are isomorphisms, also the 1st line in (6.19) is an isomorphism.

Hence we conclude that § € (L?(R%, [£]72d¢))? since (8, ) r2me,ae) € (L2(R4, [£]2d€)) by

(S(Z 1vfe)z ‘conclude div(u®v) € (H'(R%))%. Now applying Lemma 2.5 we have in (H ' (R%))¢
div(u ® u) = Pdiv(u ® u) — Vp

for a function p € L?(R?) which is what we get in the r.h.s. in (6.1).

We consider now the following truncation of the NS equation.

{(’LLn)t + Pn]PdIV(Pnun ® Pnun) - I/(PnA)Un = (t, $) e [07 OO) « R® (620)

un (0, ) = Ppug(z).
Lemma 6.10. For any n the system (6.3) admits exactly one solution
U, € C°°([0,00), (HY(RY))?) for any N € NU{0}.

Furthermore we have Pu,, = u,, and Ppu, = u,.
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Proof. First of all, we consider for any n local existence. Set
F,(v) = v(P,A)v — P, Pdiv(P,v @ P,v).
Then we have
[ En (0)[| (23 rayye < [V (Pl (gn @ayy + [PrPdiv(Pro @ Pro) || g ray)a

with

[P0l (v gayye < vn” Vo] g2 gay)a

and

[PnPdiv(Prv @ Ppo)|| (g mayye S nN Py @ Pl S 0V P2,
d d 1_d 1_d
0 VP Ll VPl [Pav]l o [ Pro]

<

~Y
d

<V o2,

n

So for some constant C, y we have

1En ()l rayya < Con([0llz2@ay + 10172 maya)-
(L2 (R%))

Furthermore, as a sum of a bounded linear operator and a bounded quadratic form each F),
is a locally Lipchitz function. Then for any n and N we know that (6.3) admits a solution
uy, € CH[0, T, N), (HN (RY))9)) for some maximal T}, y > 0. Furthermore we must have

t/l‘iTI’Z,,l,N Hun(t)H(HN(Rd))d = 4o if Tn,N < 0. (6.21)

Next we have u,, = Pu,, since applying 1 — P to (6.20)

F“—M%%—WHAW—PW”” = (1-P)u, =0,

(1 — P)uy(0,2) = 0

and u, = P,u, since applying 1 — P,, to (6.20)

(1 =Pplun)e =0 B

Now we show that the finite time blow up in (6.21) cannot occur for any (n, N) (in fact, the
following argument proves that also infinite time blow up, that is (6.21) but with 7}, y = oo,
cannot occur).

Let us consider (6.21) first in the case N = 0. When we apply (-, up) 2 to the 1st line in
(6.3) and get

1d

5@”“71”%2 + (PpPdiv(uy, @ up), un)r2 — v{ADup, up)r2 = 0.
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Notice that summing on repeated indexes (A, p) 12 = —(Djun, ;) 12 for all ¢ € (C§°(RY))4
and since this is dense in (H'(R%))¢ and both sides define bounded functionals in (H!(R%))?,
we conclude

V(A un) 12 = — || Vg2

Next, using P* =P, P* = P,, and (6.17), we have
(PpPdiv(uy, @ up), un)r2 = (div(uy, ® up), up) 2 = 0.

Hence we conclude

5%“”””(L2(Rd))d + l/HvunH(LQ(Rd))dQ =0
and we obtain
t
Hun(t)H%LQ(Rd))d + 2”/0 Hvun(t,)H?LQ(Rd))dQ dt’ = HPnUOH%p(Rd))w (6.22)

In particular this yields the bound ||uy(t)|| 2 < ||Pruol|z2 for all t € [0,T,,0) and by (6.21)
we conclude that the lifespan is 7, 0 = oo for all n € N. This proves the case N = 0 in
Lemma 6.10.

Consider now the case N € N. If u,, € C([0, Ty, ), (HN (R%))?) with T}, y < oo is a maxi-
mal solution, obviously it is the restriction in [0, T}, x) of a solution u,, € C([0, o0), (L?(R%))4).
On the other hand, the blow up (6.21) is impossible because otherwise we would have

L N N
00 = tthfﬁN [un ()l v (mayye <m0 t/lllefL{N [un () (2 aye < n[[Prugllpz < oo

which is absurd. Hence the lifespan is T}, y = oo for all n € N and N € NU {0}.

6.1.1 Compactness properties of {u,}nen

Now we consider the sequence of solutions {u, },en of solutions of (6.3). We will prove the
following result.

Proposition 6.11. There ezists au € L™ (R4, (L*(RY))NLE (R, HY(RY))D) with divu =

0 and a subsequence of {u, ynen such that for any T > 0 and any compact subset K C R%
we have (after extracting this subsequence)

lim un (t, ) — u(t, z)|2dtdx = 0. (6.23)
=% J[0,T|x K

Moreover, for all vector fields W € L2([0,T], (H*(R%))9) and all ® € L?([0,T] x R% R?) we
have

lim (un(t,x) —u(t,x)) - ©(¢,z)dtdx = 0, (6.24)
n=00 J10,T]xR?

d . . .
lm 3 / O (il (1, ) — (1, ))0p W (¢, 2)dtd = 0. (6.25)
n—o0 ol [0,7] xRd
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Finally, for any v € C°([0,00), (HY(RY))?) we have (Un, V) (L2rayys = (U V) (L2(rayya i
L2 ([0,00)), that is

loc

lim [|{un(t) — u(t), ()l (o,r7) = O for any T'. (6.26)

n—oo

Proof. Fix an arbitrary 7 > 0 and an arbitrary compact subset K of R%,
Claim 6.12. The set {u, }nen gives a relatively compact set in L2([0, 7] x K, R?).

Proof of Claim 6.12. Notice that (6.22) implies that u, € L?([0,T] x R% R?) for all n.
We will show the following statement, which is equivalent to Claim 6.12.

Claim 6.13. For any € > 0 there exists a finite family of balls of the space L2([0, T] x K, R%)
which have radius ¢ and whose union covers the set {uy, }nen.

Proof of Claim 6.13. First of all, if we want to approximate {uy }nen with {Ppun }nen
for a fixed ng, we can use the fact that for any ng and any n we have

T
i = Prgtalloyssien = | 1= Pyl oyt

T
i [ 19 VPt < 8052 [ 9012t < 4057

Hence we can choose ng large enough s.t.
€
[un — Protnll L2(j0,1) xR REY < 3 for all n € N. (6.27)

Now consider {P,,up tnen. Then Claim 6.13 is a consequence of
Claim 6.14. {P,,u,}nen is relatively compact in L2([0,7] x K,R%).

Indeed Claim 6.14 implies that for any e > 0 there is a finite number of balls B2 (o 77x k,r) (f5, 5)
which cover {Pp,un}nen. Hence by (6.27) we conclude that for any ¢ > 0 the balls
Ba(jo,r1x k k) (fj: €) cover {uy }nen and so we get Claim 6.13.

Proof of Claim 6.14. It will be a consequence of the following stronger claim.

Claim 6.15. {P,, u, }nen is relatively compact in C°([0, T], (L2(K))%) ¢ L*(]0, T}, (L*(K))9).

Proof of Claim 6.15. To get this result we want to apply the Ascoli-Arzela Theorem
(for which a sufficient condition for a sequence of continuous functions f,, : K — X, with K
compact and separable metric space and X a complete metric space, to admit a subsequence
that converges uniformly to a continuous function f : K — X is that it is equicontinuous and
{fn(k)}n is relatively compact for any k € K !). So it is enough to show that {P,,un }nen

!The proof goes as follows. One first considers a dense countable subset N of K. Then by a diagonal
argument, one considers a subsequence {fn,,} s.t. {fn,,(k)} converges for any k € N to a limit that we
denote by f(k). Using equicontinuity and the completeness of X it is easy to see that {fn,, (k)} converges for
any k € K. We denote again by f(k) the limit. Finally, using equicontinuity we conclude that f : K — X
is continuous
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is a sequence of equicontinuous functions in C°([0, 7], (L?(K))?%) and that for any ¢ € [0, T]

the sequence {P,,,u,(t)}nen is relatively compact in (L2(K))4.

First of all we want to show that {P,,u, }nen is a sequence of equicontinuous functions in
C°([0,T), (L*(K))%). This will follow from Hélder (since § > 1 if d = 2,3) and from the

following claim.

Claim 6.16. There exists a fixed constant C s.t.

H(P”OU")tHL%([0,T],(L2(Rd))d) < C for all n.

Proof of Claim 6.16. We apply P, to (6.3) and we obtain
(Protn)t = —PpPpPdiv(uy, ® uy) + VP Auy,.

We have
VP y A || (12(rayye < vngl|unl (2 ayye < vnglluoll 2wy

and, by the Gagliardo-Nirenberg inequality,

”PnOPnPdiV(un ® un) ”(Lz(Rd))d < HPnodiV(un ® un) H(LQ(Rd))d

d d d
k, i k,j
=D I1Pus Y (i)l pamey < mo Y llupd |l g2y
j=1 k=1 k=1

2
d 1—4
< CnollunlPya gayye < C'no (\wnu £ unll ) |

Then we have

d
”(P”OU")t”L%([o,T],(L2(Rd))d) < wngT |Jugll (12 (rays

/ 2(1-9) g
 Cnollunlpe o7y 2y IVenlliagoy 2 < ©

for some constant C' independent of n by the energy equality (6.22) and the fact that

HPnuOH(LQ(Rd))d < HUOH(LQ(Rd))d for all n.

Hence we concluded the proof that {P,,un }nen is a sequence of equicontinuous functions

in CO([0, 71, (L2 (R%))).

To complete the proof of Claim 6.15 we need to show that for any ¢ € [0,7] the sequence

{Pun () }nen is relatively compact in (L2(K))?. It is here that we will exploit the fact

that K is a compact subspace of R?.

We know that {P,,,un(t)}nen is a bounded sequence in (H'(R%))? for any ¢ € [0,T]. This

follows immediately from ([P un(t)]| g1 < nollun(t)||r2 < nolluol|z2, which follows from the

energy inequality (6.22) which guarantees ||uy(t)|| 2 < ||uol|r2. We recall now that

Claim 6.17. The restriction map H'(R%) — L?(K) is compact for any compact K .
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Sketch of proof Indeed this is equivalent at showing that

Tf=xrgF" (é) is compact as L2(R%) — L2(RY).

But we have Tf = [K(z,€)f(£)d¢ with integral kernel K(x,&) = xx(x)(€) Le ¢, It
is easy to see that 7, "= 7T in the operator norm where the 7;, has kernel K, (z,£) :=
XK(x)<§>_1e_iz'5XB(07n) (€). Now K, € L?(R% x Rg) so that 7, is Hilbert-Schmidt with
I Tullmzs == ||’Cn||L2(Rngg)- Now it is easy to show that ||T,||r2—r2 < |[Tnllgs. Ky is the

limit in L?(RZ x ]Rg) of elements in L?(R%) ® L? (]Rg). The latter ones are integral kernels of
finite rank operators and their operators converge in the Hilbert—Schmidt norm, and so also
in the || - ||z2_z2 norm, to 7,. We conclude that there is a sequence of finite rank operators
which converges in the operator norm to 7, which then is compact. O
It follows that {P,,u,(t)}nen is relatively compact in (L2(K))? for any t € [0, T).

Hence the hypotheses of the Ascoli-Arzela Theorem have been checked and we can conclude
that Claim 6.15, that is the claim that {P,,,u, }nen is relatively compact in C°([0, T, (L?(K))9),
is true.

Hence there exists a subsequence of {u,}nen (and it is not restrictive to assume this is
true for the whole sequence) which converges to an u € L2([0,T] x K,R%). By a diagonal
argument, we can assume that this is true for any compact K C R? and any 7 > 0. This
yields (6.23). Notice that this implies

U, — u in D'((0,T) x R, RY). (6.28)
We claim now that u € L%([0,T] x R% R?) and that
u, — uin L([0,T] x R% RY) (6.29)

(convergence in the weak topology). Indeed, since from (6.22) we have that {u,}nen is
uniformly bounded in L?([0,T] x R% R?), it follows that up to a subsequence we have
u,, — v for some v € L%([0,T] x R%,RY). Then (6.28) implies that v = u as distributions in
D'((0,T) x RY RY). This implies that v € L2([0,T] x R% R?) with u = v.

In particular this implies

lim (un(t, ) — u(t,z)) - ®(t, x)dtdz = 0 for all & € L([0,T] x R%, RY),

=00 J0,T]x R4

that is (6.24).

We now turn to the proof of (6.25).
By (6.22) we know that {Vuy, }nen is bounded in L2((0, T) x R, (R%)4). This implies that up
to a subsequence there exists V € L%((0,T) x R?, (R%)4) s.t. Vu, — V. On the other hand
(6.29) implies w, — u in D'((0,T) x RY). This in turn implies dju, — dju in D'((0,T) x R?)
for any j = 1,...,d. Hence Vu =V in D'((0,T) x R?), Vu € L?((0,T) x RY, (R%)?) and
Vu =V in L2((0,T) x R?, (R%)?). This proves (6.25).
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Notice also that, up to a subsequence, uy,(t,z) — u(t,x) and Vu,(t,z) — Vu(t,z) almost
everywhere. Then the energy inequalities (6.22) imply by Fathou

t
() e gy + 20 /0 IVt gyt < [l 22z, (6.6)

We turn now to the proof of (6.26).
Fix a function ¢ € C°([0, 00), P(H'(R%))?) like in the statement of Proposition 6.11. For a
given ng consider

In(t) = (Un(t), (1)) (12@aya and g{"0 () = (Pt (t), V(1)) (12 (maya-

Then for any € > 0 and any fixed T' > 0 there exists ng s.t.

[Py — DY)l oo (0,17, (L2 (Re))2) < €

This and [[uy (1 )||L°° ([0,T],(L2(R))d) < [[woll (L2(R%))d imply

lgn = 957Nl 2 (0,17 < Iluwoll z2ayaTe.

Furthermore, for any fixed T > 0 there exists a compact K s.t.
()| Lo ([0,77,(L2 R\ K ))4y < €.

Then, if we set gﬁf“”K) (t) := <Pn0un(t),¢(t)>(L2(K)))d we have

TLQ,

Hg g(no)”Lw([o,T} < ||UOH(L2(]Rd))dT€~

Since by Claim 6.15 we know that P, u, — Pp,uin C°([0, T, (L?(K))?), we conclude that

{95 = (Prgun (t), (1)) (12s0)ya = Prott(t), V(1)) (r2(xcyy)e in CO([0,T1).
But then also
[{un(t), ¥ () (L2mayye — (u(t), ¥ (t)) (L2 ray)all oo (o)
< K Proun(t), ¥ () (22(ky)2 — (Prou(®), ¥(8)) (2 ()l Lo (0,17 + 2llwoll (£2(rayyaTe
+ (u(t), (1 = Prg)¥ (1)) (L2ayyall Loo o, + (ut), (1 = X5)V ) (£2(may)ill Lo o,1) <
< [{Proun(t), V() (2t — (Prou(®), ¥ () (2 ll oo o,17 + 4llwoll (£2 ray)a Te.

Since T is fixed and € is arbitrarily small, it follows that we obtain that g, converges to
(u(t), ¥ () (2maye in L>([0,T7), and hence in C9(]0,T)). In particular we have shown that
u € C°([0, 00), L2 (R4, R%)). The proof of Proposition 6.11 is completed. O
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6.1.2 End of the proof of Leray’s Theorem 6.2
Proposition 6.11 has provided us with a function
u € L([0,00), L*(R%, RY)) N L, ([0, 00), H' (R, RY)) N C°([0, 00), L, (R, RY))

which satisfies the energy inequality

t
)22 g0y + 20 /0 IVt gyt < [0 22 (6.6)

Our aim in this section is to prove that u is a weak solution in the sense of Definition 6.1.
Let us consider ¥ € C([0,00), P(H*(R%))9) and let us apply to (6.3) the inner product
(-, U)r2. Then we get

((un)t, \If>(L2(Rd))d + <PnPdiV(un ® un), \I’>(L2(Rd))d — I/<Aun, \I’>(L2(Rd))d =0.

Hence

d
dt

So, integrating in ¢ we get

(un, \I]>(L2(Rd))d — <un, \I]t>(L2(Rd))d + <div(un & un), Pn\I/>(L2(Rd))d + V<Aun, ‘1J>(L2(Rd))d =0.

/ un (b, 3) - (1, a:)d:n—/RdPnuo( )0 (0, xdfv—/ ds/Rdun 5,2) @ n(s,7) : VP, U(s, )dx
/ds/Rdunsa: \Iftsmd:n—VZ/ ds/ Ol (5, 2)0 0 (s, 7)d. (6.30)

By (6.26) for any t

lim [ un(t2) - U, 2)de = / u(t,z) - (b, ) da. (6.31)
n—oo Rd R4
By the definition of P,, we have
lim P,up(x) - ¥(0,2)dr = / uo(x) - ¥(0, z)dz. (6.32)
R4

n—oo Rd

By (6.24) we have

t t
lim ds/ U (s, z) - Uy(s,x)de = / ds/ u(s, ) - We(s,x)dx. (6.33)
R4 Rd

n—oo 0

By (6.25) we have

t t
lim 1// ds [ Ol (s,2)0,V (s, x)dx = V/ ds [ Ot (s,2)0,V (s, x)dx. (6.34)
0 R4 0

n—oo Rd

The above limits (6.31)—(6.34) are straightforward consequences of Proposition 6.11. By
taking the limit in (6.30), Leray’s Theorem will be a consequence of the following claim,
which is the delicate point of this part of the proof.
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Claim 6.18. We have

t t
lim ds/ Un(s,2) @ up(s,z) : VP, ¥ (s, x)dx :/ ds/ u(s,z) @u(s,x): VU(s,z)dz.
n=o0 Jo R 0 R4
(6.35)

Proof of Claim 6.18. The 1st step, algebraic, is to write
t t
/ ds/ Un(8,2) @up(s,z): VP, U(s,z)dr = / ds/ Un (8, T) @up(s,x): VU(s,x)dz
R4 0 Rd
t
—I—/ ds/ Un(8,2) @up(s,z): V(P,¥U(s,z) — ¥(s,z))dr.
0 Rd
Claim 6.18 will be a consequence of

t t
lim ds/ Un(8,2) @ up(s,z) : V¥(s,x)dx = / ds/ u(s,x) @u(s,x) : VU(s,z)dz.
n—oo fq Rd 0 R
(6.36)
and of

lim [ ds /R tn(5,7) ® (s, 2) : V(Pw(s,z) — (s, 2))dz = 0. (6.37)

n—oo 0

In order to prove (6.36)-(6.37) we observe that since ¥ € C([0,00), (H'(R%))?%) for any
e > 0 there is a compact set K C R? s.t.

sup [[VU(s, )| L2(ra\ k) < € (6.38)
s€[0,T

(6.38) is elementary to prove and it is assumed in the sequel. Now we show (6.36).
By Hoélder, (6.38), Gagliardo—Nirenberg and the energy equality (6.22) we have

t T
]/ ds/ Un (S, 2) @ up(s,z): VU(s,z)dz| < / ds|lun @ unll L2 ray | VY ()| L2 (Re\ K
RI\K 0

< T3 |luy, ® unll 4 (011, LQ(Rd))HV‘I’HLoo(OT] L2(R\K))

4 d/2
< T MlunlFaqgen |, 3 .7 ST MunlZoy IV unl Potgen 3 .,
da d _
< €T ||unHL(oo( O;’] L2(Rd )||vun‘|22([0,T],L2(Rd)) S Z-:TT||u0HL2(]Rd)‘

Hence, to prove (6.36) it is enough to show for any compact set K C R?

t t
lim ds/ Un (8, 2) @ up(s,x) : VU(s,z)dx = / ds/ u(s,x) @u(s,x): VU(s,z)d.
o0 Jo K 0 K
(6.39)
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The limit (6.39) is a consequence of

lim u, ® up, = u®u in LY([0,T], L*(K))

n—oo

which in turn is a consequence of

lim u, = v in L*([0,T], LY(K)). (6.40)
n—oo
Let us consider y € C°(R?,[0,1]) s.t. x = 1 in K, Q := suppy and with VXl poo(mey < 1.
Then by Gagliardo Nirenberg we have

d/4 1-d/4 d/4
| £llaczey < CULEN iy (XY F 1Lty + 1 £ VX z2aa) < Ol 15 g

1 4-d d
Using this inequality and Holder (using 3= 5 + §)

d
|w — w2 [OT]L4(K S M = Un||L2 ||U UTLHHI(]Rd ||L20T)
o 4
< [u— uwymnmﬁmTwu wmmwmﬁmm

d
Hu - Un”22([0,T},H1(Rd))

= flu— U"HL;Z[O T],L2(Q

n—o0

1—4
< (2 (1+\F)||UOH L2(R4)) a)i lu = unllp2o.71.02(0) 0
where the limit holds because u, "=° u in L=([0,T], (L2(2))%), as we saw earlier. This
yields (6.40) and so also (6.39).
The proof of (6.37) will follow from the fact that for any € > 0 there is N s.t. n > N implies

sup [[V(P¥(s) — V(s))|lL2(ra) < €
s€[0,T

In turn this, like (6.38), is a simple consequence of the fact that ¥ € C1([0, 00), (H'(R%))%).
To prove (6.37) observe that

\r.h.s. of (637)’ < Hun X unHLl([OvTL(LQ(Rd))dz)||V(Pn\Il — \II)HL2([O,T],(L2(R‘1) )d)

1-d/4 d/4
< 5”“11”%2([0 T],(LA(R))d) = 5||”un||L4(Rd H%Z(o,T) S 5|H|Un”L2(H£d)||v nll2 /

2@ 220m)
9 —d 0
< 5” nHLoo [é T],L2 (R4)) ||vun||L2([0 T],L2(R4)) < Tl 45Hu0”?L2(Rd))d Ej) 0
This completes the proof of Leray’s Theorem 6.2.
O

In the next section we prove the 2nd Leray’s theorem, that is Theorem 6.3. Uniqueness
in this case will follow from the fact that we will frame the problem as a fixed point argument
using a contraction.
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7 Well posedness in Sobolev spaces

For this section see [1].

Consider the equation (6.7). If Qng(u,u) is a force like the f in (5.1), we can interpret
the solutions of (6.7) as solutions of a linear heat equation (5.1). We denote by B(u,v) the
weak solution of

{@B(u, v) —vAB(u,v) = Qns(u,v)

B(u,v)|¢=0 = 0. (7.1)

Then, when we are within the scope of the theory of Sect. 5, the solutions of (6.7) can be
rewritten as
u=e""“ug + B(u,u). (7.2)

In the sequel we will use repeatedly the following abstract lemma.

Lemma 7.1. Let X be a Banach space and B : X?> — X a continuous bilinear map. Let
a < m where || Bl| = sup|g|=|y|=1 | B(x,y)||. Then for any zo € X in Dx(0,a) (the open

ball of center 0 and radius o in X ) there exists a unique x € Dx(0,2a) s.t. x = xo+B(x,z).

Proof. We consider the map
xr — xo + B(x, ). (7.3)

We will frame this as a fixed point problem in Dx (0, 2c).
First of all, we claim that the map (7.3) leaves D x (0, 2a) invariant. Indeed

<2
—
lzo + B, 2)| < l|lzoll + | B(z, 2)]l < llwoll + [ Blllll|* < a: (1 + 4] Blle) < 2
——

<1

Next, we check that the map (7.3) is a contraction. Indeed
1B(z,x) = By, y)ll < [ B(x —y, )|l + [ By, z — y)|| < 4o B[||z — |

where 4a||B|| < 1. So the map (7.3) has a unique fixed point in D x (0, 2a).
O
Using the above lemma we will prove the following well posedness result.

Theorem 7.2. For any ug € (H%_l(Rd))d there exists a T and a solution of (7.2) with
u € L4([0, 7], (H%(Rd))d). This solution is unique. Furthermore we have

we C([0, 7], (H2 ' (RY)Y), Vu € L*([0,T], (H: " (RY)®). (7.4)
Let T, be the lifespan of the solution. Then:

(1) there exists a c s.t.

HUOII(H%,l(Rd))d <cv =Ty = o0;
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(2) if Ty, < o< then
Tug
4

dt = oo. 7.5
L s = (75)

(3) if Ty, < oo then

Tug

/O Hvu(t)\@%ﬂdt = 00. (7.6)

Moreover, if u and v are solutions, then

o 2 _ 2
000) = 0,4 g+ | 1T,
(7.7)
v fg (llut)4 HlvEI* 4y )dt’
(Rd))d

< |luo — v0|| (T @y (HZ

e
TH(Rd))
where C' is a fived constant.

Remark 7.3. While for d = 2 the solutlons provided by Theorem 7.2 are exactly Leray’s
solutions, for d = 3 we could have ug € (H?2 (]R3)) with ug ¢ (L?(R3))3. The corresponding
solutions of the Navier Stokes equations provided by Theorem 7.2 are not Leray’s solutions.

Remark 7.4. Notice that the finite lifespan (7.5) is relevant only for d = 3. Furthermore, if
T, < oo, it has been shown that

HuHLOO([O,TuO],(Hl(R?’))B) = %0

but the proof is a much harder.
There is no blow up at 7' = oco. Indeed, we will see in Sect. 8.1 that if T;,, = oo we have

i 0l e, =

We will assume for the moment Theorem 7.2 and prove the following.

8 Proof of Theorem 7.2

This section is devoted to the proof of this theorem. First we have the following lemma.

Lemma 8.1. Let d = 2,3. There exists a constant C > 0 s.t.
[Qns(u, )| [oll a5

< Clul s TP

(8.1)

. d
H27?(R4,R4) — (Rd R4)

Proof. If d = 2 we have

2
1Qus ()l < D7 (106" -1 + 1060 ) | 1)
7,k=1
2
.
<23 |l 2 < Cllullgallollzs < Cllull ol

j’k
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. 1
by the Sobolev embedding H 2 (R?) C L*(R?) , since § = 5 — Z. This yields (8.1) for d = 2.
For d=3

2
Qs (w0l ) < Z (198 -y gy + 108 ) )

S (Vo] + [[uVol S (V)|

-1 R3 + HUVUHL%(RS

A3 (R3) L3 (®3)

where we are using the Sobolev embedding H %(R?’) C L3(R3) (since 3 = £ —
turn by duality implies L%(RS) CH _%(R:s).
Hence, by 2 5= 2 +1 5 and Holder,

) which in

ool

19N (u,v)|]

iy S IVllzz@llvloom) + lelloo @l Volas) < 2l g vlin )

This yields (8.1) for d = 3. O
A straightforward consequence of Lemma 8.1 is the following for C the constant in
Lemma 8.1.

Lemma 8.2. Let d =2,3. Then for u,v € L*([0,T], (H%(Rd,Rd)) we have

198080l 7y 8-y < N1 52 i 1o 5 gy 52
O

Proof of Theorem 7.2. By Theorem 5.4 we have for s = % —landp=4
1500 gy 15, = W D gl € st Moy

= v Qus(u,v)] <Cv- 4||UH

L2((0,7), %2 4([0,T), H*H ||L4(OT]H )

So in the Banach space X = L*([0,T], H%) we have || B|| < Cri. Obviously this is the
3

vi
same as 77 < 4”3” Our strategy is to prove

3

vt v 1
Lo L 8.4
e woll o sty < 36 < 47 &4

where e”t2qy plays the role of xg in the abstract Lemma 7.1.

If (8.4) happens, that is if the L.h.s.of (8.4) is less than an a <

then by Lemma 7.1

ﬁ

BT
([0, 7], H*") with norm

W~

we can conclude that problem (7.2) admits a unique solution in L
3

less than 2o < %.

We consider two distinct proofs of (8.4). The 1st, simpler, is valid only if HUOHH%* is

sufficiently small and shows that (8.4) holds for all T'. In the second proof, which is general,
we drop the assumption that Huo”H ¢, is small, and we prove (8.4) for T sufficiently small.
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Step 1: small initial data. By Theorem 5.4 we have for s = g —landp=4

vt/ vt

_1 _1
le” ol , = [lle” ol vz ey < v 7 lluollgre = v luoll g2 (8.5)

LA0.1].112)

So, if HUOHH%* < 4¢ then (8.4) is true for any 7' > 0. In particular T, = oo and we have
just proved (1) in Theorem 7.2.

Step 2: possibly large initial data. Now we consider the case when ug € H g_l(Rd)
is possibly large. We consider a low—high energy decomposition: ug = Pyuo + X /=x>,u0
where we pick p = p,, large enough so that

14

Ixy=zspuoll ;g1 < 30"
Then by (8.5) we get

vt vt/ vt/
<
e ol oy 2ty < N Xzt gy syt I Potioll oy st
s (8.6)
utA
80+H€ P, O”L4(OT]H )

where we made the high energy contribution small by the choice of p large.
We now exploit the fact that we have the freedom to choose T" small, in order to make the
contribution to (8.6) small too. Indeed we have

o) T ||eytAX[0,p}(F) 0”

. A
= €5 xi0 1 (V=B)P ﬁ>

< VlE" X0, (V=L uol|

vtA
P
2P o .

i

UOHL4([0,T],H%—1)

_ vt
Lol % )*\/ﬁHe Ppuo”L‘l([O,T},H%*l)

1
< (P°T) 1|2 Pyuo T)i 1P puoll g1 < (p 215 |luo|, 4

Les((0,7),HE 1) = 0 gi1 s sC
if we choose T small enough so that the last inequality holds, that is if we choose T' such

that
4

NI

14

1
8P2CHuOHH%71

(8.7)

So all terms in the r.h.s. of (8.6) have been made small enough s.t.

3
vtA vi 1
- d— — <
I ol oz %) < 30 < BT
that is we obtained (8.4).

We have proved the 1st sentence in the statement of Theorem 7.2.
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Now we turn to the proof that a solution u € L*([0,T7, H%) satisfies (7.4).
By (8.1) we have Qng(u,u) € LQ([O,T],Hg_Q). Then it must be remarked that by its
definition B(u,u) is a solution in the sense of Definition 5.1 of the Heat Equation written
above (7.2). Similarly, by Theorem 5.2 also e’*“uq is a solution of the homogeneous Heat
Equation with initial value ug. Hence, since u satisfies (7.2), then u is the solution of the
Heat Equation (6.7), where the latter can be framed in terms of the theory in Sect. 5 for
s =9 — 1. Then by Theorem 5.2 we have u € CO([O,T],H%_l) and Vu € LQ([O,T],Hg).
This yields (7.4).
We turn now to the proof of (7.7). We consider two solutions u and v, and set w = u — v.
Then
wy —vAw = Qng(w, u + v)
{ w(0) = up — vo

where we used the symmetry Qng(u,v) = Qns(v,u) and

QNS(U —v,u +U) - QNS(ua ’LL) - QNS(’qu) + QNS(U,’U) - QNS(U7U) .
0

By the energy estimate (5.5) for s = % — 1 we have

t t
. 2 2 _ 2
Ay = Hw(t)HH%1 + QV/O va(t’)HH%Adt’ = HwOHH%71 + 2/0 (Ons(w,u+ v),w>H%71(t/)dt/.
Claim 8.3. We have
(Qns(ab).c) g1 < Cllall o bl acs el 4. (8.8)

Proof. Indeed, trading derivatives we have
<QNS(Q, b)v C>H%—1 < ” QNS(CL7 b) HH%—Q ||CHH%
and by (8.1) we have

This proves Claim 8.3.

Now for N(t) := ||u(t)HH% + Hv(t)||H% by Claim 8.3 we have

(ONVwE g dt'.

t
2 /
B < ol +2 [ @)l e ¥

By the interpolation estimate in Lemma 4.1 we have

lw (@)l

1

1 1
/ 2 / 2
izt < @I, Ve,
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This implies

3
2

t 1
B <l g, +2 [ I NOIVu)]

d
31 -1

3

Using the inequality ab < %a‘l + %b%, which follows by

1 1 3
log(ab) = 1 log(a) + §log(b%) < log <a4 + 4b§> ,

dt’.

4 4
we get
3 3
the integrand = ( (@)%, N@w i (2)") (Lovey2, )
e integrand = | |lw i v 1 31/\ w )H%*l
< Sl , N + o[ Tu(@)?
< i@, i
Then

C t t
2 7\ 112 Ly / N2 /
B < ol + 35 [ 0@y N+ [Tl .

In other words, by the definition of A,

t
2 N2 /
)12, +20 [ IVl d

C t t
<ol g, + 55 [ 0y N @)+ v | [Tuten?

so that, if we set .
X(t) = lw®l 4, + V/O Vw7, 4, dt
we have oo
X(0) < Juollyg,+ 55 [ @) 4 N @)ar.
Hence

C t
X(t) < flwoll% g, + 1/3/0 XN (t)dt'

and so by Gronwall’s inequality

t
2 N2 / 2 S [N )at
o) g, v [ IV g < ] g, e O

This proves the stability inequality (7.7)
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We now consider the blow up criterion (7.5). Suppose that u(t) is a solution in [0,7")

with
T
/Hu()H4 o dt < 0.
0

1

Notice that then u € L*([0, 7], Hd%) and
1Qns(u, )l

2
L2([0,T],I'1r%*2 < Cllu H (o, (8.9)
We claim that we can extend u(¢) beyond T'.
Claim 8.4. There exists a 7 > 0 s.t. u extends in a solution in L*([0, T'+7), jiten (R4, R%)).
First of all we set
9(§) = sup [a(t’,)|.
0<t/'<T
Claim 8.5. We have |¢|2 g € L2(R9).
Proof of Claim 8.5. By (5.14) for s = g — 1 and by (8.1) we have

1
2 2
d_ _ ~
€127 gl 2 = / €] 2(su]p Iu(t’,£)|> dg
R4 0<t'<t

< luoll ., ¢+ + —lIQnsl

H§_1 (2v ) L2([0,T], H?_Q)
c 2
< luoll ;4 + m” ull Lqom.att) <

This proves Claim 8.5.
Proof of Claim 8.4. Claim 8.5 implies

/ €172 1g(e)[2de P25 0
[€]>p

Thus there exists p > 0 s.t for any preassigned ¢ > 0
/ €197 2|a(t, €)2de < (ev)? for all t € [0,T).
1€1=p

Now, recalling the splitting in high and low energies in the proof of the 1st sentence in the
statement of Theorem 7.2, there exists a fixed 7 > 0 s.t. the lifespan of the solution with
initial datum wu(t) is bounded below by 7 independently of ¢ € [0,T). Indeed there exists a
¢1 > 0 independent from t € [0,T) s.t.

4

W

14

1
803 Cllut)] 4,

>c1 > 0.
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This follows from the fact that
d_
a4+ < ]2 Ygllr2 < o0

So we can take 7 = ¢1. Then T}, > T+ 7 and this yields Claim 8.4.
Let us now discuss the blow up criterion (7.6). Suppose that T, < co and that

Ty
Cia ::/ "IV . dt < oo (8.10)
0 Hz2

Since we have (7.5) and
A0, 7], (% (RY)) € L2([0. 7], (727 (R)h) 0 L2((0, 7], (73 (R) ™)
it follows that since we must have (7.5), then (8.10) implies that

lim lu(?)]]

T—Ty, Loo([()’T]’H%fl) =00 (811)

For 0 >t <T < T,, we have, by (8.8) and interpolation,
t
@I 4, + 2V/ IVuI, g dt" = lult) o, + / (QQu(t),u(t)), u(t")) , 4_,dt’
2 2
SO g+ Cl [ s 17017

t
<) gy +Ca [ Nu)]l e VUl 4 dt’
H?2 0 H?2 H?2

(8.12)
and so ) )
<
12 g gy gy < IOV gy + CaCrallull
But this means that
1
- 2012 2
lell oy sr8-1) < 5CaCr2 + 5 \/C CLa + 4llu(0)lI 4, < oo,
in contradicting (8.11). This contradiction proves the blow up criterion (7.6).
The proof of Theorem 7.2 is completed. O

Corollary 8.6. In the case d = 2, Theorem 7.2 implies Leray’s Theorem 6.3 for d = 2

Proof. By the Leray’s Theorem 6.2 we know that given a divergence free uy € L%(R?)
there are weak solutions in the sense of Leray with u € L>([0,00), L?(R? R?)) and Vu €
L%(]0,00), L?*(R2?,R%)). Interpolating, for each such a solution we have

el g llzs < HHUHLzHVUHLzHL4 < HUHLoomI!VUHLQLQ
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and so we obtain also u € L*([0, oo),H%(RQ,RQ)).
By Lemma 8.2 we know that this implies

Ons(u,u) € L*([0,00), H1(R? R?)).

Notice that the right hand side of (6.7) satisfies the hypothesis of the force term in the
linear heat equation (5.1). As a weak solution of the Navier Stokes equation in the sense
of Definition 6.1, u is then also a solution of the linear heat equation (5.1) in the sense of
Definition 5.1. This means that it is also a solution of (7.2). Since by Theorem 7.2 such
solution is a unique, we conclude that the solution of Leray’s Theorem 6.2 in the case d = 2
is unique. Furthermore by Theorem 7.2 we know also that u € C°([0, 00), L?(R?,R?)).

We now turn to the energy identity. By Leray’s Theorem 6.2 we know that

t
a2 e + 20 /0 I9u(t) |22 ey @t < o2 gy

We want now to prove that < can be replaced by = in this formula. As we have mentioned
above, u solves in the sense of Definition 5.1 the problem

O — v u = Qns(u,u) with Qns(u,u) € L*(Ry, H 1(R? R?)),
Then, by Theorem 5.2 for s = 0 the identity (5.5) yields

t t
()17 +2V/O IVu()[I72dt" = [luol72 +2/0 (Qns(u(t), u(t)), ut)) r2dt"

By Lemma 6.8 we have the cancelation
(Ons(u,u),u) = (P(div(u ® u),u) = (div(u ® u),u) = 0.

This completes the proof, by giving the energy identity. O

8.1 Global solutions.

We start with the following lemma.

Lemma 8.7. There exists €1 > 0 s.t. for HUOHH%’I < &1 the function t — Hu(t)||h.[%71 is
decreasing.

Proof. From Theorem 7.2 we know that for e; € (0,&0] then we have Hu(t)”Hd L S

59— ~

HUOHH%‘I < ¢ for all t. Now, given any pair 0 < t; < t2 we have like in (8.12)

to to
2 N2 / 2 ! / /
lut)I 4, +2v / IVa®)IP 4 dt < Ju)IP 4, +C / luC@)l| g, Va4, dt

I 4
H?2
2 "2 2
/ /
<)l g, + Cen /t1 IVu)I, ¢, dt's
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where C' is a fixed constant. Choosing 1 s.t. Ce; < v, it follows

to
2 2 2
Juto) g+ [ ITUOI e < el (813)
Hence t — Hu(t)HH%1 is decreasing. O

Proposition 8.8. Let d =3 and let ug € H%(R3,R3) be s.t. T,y = 00. Then

i O3 o g, = O (8.14)

Proof. Since ug € H 2 (R3,R?)) we have also uy € L?(R3,R3)), and u is also a weak solution
in the sense of Leray. Hence it satisfies the energy inequality

¢
o) + 20 [ IV gt < ol
which implies in particular

[Vull 2w, 12 m3)) \/—HU0HL2(R3 and
lull oo (my ,L2®3)) < lluoll£2(rs3)-

So by Hoélder inequality and the interpolation of Lemma 4.1, we have

1
|’“”L4(R+,H%(R3)) < %HUOHLZ(R?’)-

This implies that for 1 > € > 0 arbitrarily small, there exists t. > 0 s.t. ||u(te) <e

3 sy < €
H?2 (R3)
So, in the half-line [t., 00) the function wu(t) is a small solution as of Theorem 7.2. But then

||u(t)HH%(R3) < e for all t > t. by Lemma 8.7, and, since € > 0 is arbitrary, we have the

limit in (8.14). O

9 The case of initial data in L?(R3)

It is possible to prove the following theorem.

Theorem 9.1. For any divergence free ug € L3>(R3 R3) there is a T > 0 and a unique
solution u € C°([0,T), L3(R3,R3)) of

u = e""®uy + B(u,u). (7.2)

Furthermore there exists a €3, > 0 s.t. for ||ug|/ps < €3, we have T = oco. Furthermore, if
ug € H'2(R3,R3), the life span is the same of Theorem 7.2.

Exercise 9.2. Prove that the mapping H'/2(R3,R3) — L3(R?, R?) is not surjective.
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Exercise 9.3. Prove that the subspace of divergence free vector fields in H'/2(R3,R3) is
closed in H'/2(R3,R?). Prove the same for with H'/2(R3, R?) replaced by L3(R3, R?).

Exercise 9.4. Prove that the Sobolev embedding from the subspace of divergence free
vector fields in H'/2(R3,R3) to the subspace of divergence free vector fields in L3(R?, R?)
is not surjective.

Exercise 9.5. Pick a divergence free ug belonging to L?(R?, R?) but not to H/?(R3, R?).
Show that there exists a sequence of divergence free vector fields {u((]n)} in HY2(R3 R3)

with u(()n) — up in L3(R3,R3). Show also that Hu(()n)HHl/g — 00.

Exercise 9.6. Show that it is possible to define divergence free sequences {v(()")} in H'/2(R3,R3)
with [[vg || 12 — 0o and [jvg || s — 0.

Remark 9.7. For a sequence such as in Exercise 9.6, for n > 1 the corresponding solutions
of the NS equation are globally defined in time by Theorem 9.14, while Theorem 7.2 is able
to guarantee only on short intervals of time.

To prove Theorem 9.14 we will apply the abstract Lemma 7.1 in an appropriate Ba-
nach space X. The striking fact though, is that the space X will not be of the form
C°([0,T], L3(R3,R?)). This because if X where this space, then the bilinear form B defined
by (7.1) is known not to be continuous. It turns out that to get the right Banach space X,
has required a certain degree of imagination and insight.

Definition 9.8. For p € [3,00] and T € (0, 00) we set

(SIS

G2 u(t) v < o0}

(9.1)

Kp(T) = {u € C°((0, T], LP(R*,R?)) : [[ull, () = tsglf;}(vt)
€(0,

and for p € [1,3)

ol

Ky(T) = {u € 0.7, /R B) s el o= sup (0023 u0)s < o)

’ 9.2)
We denote by K,(oco) the spaces defined as above, with (0,7 replaced by (0, c0).
We recall that the solution of the heat equation w; — vAu = 0 is e>f = K, x f
2|2
where K(z) := (47rut)_%e_%. Notice that K. (z) = (Vt)_%K((l/t)_%l'), where K(z) :=

||

(47)_%6_7 and where I?(‘f) e
Notice that for ug € L3<R3) and p > 3 we have from (1.15),
3
2

1_1
e Ao Lo(rs) < (dmvt) (5-%) o]l 3y for all p > 3, (9:3)

it can be proved that e®?uy € C(R4, LP), and so e"2ug € Kp(oo).
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Lemma 9.9. Let ug € L3(R3,R3) and p > 3. Then

: trA
Jim fle™Puoll () = 0. (9.4)

Proof. For any € > 0 there exists ¢ € L3(R3 R3) N LP(R3,R3) s.t. ||u — ¢||;s < €. Then by
(9.3) we have

Ju = Sy < (4m)2 Ve,

Since [|e*2¢||» < ||B] L, it follows

3(1_1 3(1_1
"¢\l r) = sup (vt :(3-3) 2l < (vT :(-3) ¢llr — 0 as T — 0.
p(T) 1 (0.T]

O
Lemma 9.10. Let p, q and r satisfy

1 1
0<-+-«1

p q
1 1 1 1 (9-5)
-< -+ -<g+-
r p q 3

Then the bilinear map B defined in (7.1) maps Kp(T) x Ky (T) — K,(T) and there is a
constant C independent from T s.t.

1B(w, )|k, (1) < Cllullr,(m)llvll (1) (9.6)
To prove Lemma 9.10 we consider for any m = 1,2, 3 the problem

{(me)t — VAL f =Py f

Lo f(0,2) = 0 (9.7)

(Lp f is by definition the solution of the above heat equation). Then by (10.8) and (6.9)
for appropriate constants c;; we have

—_— 3 t ’ 2 ~
Lnf(t,€) = jn / eI g el 2, )dt. (9.8)
k=1 0

This means, for I'ji, (¢, ) the inverse Fourier transform of e*t”|§|2£j£k§m|£\*2,
3 t N
Lnf(t)= > ¢k / Digm(t — ') 5 f(t")at'. (9.9)
0

J,k=1

We claim the following.
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Claim 9.11. We have for a fixed C' > 0
Tk (t, )] < OVt + |2|)~4 (9.10)
Proof. Tt is elementary that Tjg, (t,2) = (/¢) 72T jgm ((vt) ~1/22) with f]km(x) = e*|5|2§j§k§m|§]*2
Then (9.10) is a consequence of
IV e (2)] < C(1+ )~ (9-11)
Notice that T'jg, € C°(R*) N L>®(R?), and this is straightforward by the rapid decay to 0
at infinity of e_|§|2£j£k£m|£]_2. Hence, to prove (9.11) it suffices to consider |x| > 1.For xq

a smooth cutoff of compact support equal to 1 near 0 and with y; = 1 — o, we set

3

Dy () = (2m)72 /R L0 (l€) e g egm €| P
+(2m) "2 /IR e (o) € gl 2

The 1st term in the r.h.s. is

S [ ldden ol
|§l<]x]~1
For the other term we set L := iﬁ - V¢ noticing that Le €% = ¢71&% Then, the 2nd term

is
_3 _ie. —lef? _
m)F [ (v (ol P 6alel ) e
The absolute value of the integrand is for fixed C
28 ()] < Claf~%e™ g,
Here we used that in the support of V¢ (x1 (|z]€)) we have |z| ~ |¢|71. So the last integral

is bounded
_ _ _ _ 2
<lal 6/ €[5 + |2 6/ eIeP g
1>)¢1> x|~ 1 |€|>1

where the 2nd term is ~ |2|7% < |z|~* and the 1st term is ~ |z|~%|z|?> = |z|~*. This

completes the proof of Claim 9.11.
O

Completion of proof of Lemma 9.10. By (9.10) we have by Young’s inequality for
convolutions and Hélder’s inequality for the tensor product of u and v the bound (here
o141 -Landi=141
a

| B(u,v)|;» < C1 Z / HFgmk )HLa Hu(t’) ®U(t/)HLﬁ dt’

jym.k

5 [ st = )l B o]
jmk

1,1 1

< / -y 26 ) 0Dl ol



where in the 3rd line we used

- - o\
It = Ol ey [T 1y = =02 (14 ) e
1 1 1
()2 )3 (1 Jol) gy ~ (¢~ )20 T)
= (t— t’)*%*%@*%*%),
We then conclude
_3(1_1
1B(u, )l < Ct2G73) Jlull o 10l e, o) (9.12)
where we the fact that V «, 8 € (—o00,1) there is a C(a, §) € Ry s.t.
t
/0 (t—t)" ) Pdt' < Cla, Bt~ for all t > 0 (9.13)
and
Lo8/1 1 1y 8/2 1 1y_1 3/2 1y 1 3
2 2\p q r 2\3 p ¢/ 2 2\3 r) 2 2r

Notice that in the inequalities in (9.5) we need:

1 1 1
o 5 = — + = < 1 in order for u ® v to belong to the Lebesgue space LA (R3);
P q
11, . Ly . .
e 0 < — + — is needed because otherwise in (9.12) we get (/)™ and the integral is
p q
undefined;
1 1 1
e — < — + — is needed for a > 1;
r p g
1 1 1 1 1 3/1 1 1
e —+— < -+ —isneeded toget —— — - [ =+ — — — | > —1 in the exponent of (t —t)
p qg 3 T 2 2\p q r
in (9.12).

O]

Exercise 9.12. Prove (9.13). Hint, split the integral into sum of integrals in [0,¢/2] and
[t/2,1].
We have the following fact.
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Proposition 9.13. For any p € (3,00] there exists a constant €, > 0 s.t. if
e uoll i, (1) < Epu (9.14)

then there exists and is unique w in the ball of center 0 and radius 2ep, in K,(T) which
satisfies (7.2).

Proof. Setting r = q¢ = p, we see that for p > 3 we have B : K,(T') x K,(T) — K,(T) is
bounded and with norm that admits a finite upper bound independent from T'. The proof
follows then from the abstract Lemma 7.1. O

Theorem 9.14. For anyug € L3(R3,R?) thereis aT > 0 and solution v € C°([0,T), L3(R3, R3))
of (7.2) which is unique. Furthermore there exists a €3 > 0 s.t. for ||ugl|rs < €3, we have
T = o0.

+
Proof. We have e'“uy € K,(T) for any p > 3, see (9.3). Furthermore, HemuoHKp(T) =0

for p > 3 by Lemma 9.9. Then we can apply Proposition 9.13 concluding that there exists
a solution u of (7.2) in K¢(T') for T > 0 small enough. Applying Lemma 9.10 for p = ¢ =6
and 7 = 3 we get B(u,u) € C°([0,T], L?), and so u € C°([0, T], L?).

We assume now that there are two solutions u; and wug. Setting ug; = us — u; and w; =
B(uj,uj) we have

{3tU21 —vAug = fa with

U21(0) =0
for = 2Q(e"" ug, ua1) + Q(wa, ua1) + Q(wy, uay).
By L%(R3) — H_%(RS’), which is the dual of Sobolev’s Embedding H%(R:s) — L3(R3), we

have

1Q(u, v)
Then, by (5.5) and entering the definition of fo;

)S lu @ .

b sy S @ ll g o) < llullzsfollzs.

HH*%(RB L3 (Rr3

t t
2 /N2 / / / /
e (012, +20 [ IV (@)t <4 [ (500, g
t
vt' A / /
§2/0 1Q(e™ Puo, ug1 )l 3 IVuar ()], dt

t
+ 2/ 1@z, uar) + Qs um) |, [Vua ()], ' (9.15)
0

We bound the last line with for j = 1,2
t t
!/ !/ / / /
2/0 1Q(wj, uan)ll g [Vuar ()], dt” S ||wj\K3(t)/0 [ur ()| 3l Vuzr (E)]] -y di

t
Sl [ IV @R, jar. (9.16)
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where in the last line we used Sobolev’s Embedding H %(R:s) — L3(R3).
So, the last line of (9.15) is

t
S (lwll kg + ||w2||K3(t))/O HVU21(t')||2_%dt'- (9.17)

We split now
uy = uél) + uéQ) with Hu(()l)HL:a < € and u(()z) cLl’nr?

and we bound similarly to (9.16)

t t
vt'A, (1) 1
/0 lQ(e “ug” ua)l, g [Vuz ()], -yt S Mg 1o /0 [z (#)]2,_y d

Finally, we bound

t
/O Qe Aul?  usn)I| [ Vuar (#)]] g ¥

t t
IA 2 /A 2
< /0 le"" 2ul? @ st |y [Vusr ()] -yt < /0 e A @ usn | 4[| Vot (#)]] -y ¥

5 /
2.dt.
H?2

Nl

t t 1
/ 2 2 5
= P e P e O o P R A
0 0 H

So we get

t t
1
O,y +20 [ 1V (@, 5 (lrllo + el + 1) [ 100 @12,y

_l’_

[ @ ar+ S @i [ 2t

Taking C large, and ¢ small, so that [Jw1]| g, ) + l|w2 | &y ) + ||u(()1) |13 < 3e with e sufficiently
small, we obtain

t 4 t
C
2 2 (2))14 2
luar (I, +V/0 IVuar (B, _y dt’ < L) ||L6/0 gt |7,y dt".

Gronwall’s Inequality implies that ug1(t') = 0 for ¢ € [0,¢] with ¢ > 0 sufficiently small.
The above argument shows that the set

{t S [O,T) tu91 =0 in [O,t]}
is open (and, obviously, non empty) in [0, T'). On the other hand, since ug; € C°([0,T), L3(R3,R?))

it is also closed in [0,7"). Hence it coincides with [0, 7).
O
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Remark 9.15. Let ug € H%(R?’,RB). Then it can be proved that if T3 > 0 is the lifespan
of the corresponding solution u € C°([0,T3), L*(R3,R?)) provided by Theorem 9.14 and if
T, > 0 is the lifespan of the solution provided by Theorem 7.2, we have T3 = T,,,. We will
prove the simpler result in Proposition 9.16.

Proposition 9.16. Let ug € H%(R?’,R3). There there exists €3, > 0 s.t. for |luol|13ms) <
€3, and if Ty, > 0 is the lifespan of the solution provided by Theorem 7.2, we have T, = 0.

Proof. Taking €3, > 0 sufficiently small we can assume by Theorem 9.14 that u € C°([0, 00), L?).
In fact, if it is sufficiently small we can prove |[u| Lo (j0,00),23) < Cvlluol| s for a fixed C,, > 0.
Suppose that T3, < co. Then by Theorem 7.2 we have the blow up
T
lim [ Vu(t)|]? 1 dt = co. (9.18)
T /Tuy Jo H?

By Theorem 7.2 and by (5.5), for 0 < t < T < T, we have

t t
It +20 [ IV e = ol +2 [ (e Fult)ule) . ©019)
By Sobolev’s Embedding H%(R?), R3) — L3(R3,R3) we obtain
o V) g | = oV, V) 2] < gVl < Cllll sl 9,

Then
2 ! 2 2 ! 2
/ /< o / /
luII, 4 +2V/O Va3 dt < Jluoll”. 4 + CllullL (R+,L3)/O IV, , dt
t
<l + CuClluols | IVule) Iy
So, for C,C||lug||s < v, we get
2 ! 2 2
% |2 . dt’ < :
luI, 4 +V/0 Va3 dt < fuoll’. 5

which contradicts (9.18).

10 Schrodinger equations
For up € S'(R%, C) the linear homogeneous Schrédinger equation is

iug + Au=0, u(0,x)=ug(x).
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By applying F we transform the above problem into

dy +il€*a =0, @(0,8) = To(§).

~ i|z|?
This yields (¢, &) = e T,(¢). We have e EI* = G(t, &) with G(t,z) = (2ti) 2e i
This follows from the following generalization of (1.2) for Rez > 0

IS

_ole? _d g, Lol
e 2 = (272) 2/ e ST 2 dy.
R4

This formula follows from the fact that both sides are holomorphic in Re z > 0 and coincide
for z € Ry. Then taking the limit z — 2i for Rez > 0 and using the continuity of F in
S'(R?,C) we get

Jqel2 d i ilel?
e 6 = (4ri)2 / e e d,
R4
Then u(t,z) = (27r)_%G(t, ) * ug(z). In particular, for ug € LP(R?,C) for p € [1,2] and by
Reisz’s interpolation defines for any ¢ > 0 an operator which we denote by

ilz—y[2

ePlug(z) = (477175)_g /Rde it up(y)dy (10.1)

which is s.t. e® : LP(R4, C) — LP (R, C) for p € [1,2] and p/ = SE7 with |8t ug]| ., <
1 1
(47rt)_d(5_7) |luol|zr by Riesz interpolation.

Remark 10.1. Notice that for no p # 2 and ¢t > 0 we have that e!®* defines a bounded
operator LP(R?,C) — LP(R?,C), see [9].

Remark 10.2. Notice that ¢! : LP(RY) — L9(R?) is a bounded operator for all 1 < p < ¢ <
0.

In the sequel, given v, w € L*(R%, C) we will use the notation

(v,w) = Re /]Rd v(x)w(x)dz.

We consider
iug + Au=f, u(0)=uge H{(R?). (10.2)

Definition 10.3. Let s € R. For f € L'([0,T], H*~2(R%)) we say that
we L=([0,T], H*(RY)), (10.3)
is a weak solution of (10.2) if
u is weakly continuous from [0, T] into H*(R%) (10.4)

(that is, if for any ¢ € H~*(R?) the function ¢ — (u(t), 1)), which is a well defined function
in L>([0, T],R), is in fact in C°([0,T],R) )
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and if for any ¥ € C2°([0, T] x R?) we have

(u(t), U(t)) 2 :/0 ((=iu(t), A () 2 + (u(t), O T(t)) 12 + (—if (¢'), U(t')) =) dt’ + (ug, ¥(0)) 2.
(10.5)
If also
u e C([0,T], H*(RY)), (10.6)
we say that u is a strong solution of (10.2).

Theorem 10.4. In Problem (10.2) assume f € L'([0,T], H*(R%)). Then there is exactly
one solution in the sense of the above definition. For any t we have:

W)l s may < llwollgsway + 121 (0,6), 55 (Ra)) - (10.7)

Furthermore, the solution is strong, that is u € C°([0, T], H*(R?)), and the following formula
holds

t
1) = ") 1 [ O i e (10.8)
0
Proof. The proof is similar to that of Theorem 5.2 and is skipped.
O
Notice that (10.8) can be written as
. t . /
u(t) = e Pug — i / e IEA r(hdt. (10.9)
0

We say that a pair (g, r) is admissible when

2 ( _> (10.10)
2<r<

7 2(2§r§ooifd:1,2§7“<ooifd:2).

2
The pair (00,2) is always admissible. The endpoint (2, dfdg) is admissible for d > 3. We
have the following important result.

Theorem 10.5 (Strichartz’s estimates). The following facts hold.

(1) For every ug € L*(R?) we have ¢®tuy € LI(R,L"(R%)) N CO(R, L2(R%)) for every
admissible (q,r). Furthermore, there exists a C s.t.

HeiAtUOHLq(R,LT(Rd)) < Clluol| 2 (10.11)
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(2) Let I be an interval and letty € 1. If (v, p) is an admissible pair and f € L (I, L” (R))
then for any admissible pair (q,r) the function

t
T(t) = / e A09) £ (s)ds (10.12)
to
belongs to LI(I, L™ (R%))NCO(T, L2(RY)) and there exists a constant C independent of
I and f s.t.
I T fllza(r,ormay < C”fHLw’(LLp’(Rd))- (10.13)
Proof. The proof is skipped. See the very readable account in [8]. O

11 The semilinear Schrodinger equation

We will consider pure power semilinear Schrédinger equations
iuy = —Au+ MulP~tu for (¢,z) € [0,00) x R?
u(0,z) = up(z)

for A € R\{0} and p > 1. Here p < d* with d* = oo for d = 1,2 and d* = 42 for d > 3.
We collect here a number of facts needed later.

(11.1)

Lemma 11.1. We have the following facts.

(1) For 1 < p < d* we have the Gagliardo—Nirenberg inequality:

11

lull o+ gty < CpllVullFagay lull (2 ey for —— =5 (11.2)

¢
p+1 T2 a
(2) The map u — |ulP~ u is a locally Lipschitz from H'(RY) to H~1(R?).
Proof. For (1) see Theorem 4.2.

41
We turn (2). By (11.2) we know that u — |u|P~'u maps H'(RY) — LPTL(RY) — L%(Rd).
Furthermore this map is locally Lipschitz:

P~ = o~ o e < C(JufP 4+ [olP) (w =) pia
L p L P
< C'(lullfprs + WIEpe)lu = vll Lo

where we have used, for w = v — u,
Ld
Ju[P~ 1y — o]l = / pr (Ju + tw[P~ Y+ tw)) dt =
0

1 1 1
d p—1
/ \u+twypldtw+/ (u—l—tw)% ((ur +tw1)? + (ug + tws)?) 2 dt—/ lu + tw|P~ dtw+
0 0 0

1 -1 p—3
Z/ (u+ tw)pT ((u1 + tw1)2 + (u2 + tw2)2) E 2(uj + tw;)dtw;
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which from |u + tw| < |u| + |v| for t € [0,1] and

— p—3

1 p=3
(1 tw) P ((wn + tw1)” + (g + twn)?) 7 2y + twy)ey| < (p = Dlu+ twf ol

yields
[P~ — JolP~ o] < pful + [0))P7Hu — o] < p2P7 (a0 |u - o],
where in the last step we used, for |u| > |v|,
(Jul + Jo))P~ < 22 HuP =t < 2271 (JufP =" + o lP7).

+1
Next, we show that we have an embedding LPT(Rd) < HY(R%). Indeed, this is
equivalent to H'(R?) < LPT!(R?) with in turn is a consequence of (11.2). O

We introduce now the following quantities:

1 A
E('U,) = Q/Rd |VU‘2dCU + m /Rd ’U‘erld.fC

(11.3)
Q) = [ fuPda,

Here F(u) is the energy, and is well defined in H'(R?) and Q(u) is the mass or charge.
Remark 11.2. Notice, passingly, that Q € C*°(H'(R%),R) while F € C*(H'(R%),R).
Definition 11.3 (Weak and strong solutions). On some interval (=S, T) a function

we Lio((—S,T), H-(RY)) nWhe((=S,T), H(R?)) (11.4)
is a weak solution of (11.1) if u(0) = up in H~Y(R?) and if for any ¥ € C°((—S,T) x R%)

we have

T
/_S ((iAut') — ilu(®) [P u(t), O () + (u(t), O, u(t)) dt' = 0. (11.5)

u is a strong solution if furthermore
ue CO(=8,T), HY(RY)) N CL((-8,T), H 1(RY)). (11.6)

Definition 11.4 (Well posedness in H'(R?)). We say that the problem (11.1) is locally
well posed if the following facts hold:

1. For any up € H*(R?) there exists and is unique a maximal strong solution w.

2. All weak solutions are strong solutions.
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3. Consider the lifespan (—S5,T") of a maximal solution v and suppose that 7' < co. Then

li = 11.
lim u(®) | = +o0 (11.7)

with an analogous formula if S < +o0.
4. Suppose ug,, — ug in H'(R?%) and consider their corresponding maximal solutions
Up € CO(=8n, Tp), HY(RY)) N CH(=Sn, Tp), H L (RY)).
Consider [—a,b] C (=S,T). Then
limu, = u in C°([—a,b], H*(RY)) N CY([—a,b]), H 1(RY)). (11.8)
The problem is globally well posed if it is locally well posed and the lifespan of all solutions
is R.

Theorem 11.5 (Local well posedness in H'(R?)). For 0 < p < d* the problem (11.1) is
locally well posed. Furthermore, the functions E(u(t)), Q(u(t)) are constant.

12 Proof of Theorem 11.5

We first prove the existence of some weak solutions.

12.1 Existence of some weak solutions

Proposition 12.1 (Local existence of weak solutions). For any ug € H'(R?) there exists
a weak solution of (11.1) in (—T1(uo),T>(uo)), with Tj(ug) > 0. Furthermore, we have

Q(u(t)) = Q(uo) and E(u(t)) < E(uo).
Proof. The proof consist of two main steps:

1. We consider a sequence of approximating ODE’s, we prove existence of a corresponding
of approximate solutions {u,} and some bonds for the u,. We show that, up to a
subsequence, the sequence {u,} has a limit w.

2. The most delicate part of the proof consists in proving that the limit u is a weak
solution of (11.1)

Step 1: truncations of the NLS. For ¢ € C*(R,[0,1]) a function with ¢ = 1
near 0 and with support contained in the ball Bga(0,7q), consider ? the operators Q,, =

2Notice that using everywhere the projections P,, = X[0,n](v/—A) would be a bad choice for this proof.
Difficulties would arise from the fact proved by C.Feffermann [6] that P, for d > 2 is bounded from L?(R%)
into itself only if p = 2. On the other hand it is elementary that the Q,, are of the form p1 * for a p € S(R?)

and so are uniformly bounded from LP(R?) into itself for all p and form a sequence converging strongly to
the identity operator.
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©(v/=A/n). The truncations Q, (|u[P~'u) are locally Lipschitz functions from H'(R%) into
—1

itself as they are compositions H!(R?) M “1(RY) w g L(R?)) of a locally Lipschitz

function, Lemma 11.1, and of bounded linear maps.

We consider the following truncations of the NLS

{iunt = —Puur Oty + AQn(|Quttn [’ Quun) for (t,2) € R x R (12.1)

Un (0) = QnUO

By the theory of ODE’s, there exists a maximal solution u, (t) € C'(=T1(n), Tz(n)), H'(R))
of (12.1) . Furthermore, if T5(n) < co then we must have blow up

li n(t = if T < 12.2
im e (8) i =-+00 if To(n) < o0 (122)

with a similar blow up phenomenon if 7' (n) < oco.
To get bounds on this sequence of functions we search for invariants of motion. First of all
we apply (-, iuy) to (12.1) and get

1d

iﬁl‘un(twﬂ = —(Prro Atn, iuy) + )‘<Qn(|Qnun|p_1QnUn)7iun>- (12.3)

We show in a moment that both terms in the r.h.s. are equal to 0. This implies

[un (@)l 22 = |Qnuollz2 < |luollr2. (12.4)

To prove that the r.h.s. of (12.3) is 0, observe that the the 1st term is 0 because the bounded
operator iP,,, A of L? (R9) into itself is antisymmetric: (iPpro A)* = —iPyy, A. For the 2nd
term we use

<Qn(|Qnun|p_1Qnun)a iun> = <‘Qnun|p_1QnUna 1Qn“n> = ARei/Rd |Qnun|p+1d$ =0.

This yields (12.4). Now we consider the energy functional associated to (12.1). Applying
(-, ung) to (12.1)

0= _<Pnr0AUm unt) + /\<Qn(|Qnun|p71Qnun)a unt> = _<Aun7 unt> + )‘<|Qnun|p71Qnun, Qnunt>

d 1 , A\ et d
= 7;\5 n — nUn d = —En(un).
GGV + 25 [ Q) = £ B (w)

En (un)
where we used the fact, easy to check, that u, = Py, u,. Hence
En(un(t)) = En(QnUO)- (12.5)
(12.4) implies T1(n) = T2(n) = oo. Indeed (12.2) does not hold because

[un (Ol = IPrrgun(®)ll g1 < nrollun (@)l 2 = nrol|Quuollz2 < nrofluollr2. (12.6)
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Let us now fix M such that ||ug|z1 < M and let us set
O, == sup{T > 0 : |Jun(t)|| g1 < 2M for |t| < 7.} (12.7)

Then by Lemma 11.1

el oo ((=0,,00),5-1) < C(M).
Our main focus is now to prove that there exists a fixed T'(M) > 0 s.t. 6, > T (M) for all
n.
First of all we prove that u, € C’O’%((—Hn, 0,,), L?) with a fixed Holder constant C'(M). By
an interpolation similar to Lemma 4.1

1 1
[un () = un(s)ll 22 S llun(t) = unls)| g llun(t) = un(s)ll -
1 1
< \/iuunH[Q/oo((,gmgn)’Hl)||unt||]2400((,9n79n)’H—1) V ‘t - S‘ (12'8)
< C(M)\/|t — s| for t,s € (=0, 0,)

Now we want to prove

lun ()12 < |luoll? + C(M)t® for some fixed b > 0 and for t € (—6,,,6y,). (12.9)
From En(un(t)) = En(QnUO) and Q(un(t)) = Q(QHUO) we get
2 2\
||un(7f)||12gl + ]m /Rd |Qnun|P+1dx = HQnUDH%Il + m - |Q%UO‘P+1dl‘.

Hence using Holder and Gagliardo—Nirenberg

2|\
un Ol < ol + 2o [ | | Quatn (0P~ QB da

P+ 1 R4

< JJuollF +C/Rd(|Qnun(t)p+ Q7o) |Qun (1) — Q7uoldr
< Jluollz + ClllQuun ()P + !Q;‘)ﬂmll”HL%1 1Quun(t) — Qpuol| Lo+

< Hu()”%fl + G (HQnun(t)H]sz + HQiUOHIEpH) [|un (t) — QnUOHipHun(t) - QnuO”};a

Then by (12.8) with s = 0, the Sobolev Embedding Theorem and (12.7) we get (12.9).
Now for T(M) defined s.t. C(M)T(M)® = 2M? (for the C(M) in (12.9)) from (12.9) we
get

[t ()| oo (- (vry, T (0 11y < VBM. (12.10)

Since v/3M < 2M this obviously means that T(M) < 6, since, if we had 6,, < T(M) then,
by the fact that u, € C1(R, H'), the definition of 6,, in (12.7) would be contradicted.
Hence we have

[wnll oo (- an), 70y, 1) < 2M (12.11)
and, by (12.1), also
wntll Lo ((—T(ar),T 00y, -1y < C(M). (12.12)

Our next claim is about the existence of a limit u of the sequence.
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Claim 12.2. There exists u with

lull oo (=) ray) ey < 2M (12.13)
s.t. up to a subsequence u,(t) — u(t) in H'(R)) for all t € [-T(M), T(M)].

Proof. {un}n is a bounded sequence in C1([-T'(M), T(M)], H='(R?)) by (12.6), by T(M) €
(0,6,) and by (12.10). Up to a subsequence, u,(t) — u(t) in H~}(R?) for all t € Q N
[T (M), T(M)]. It is not restrictive to assume that the subsequence coincides with the
sequence. It is then easy to conclude, using equicontinuity, that in fact {u,(t)}, is weakly
convergent in H~'(R?) for all ¢t € [-T(M),T(M)]. By the lower semicontinuity of the
norm for the weak topology, the equicontinuity of the sequence {u,}, implies that u €
CoU[-T (M), T(M)], H~(R%)). Recall that u,, € CO([-T(M),T(M)], H') and that we have
(12.11), in fact the better estimate (12.10). So by weak compactness it is easy to conclude
that for all ¢ € [~T(M),T(M)] we have u(t) € H' with u,(t) — u(t) in H'(R?). Indeed,
if this was false there would be a t € [T (M), T(M)] and a subsequence uy, (t) — v in
H'(RY) with v # u(t). But this is impossible because we know that we must have v = u(t)
in H~1(RY)

By the lower semicontinuity of the norm for the weak topology, u € L>®([-T(M), T(M)], H'(R%))
with (12.13) satisfied. O

Step 2: u is a weak solution of (11.1). First of all, we need to show that u
solves an equation. So let us see what happens to the the sequence of nonlinear terms
ptl

Qn(’Qnun’pilQnun) of (12.1).

Claim 12.3. {|Q,u,(t)[P"*Quuy(t)}, forms a bounded sequence in C%¢ ([T (M), T(M)], L » )
for some a > 0.

Proof. We have, using Gagliardo—Nirenberg (11.2) and (12.8),
H’Qnun(t)‘pilQnun(t) - \Qnun(s)|p71Qnun(s)HLth1
S 1(1Quua®P + 1Quun(s)P~1) (Quun(t) — Quun(s)]| 22

S U@ + un (Ol ) ln () = un(s))l| osr
< C1(M)[un(t) = un($) 11 (a1 (1) = un ()| 20y < CM)[E— 5|,

for some a > 0. O
By the Claim 12.3 and proceeding like for Claim 12.2 up to a subsequence we have

1Qutin ()P~ Qutun () — f(t) in L% (R, C) for all t € [~T(M), T(M)] (12.14)

and
pt1

feC¥([=T(M), T(M)},L > ) € CO([~T(M),T(M)], H™")
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On the other hand, for every w € C®(R% C) and any ¢ € CX((—T(M),T(M)),R), we
have

T (M)
/ [_<ium w)P(t) + (PrroAup + Qn(|Qnun’p_lQnun)a w>g0(t)] dt = 0.
—T(M)
Taking the limit, by the strong limits P,,,w — w and Q,w — w we have
T(M)
[ g + ut el =o
—T(M)
This implies the distributional equality in (=7'(M),T(M))
iug = —Au+ f. (12.15)

This implies u € Wh*°([=T(M), T(M)], H~') which, in turn, implies that u € CO([-T (M), T(M)], H~1)
and since up(0) = Quuo "= up and u, (0) "= 4(0) we have u(0) = ug. So we proved

that u € WHoo([-T(M), T(M)], H~') and that

iy = —Au+ f
u(0) = uo.

Now we need to show that f = Alu[P"lu. However before proving this, we prove another
claim in Proposition 12.1.

Claim 12.4. We have
[w(®)[|z2 = [Juollz2- (12.16)

Proof. We start by showing that for all ¢ € [-T(M),T(M)] we have Im[f(t)u(t)] = 0 a.e.
in R?. Tt suffices to show , for any ball B C R?, that

(), ut)) () = 0.
We have (ignoring \)
(fyiu)p2py = (f — ’Qnun’p_lQnUmin(B (1Qutin P~ Qutin, i(1 — Qu)u Y.
+{(1Quun P~ Quttn, 1Qu(u = un)) 2(5) + (| Qutn[P ™' Quttn, iQutin) 2(5) = a + b+ ¢ +0.
We have a = 0 since
(f = [QuunlP "' Qutun), i) 12(5) = 0 by f — |Quun]” ' Quuy — 0 in L' S RY ¢ HL(RY,
We have b = 0 since

|<|Qnun|p_1Qnumi(Qn - 1)“>L2(B)| < H|Qnun|p_1QnunHL1’T‘f1(Rd)||(Qn - 1)“||LP+1(Rd)

< N1Quun o (Qn — Dull po+1 (ray
S Nl [Qn = Dl o (ray < CM)IN(Qn — Vel 1 (ay — 0

67



by the strong limit Q,u — u in H'.
We now show that ¢ = 0. First of all we have

[{1Quunl" ™! Quttn, 1Qu(u — un))| < C(M)||Qu(u — un)l| Lo+1(5).

Next, we have Q,(u—u,) — 0 in H'(RY). Since the map H'(R?) vyl LPFTL(B) is compact
and

1Qn(u — un) | pr+1(By < 1Qn(u — un) | Lr+1ray < Cllu — un || g1 (ray < 4C C(M)

it follows that Q,(u — u,) — 0 in LP*1(B) and hence ¢ = 0.

Hence we conclude that for all ¢ € [T (M), T(M)] we have Im[f(t)u(t)] = 0 a.e. in R
Now we prove the conservation of mass (12.16).

Apply (-,iPru(t)) to the equation of u. We get

(ug, Pru) = (f(t),iPRu).
Notice that P pus = (Pru); with Pru € WH((=T(M),T(M)), H'(R?)). Then ||Pgul%, €
W (=T (M), T(M)),R) with

d .
iHPRuH%Q = 2(ut, Pru) = 2(f(t),iP ru).

Hence t
1P rult)fe ~ Prulal < [ 2(Pr~ D7) iuiar "0
0

This completes the proof of the conservation of mass (12.16). O
Now we turn to the proof of f = A|u[P~lu.
First of all by (12.13) and by inequalities like (12.8) it follows that

we C%2 (=T (M), T(M)], L2(R?,C)). (12.17)

Recall from Clam 12.2 that u,(t) — u(t) in HY(R?)) for all t € [-T(M),T(M)]. Now we
claim the following.

Claim 12.5. We have
Uy — u in L®([~T(M), T(M)], L*(R%)). (12.18)

Proof. We proceed by contradiction. If (12.18) is false there is a sequence t,, s.t. ||u(ty) —
un(tn)HQLQ > e > 0. Then, up to a subsequence, we get t, — t. We claim that we have the
following limit, which contradicts |[u(t,) — un(ts)]|72 > € > 0:

lu(tn) = un(t)l72 = llu(t)lZ2 + llun(t)l72 — 2(un(®), u(D))

— 2tn (tn) — Un (), w(®)) — 2(un (tn), ulty) — u(t)) — 0 as n — oo. (12.19)
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To see why the limit holds, notice that the first line on the r.h.s — 0. Indeed ||u(t)| ;2 =
luoll 2, [[un(®)llz2 = | Quuoll L2 "= [|uol| > and by Claim 12.2 we have —2(uy, (7), u(#)) "=

—2[|u(®)]7.-
Next we show that also the 2nd line of (12.19) — 0. First of all u(t,) —u(f) — 0 in L?(R%)
by u € CO([-T(M), T(M)], L*(R%)), see (12.17). We also have

— — — 1 — -1
[(un(tn) = un(t), w())| < [tn — )2 [unll Lo (—ran) ), g1 lu@) [0 < C(M)tn — T2 = 0.

by (12.12). Therefore (12.19) and Claim 12.5 are proved. O
By Gagliardo—-Nirenberg, (11.2) and by (12.11), (12.13) and (12.18) we conclude

Uy, — u in CO((=T (M), T(M)), LPT1(RY)). (12.20)
Since |Quun (t)[P Quun(t) — f(t)in LL;:I(RCI) by (12.14) and |y, (8) [P~ 2y (t) — |u(t)|P~1u(t)
in L%(Rd) by (12.20), the following claim implies f = \|u|P~ u.
Claim 12.6. We have
Qn(|Qnun|p71Qnun) - |un|p71un = Qn[|Qnun|p71Qnun - ‘Q u’pilQ ] (12 21)
+ QullQuul ™ Qu = ul ] + (Qu = )(Jul ) 0 in L7 (R, |

Proof. The claim follows from the following remarks.

e We have
Q1 Quital”™ Quttn — | Qut” ™ Q)| 51
< 1Quta " Qi — Q™ Qut] 2
S 1(1Quun P~ + 1QuulP™ ) (Quun — Qnu)ll et
S Ulnllois + i)l = ull s < C(M)Jun = g1 gy — 0.

e We have by Q,, — 1 — 0 in the strong sense of bounded operators in L?(R?) for any
€ (1,00)
1Qn(|Quul”™ ' Quu — [ul )| par
< Quul ™ Quu = [uf" ™ ull par
SIQuul™™ + [u ™) (Quu = w)] 2

S (IQuallfyis + lulf ) 11(Qn — 1)“||LP+1 < 2l 1(Qn — Dl o gty — 0.

pil
e [uP~lu e L » (R?) implies (Q, — 1)(|u[P~'u) — 0.
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Hence Claim 12.6 is proved. O
To complete the proof of Proposition 12.1 it remains to be shown that E(u(t)) < E(up).

Recall that for ) \
En(v) i= <[ Vo|72 + —— Ptlg
20) = 5 IVolFe + 2 [ IQuopa

we have shown E,(u,) = E,(Qnup). Now we have
o |Vul2, <liminf ||Vu,|3,.
o lim Q,up = ug in H'(RY).
e u— Quu, = (1—Qpu+ Qu(u—u,) — 0in LPTL(RY).

This implies F(u) < liminf E,,(u,,) = lim E,(Qpnuo) = E(up). Hence the proof of Proposi-
tion 12.1 is completed.
O

12.2  Well posedness assuming uniqueness

First of all, assuming uniqueness we get well posedness. The 1st step is the proof of the
conservation of energy, which is a consequence of the time reversibility of the NLS.

Proposition 12.7. Suppose that we know that the solutions in Proposition 12.1 are unique.
Then E(u(tg)) = E(ug) for any tg and (11.1) is well posed.

Proof. Also v(t,z) := u(tp — t,z) is a solution of the equation. Since E(ug) = E(v(tp)) <
E(v(0)) = E(u(to)) we get the opposite inequality to E(u(ty)) < E(up) and so we conclude
with the energy equality.

Now we show that the energy conservation implies that u is a strong solution. We know
already that in its lifespan (—S5,T) we have

u e CO’%((_Sy T), LZ(Rd)) N CO((_S, T)7 Lerl(Rd))_

In particular we know that t — [pa |u(t)|Ptdz is in CO((—S,T),R). By E(u(t)) = E(ug)
and Q(u(t)) = Q(ug) we conclude that also t — ||u(t)|| g is in C°((—=S,T),R). It is easy to
see that

ue C%(=S,T), H'(R?)) with H'(R?) endowed with the weak topology. (12.22)

This is equivalent at proving (u,) € C°((—=S,T),R) for any ¢ € H'(R?). This can be
seen by the weak limit u, (t) — u(t) in H'(R?)) like in Claim 12.2 for ¢ € [a, b] with [a,b] C
(=S, T) an appropriate compact interval of any preassigned tg € (—S5,T"). Then (u,(t), ) —
(u(t), ) for t € [a,b] with [a,b] C (=S,T). Furthermore, bounds like (12.12) imply that
the sequence {(u,(t),%)} is equicontinuous. This implies that (u,v) € C°([a, b],R) for any
Y € HY(RY) and proves (12.22).
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(12.22) and ||u(t)||gr € C°((—=S,T),R) imply u € CO((-S,T), H'(R?%)) with H*(R?) en-
dowed with the strong topology. Since u solves (11.1) it follows that (11.6) is true, that is
that we have also u € C*((=S,T), H}(R?)) .

Now we prove that if T' < oo then

Jim [V u(t)2(s) = +00

Indeed, if there is a sequence t; T s.t. [lu(t;)|[g1(rey < M < 00, then one can extend
u(t) beyond t; + T'(M) > T and get a contradiction.
Now we show continuity in terms of the initial data. Let uén) — up in HY. Fix [—t1,t2] C
(=S, T) and set

M := 2sup{[|ut)| g1 (ray : t € [~t1,t2]}

We have ||u(()") |1 < M for n>> 1. We have u(™ bounded in
CU[-T(M), T(M)}, H') N CH([~T (M), T(M)], H™).

Then there is a v in the above space with u(™(t) — v(t) for all in t € [-T(M),T(M)]. By
argument similar to those in Sec. 12.1 we have that v is a weak solution of (11.1) with v(0) =
up. Hence by the uniqueness hypothesis we have v = u and [-T(M),T(M)] C (-S,T).
Proceeding as for (12.18) we get u(™ — v in CO([~T(M), T(M)], L?) and proceeding like
in (12.20) we have u(® — u in CO([-T(M),T(M)], LP*1). Furthermore since

n n n 2\ "
lu™ @)3 = 2E(u(() N+ ||u(() )”%2 - / ™ ()P dz,
p+1 R4
we conclude that ||u(”)(t)”H1 = Jlu(®)|| g in CO([_T(M),T(M)],R). This can be used,

proceeding like in Claim 12.5.to get that u(™ — w in CO([-T(M),T(M)], H"). We can
repeat the argument (replacing 0 with initial times tg) and cover [—t1, t2].

O
12.3 Uniqueness
To prove uniqueness we need preliminarily to have the following.
Lemma 12.8. Let u(t) be a weak solution of (11.1). Then
t
u(t) = e®ug — i)\/ =8 u(s) P u(s)ds. (12.23)
0
Proof. Notice that u(t) is a weak solution of the linear equation (10.2) with f = A|u|P~tu.
If we apply Theorem 10.4 for s = —1 we conclude that formula
t
u(t) = e Puy — i/ e =2 £ dt! (10.9)
0

is true. This yields (12.23).
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Proposition 12.9. The solutions of (12.23) are unique.

Proof. Let u and v be two solutions with same initial value. We have

u(t) m/ 02 (u@) P~ ult) = [o) P~ o())dt . (12.24)
Then we apply Strichartz estimate to the admissible pair (¢,p + 1)

—1 —1
= vllagogrn) < CHP™ + ol =)l e

< Clllul + |U\HL00([O {],Le+1) l[u— UHLq’([o,t],LpH) < Cllu— v“qu([07t]7LP+1)'

1 1
Now if Cts" ¢ < 1 (that is true for small times) and if all ¢ > 0 we have [[u—v||Lo(j0,4,Lr+1) >
0, then

1_1
lu — UHLq’([oﬁt],LpH) < Ctd 1 |lu— v Laqog.Lo+1) < lw = vllLa(o,L0+1)-

This is absurd. It follows that for some ¢ > 0 we have |[u — v|z4(j0,4,Lr+1) = 0. From here
we get uniqueness. O
We end this section with some easy remarks.

Corollary 12.10. If XA > 0 the solutions are globally defined.

Proof. Indeed we know by (11.7) and by the conservation of mass, that if a solution has
maximal interval of existence (—95,7") with T' < co, we must have

li t = 12.25
Jim [Va(t) 2 = +o0 (12.25)

But for A > 0 we have [|Vu(t)|| ;2 < 2E(u(t)) = 2E(up).

Corollary 12.11. If A <0 and 1 <p <1+ % the solutions are globally defined.
Proof. We have

2/ 1 1 a
2 +1 a(p+1) (1-a)(p+1) _
2E(u(t)) > HVu(t)HLQ(Rd) - P+ 105 [Vu(t )HLQ R4) [[u OHLZ(Rd for ]m =5 7
Notice that
d 4 4
a(p—|—1)=§(p+1)—d<2<:>(p+1)—2<g<:>p<1+g.
But then, if (12.25) happens, we have
. 2(A 1)— (1-« 1)
26un) = Jimg 2B(u(0) = iy [ V() ey (1= 2 O TG0~ ol S

= i [ Vu(®) F2 gy =+
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which is absurd. O
In the case A > 0, it is known that for p > 1 + %, then for any solution there exist

elements ux € H'(R?) s.t.
Jim lu(t) - e P uy | 1 = 0. (12.26)

This is called completeness of the Wave Operators. For p < 1+ % this is false, that is the
asymptotic behavior of the nonlinear equation is much harder to understand. In the range
A>0andpe (1 + %, 1+ %) the existence of us € H'(R?) s.t. (12.26) happens is an open
problem. Instead, it is well known that if uy € H'(R?) satisfies the additional condition
that |z|ug € L2(RY), then it is true that there exist u+ € H'(R?) s.t. (12.26) happens.
The most interesting equations are those where A < 0. We can take A = —1. In this case
there are solitary waves, that is solutions of the form

u(t, z) = eav e allPtritotivg 4y D)

where
_A¢w + w¢w - ‘¢w‘p_1¢w = 0.
In 1-d there are explicit formulas
(53 + )7
cosh -1 (=)

du() = Wi $(Viox). (12.27)

¢(x) =

For d > 2 there are many types of solitons. For example, the ones in (12.27) are ground
states, and they are the only ones in d = 1. But in d > 2 there are also excited states. In
general there are no multisolitons. However, the equation

iuy = —02u — |ul?u for (t,z) € [0,00) x R (12.28)

has multi—solitons, and is the famous cubic focusing NLS. It is remarkable because it is an
integrable system. Specifically, there is a sort of nonlinear version of the Furier Transform,
called Scattering Transform, that allows to diagonalize the equation (12.28). It is possible
to construct very complex patterns of multi—soliton solutions, exploiting the scattering
transform.

If we consider the L?>—critical focusing NLS

iy = —Au — |u|%u in R x RY,

from the discussion in Corollary 12.10, if Cy is the optimal constant for the Gagliardo
Nirenberg inequality

2+%

2+% 4
0l o < O 1700 By ol
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where we have computed
4 4 d 4 4 4
1-— 24+ -)=24+-—=-1(2+— d=24+-—-d—-24+d= -
( a)<+d> +d 2<+d>+ —I—d + d

it can be proved that for ¢(z) the ground state satisfying

4
—Ap+¢—|glip=0
then we have )
o1 4
244\
Cy= 4
2(|9l 72
Now notice that if ||ug||z2 < ||¢||z2 we have
2 2+12 4 luoll L2re) |
2B(u(t) 2 |Vult) Faqusy | 1= 51— ol aqea, | = 19003 (1= (T
2+32H¢Hd H@Z)HP(Rd)
L2
and we have global existence as in Corollary 12.11. O

13 Fujita’s blow up theorem for semilinear heat equations

We will consider now a particular formulation of Fujita’s classical blow up result. We
consider the heat equation

ug = Au + [ulP~tu with (t,2) € (0,T) x R?
u(0,2) = ug(z) where uy € Co(R% R).

Here we recall that, like in (1.5),
Co(R4,R) := {g € CO(RY,R) : lim g(x) = 0}.

We formulate this problem in the following integral form:

u(t) = e f + /0 U= u(s) [P u(s)ds. (13.1)

It turns out that there exists a unique maximal solution of (13.13) with maximal lifespan
Tf in CO([Ov Tf’ CO(Rd))
We will prove the following result.

Theorem 13.1. Let ug € Co(RY) with ug > 0 and ug # 0 and suppose 1 < p < 1+ %.
Consider the solution of

¢
u(t) = ey —I—/ el=)2yP(s)ds (13.2)
0
in C°([0, Ty, ), Co(RY)). Then T, < .
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Remark 13.2. The original paper by Fujita [7] deals with the case 1 < p < 1+ %. The proof
we give is due to Weissler [15].

Somewhat related to Fujita’s Theorem are theorems for dispersive equations, like the
following, which is only a prototype of much more general results, and which we state only
(for the proof see [12, p. 92]).

Theorem 13.3. Let u; € C2(R3,R) with u1 > 0 and uy #Z 0 and consider

{ (02 — N)u— |ulP =0
(u(0), Oru(0)) = (0, uy).

Then, if 1 < p < 14++/2 the solution blows up in finite time, in the sense that there exists a
unique mazimal solution u € C?([0, Ty, ) x R3, R) with T,,, < co where u & L®([0, Ty, ) x R3).

O]

13.1 Preliminaries on abstract dissipative semilinear equations

Definition 13.4 (Contraction semigroup). Let X be a Banach space. A family (S(t)):>0 €
L(X) is a contraction semigroup if the following happens.

1

(1) |IS@#)|| <1 for all t > 0.
(2) S(0) =
(3)
(4)

3) S(t)S(s) =S(t+s) for all t,s > 0.

4) For any z € X we have S(t)z € C°(]0, 00), X).

Ezample 13.5. S(t) := e'® is a contraction semigroup in Cy(R% R) (thought as a subspace

|2
of L*(R? R) ). Indeed recall that for K;(x) := (47rt)7%ef‘TL we have e!®f = K x f

for all f € Co(R4,R). Then [|S(t)|| < ||S(t)1||leoc = 1. We have S(0) = I. We have also
S(t+s)f = S(t)S(s)f for any f € C.(R% R), from

F(Kpis  f) = e PP F = 2m)= 2 F | Fr(e 6P w(K, + f)
——

d _|=z|?
(2t)"Ze” At

=F (K (Kgx* f)) = Kiysx f = Ky x (K f),

and this extends to f € Co(R%, R) by density. Finally, by Theorem 1.9 we have the continuity
in ¢ =0 of S(t)f, and hence by (3) the continuity for all ¢.
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Lemma 13.6. Let S(t) be a contraction semigroup, F : X — X a locally Lipschitz map,
let € X and let u,v € C°([0,t], X) for tg € Ry solve

w(t) = S(t)x + /0 S(t— s)F(w(s))ds. (13.3)

Then u = v.

Let M = maxo<i<so {[[u(@)], [lv(t)[[}. Then

[u(t) — (@) </O 1 (u(s)) = F(v(s))llds < L(M)/0 [u(s) = v(s)llds

and apply Gronwall’s inequality. ]

Proposition 13.7. Let + € X with ||z|| < M. Then there is a unique solution u €
C°([0, T], X) of (13.3) with

1
T -

LM+ [FO)) 2 (13.4)

Proof. Set K =2M + ||[F(0)| and

E = {uc C%0,Ta), X) : |u(t)| < K for all t € [0, Tas]}

with the distance of L>(]0,Ty/], X). E is a complete metric space. Next consider the map
ue kb — o,

t
O, (t) = S(t)x +/ S(t — s)F(u(s))ds for all t € [0, Th].
0
By Ty = m for all t € [0, Ths] we have

IEu@)] < [[FO)] + [ F(u®) = FO) < |F(0)] + KL(K)
_M+|F@) (135)

= [[1FO)I + @M + [[F0)[) L(K) < 2(M + [|[F(0)[)(L(K) + 1) Tor

and
[S@)z]l < |lz]| < M. (13.6)

So from (13.5)—(13.6) for ¢ € [0, Ths] we have

M +||F(0
1u()]| < M + M IEO
Ty

<2M + |F(0)|| = K

and so ¢, € F.
For u,v € E we have

[Pu(t) = (@) < /0 1 (u(s)) = F(v(s))llds < Tar LK) [u = vl Lo (jo,1,1,)-
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So by Ty L(K) <271

@y — q’vHLw([o,TM],X) < 271”“ - UHLO@([O,TM],X)

Hence u — ®,, is a contraction in E and so it has exactly one fixed point.
O
Notice that if F(0) = 0 if and lim+ L(M) = 0, something which happens in many
M—0
important cases, we can improve the above result and get a Tjy s.t. lim Ty = oo, as we

) M—0t
will see now.

Proposition 13.8. Let x € X with ||z|| < M. Assume F(0) = 0 Then there is a unique
solution u € C°([0, Tys], X) of (13.3) with
1
Ty = —. 13.
M= 9L(2M) (13.7)
Proof. The argument is the same. Here we set K = 2M and define F as above by
E={uec C%0,Ty], X) : |lu(t)| < 2M for all t € [0, Th]}

Consider the map u € E — ®,, defined as above by
t
By(t) = S(t)a + / S(t — 5)F(u(s))ds for all ¢ € [0, Ta].
0
By Ty = m for all ¢ € [0, Ths] we have

IF®)] < 2MLEM) = 2 (13.8)

and
1Tz < [lz| <M. (13.9)

So from (13.5)—(13.6) for ¢ € [0, Ths] we have
M
|P,(D)]| < M +t— <2M
T

and so ¢, € E.
For u,v € E we have

[@u(t) = (@) < /0 1E(u(s)) = F(v(s))llds < Tar LE2M)|[u = 0| oo (jo,1,1, %)

So by Ty L(2M) =271
'l

”(I)u - (I)UHLOO([O,TM],X) <2 ‘u - 'UHLOO([O,TM],X)

Hence u — ®,, is a contraction in E and so it has exactly one fixed point. O
We now turn to an abstract form of the mazimum principle.
Recall that in an ordered Banach space the ordering is characterized by a convex closed
cone C s.t.

7



I.C+CCC,
2. A\CCCforall A>0and
3. Cn(=C)={0}.
Then given z,y € X we write y > z if (y — z) € C.

Lemma 13.9. Suppose that in X there is a relation of order and that F(u) > 0 if u > 0.
Suppose furthermore that S(t) is positivity preserving, that is x > 0 = S(t)x > 0 for all t.
Then if x > 0 the solution u € C°([0,Tn], X) of Prop. 18.7 is u(t) > 0 for all t.

Proof. We just rephrase the fixed point argument of Prop. 13.7 in a different set up. Indeed,
if we redefine the set E writing

E = {ucC%0,Tyl, X) : |u(®)| < K and u(t) >0 for all t € [0, T},

then E' is a complete metric space. Furthermore the map v — &, with

f+/St—s (s))ds for all t € [0, Th].

is such that u(t) > 0 for all ¢ € [0, Ths] implies ®,,(t) > 0 for all ¢ € [0, Ts]. Then the proof
of Proposition 13.7 works out in the same way as before under this slightly more restrictive

definition of F.
O

Lemma 13.10. Assume the hypotheses of Lemma 13.9 and furthermore that F(v) >
F(u) > 0idfv >wu>0. Let x < y. Let u(t),v(t) € C°[0,T.),X) be solutions with
u(0) =z and v(0) =y. Then u(t) < wv(t) in [0,T}).

Proof. If M = max{||z||, ||y||}, then using the setup of Prop. 13.7 we consider the set
E={fecC%0,Ty], X) : f(t) >0 and ||f(t)|| < K for all t € [0, Tns]}

and the maps f € E — ®,(f) and f € E — ®,(f)

D, (1)) w—l—/St—s (s))ds for all t € [0, Ths].

Let v(t) be the solution with initial datum y. Then we have ®,(v) < ®,(v) = v. This can
be iterated and if 0 < ®L(v) < @41 (v), then 0 < ¥4 (v) < ®L(v). But we know that

®J.(v) 725 u, with u the solution with initial datum . Hence u < v.
So we have proved u(t) < v(t) in [0, Ths]. Let now

Ty := sup{T € [0, T) such that u(t) < v(t) in [0, T]}.
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If Ty = T the theorem is finished. If T} < T, we have by continuity u(7}) < v(71). But
then there exists a 0 < T < Ty — T with s.t. u(t) := u(t + 11) and resp. v(t) := v(t + 11)
solve in [0, 7] the equation with initial data z < y with  := u(T1) and resp. y := v(T1).
But for T" small enough we have u(t) < v(¢) in [0,7] by the 1st part of the proof. But
this implies than u(t) < v(¢) in [0,77 + 7. This is absurd by the definition of 77, and so
T =1T,.
O
We will consider now the function 7' : X — (0, 00] where for any € X the interval
[0,T(z)) is the maximal (positive) interval of existence of the unique solution of (13.3).

Theorem 13.11. We have, for u(t) the corresponding solution in C([0,T(zx)), X),

2Lmew+2wum>zT@j_t—z (13.10)

for allt € [0,T(z)). We have the alternatives
(1) T(x) = +o0;

2) if T(x) < +o0 then lim ||u(t)|| = +o0.
(2) i T@) Jim (o)

Proof. First of all it is obvious that if T'(x) < 400 then by (13.10)

lim L(||F(0)| + 2[u(t)]) = 00 = lim |u(t)| = +o0
Jim L(LFO)] + 2t i ()]
where the implication follows from the fact that M — L(M) is an increasing function.

Let z € X. Set T(z) = sup{T > 0: 3u € C°([0,T), X) solution of (13.3) }. We are left
with the proof of (13.10), which is clearly true if 7'(z) = co. Now suppose that T'(z) < oo
and that (13.10) is false. This means that there exists a ¢ € [0,T(z)) with

1 1
— —2=2L(|F 2)|u(t — —2=>T(x) -t <T
- (PO +21ut)]) < 7777 ~2 = T@) —t < Ty
for M = |lu(t)|, where we recall Ty := 2L(2M+\|1F(0)H)+2 in (13.4). Consider now v €

C°([0, Tas], X) the solution of
v(s) = S(s)u(t) + /08 S(s— & )F(v(s"))ds for all s € [0, Ty].

which exists by the previous Proposition 13.7. Then define

- u(s) for s € [0, 1]
w(s) = {v(s —t) for s € [t, Th].
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We claim that w € C°([0,T)], X) is a solution of (13.3). In [0,¢] this is obvious since in
w=w in [0,t] and u € C°([0,¢], X) is a solution of (13.3). Let now s € (¢, T)s]. We have

w(s) = v(s — 1) = S(s — t)u / S(s—t — &Y F(u(s))ds’
—S(s—1) { x—i—/St—s ] / S(s —t — §'YF(v(s))ds’
s)x+/oS(s—s us’ )ds' +/ S(s—sF ( —t))ds’

w(s’)

s)x + /OS S(s— S/)F(w(s/))ds.

O
Remark 13.12. Notice that if F'(0) = 0, then we can prove the improved estimate
1
2L(||F 2llu(t)|]) > ——-. 13.11
(IFO)+2(®)) > 75— (13.11)

The proof is exactly the same of Theorem 13.11 using the altered definitions of T, Ty =
(2L(2M))?

Proposition 13.13. (1) T : X — (0,00] is lower semicontinuous;

(2) if v, — x in X and if t < T(z) we have u, — u in C°([0,%], X) with u, the solution
of (13.3) with initial datum x,,.

Proof. Let u € C°([0,T(x)),X) be the solution of (13.3) and consider ¥ < T(x). Set
M = 2[[ull (0.7, x) and let

T = sup{t € [0, T(n)) : [|[unllpoo(o,,x) < K} where K = 2M + [|[F(0)]|.

For n > 1 we have ||z,|| < M. Then u, € C°([0,Th], X) with [Jun || re(j0.7,],x) < K by
Prop. 13.7. This implies 7,, > T);. For 0 < ¢ < min{¢, 7,,} we have

u(t) = un(t) = St)(x — 2n) + /Ot S(s =) (F(u(s)) = Fun(s)))ds
and so
[u(t) = un @ < [l = 2| + LK) /Ot [u(s) = un(s)||ds =
lu(t) = un(®)]| < " =zl = Ju(t) = un(B)]] < "l — . (13.12)

So flun(®)| < Ju@®)| + Xz — || < M/2 + 2|2 — z,|| < M for n > 1 and
0 <t < min{¢, 7,}. This and continuity imply 7, > min{¢, 7,,} and so 7,, > ¢. Then we have
T(xy) > t. This implies the lower semi-continuity in claim (1). Furthermore by (13.12) we
have also u,, — u in C°([0,7], X). O
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13.2 Proof of Fujita’s Theorem

We know that S(t) := e!® is a contraction semigroup in Co(R?,R). Notice that in Co(R%,R)
there is a natural partial order, and that this is preserved by ¢t©. In fact, if f € Co(R%,R) is
f(x) >0 for all z € R?, and is not identically 0, then e!® f > 0 everywhere (e!® is positivity
enhancing).

By the abstract theory presented above, we can prove the following maximum principle

property.
Lemma 13.14. Let u € C([0,T), Co(R% R)) be the unique mazimal solution of

u(t) = '™ f + / t et =98 u(s) [P~ Lu(s)ds (13.13)
0

and let f > 0. Then u(t,z) >0 for all (t,z) € [0,T) x R™.

O
We prove now the following version of Fujita’s Theorem (compared to Theorem 13.1,
we add the hypothesis ug € L*(R?)).

Theorem 13.15. Let ug € L'(R?) N Co(R?) with ug > 0 and suppose 1 < p < 1+ 2.
Suppose that u(t) € CY([0, Ty, ), Co(R?)) is a positive solution of

t
u(t) = e ug + / =3By (s)ds. (13.14)
0

Then T, < co.

Proof. We claim, and for the moment assume, the following inequality due to Weissler:

tpljemuo(:z:) < C for a fixed C' = C(p) > 0, for any z € R%, t € [0,T,,) and any ug > 0.
(13.15)
Here, crucially, C' depends only on p.
Suppose we have T;,, = oo and assume (13.15).
By dominated convergence we have for any = € RY

. _lz—y?
e'“up(z) = lim e w uo(y)dyZ/ uo(y)dy = [Juollrmny-  (13.16)
Rn

t oo t,/fo0 JRd

In the particular case p < 1+ %, equivalent to ]ﬁ — %l > 0, we see immediately that (13.16)
is incompatible with (13.15) since

lim triletAuo(a:) = lim tp%l_gt%etAuo(:E) = lim trll_%(llﬂ')_gHUOHLI(Rn) = +00.
t oo t oo t oo
Inthecasep=1 +% this argument does not provide a contradiction for all ug (although

this argument shows that if [lugl| 1 (ra) > (47r)gC for C = C(1+ 2) then there is blow up).
We complete the argument below, but first we prove claim (13.15).
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Proof of (13.15) We turn now to the proof of (13.15). We have u(t) > e'®ug(z) and

t t
u(t) 2/ e85 uP(s)ds 2/ =98 (5B )Pds
0 0 (13.17)

¢ ¢
> / (e(t_S)AeSAuo)pds = / (emuo)pds = t(etAuo)p,
0 0

|z—

|2
where we used, for du(y) = (47['7')_%6_ = dy which gives a probability measure in R,
|o—

TAAP(x) = (4nT -4 e 43‘2 p = p
O @) = () [ Py = [ Pw)dnt)

> ([ swauw) = (et [ e rmay) = (20w)
R4 Rd

which follows from Jensen’s inequality ([ fdp) < [ ¢ o fdu for a convex function ¢ and a
probability measure pu.
By a substitution inside (13.17) and by repeating the same argument we get

t t +1
P
u(t) 2/ e(t_s)Asp(eSAuo)p2ds 2/ sp(emuo)p2ds = 7(emuo)p2.
0 0 p+1
This is the case k = 2 of the following inequality which for any &k € N with £ > 2 we will
obtain by induction:

k

— -1 )
T AP (L p P (pf_l)z’“ ‘
=2 pfl
Indeed, assuming (13.18) for k£ and repeating (13.17) we have
' ! S%p k+1
u(t) > / e(t—S)Aup(s)ds > / e(t—s)A(esAuo)p ds
0 0

k4+1—2¢
Hk pe—l p
=2\ p—1

t Pkfllp tp 711p+1
S P~ tA k+1 p— tA k+1
S /0 k 0\ PPt ds(eCuo)” = k e \PEE e (€ u0)”
[To— (1;—1 ) [T— (1;—1 ) (1;—1 p+ 1)
tpk+1fl tpk+1;1
= t/\ k+1 p— tA k+1
= k+1—¢ eCu) = kt1—f (e"Cug)” .
k p—1\P pktl—1 k+1 ((pt=1\P
H£=2 p—1 p—1 (=2 \ p—1
So (13.18) holds also for k£ + 1 and hence for any k € N with £ > 2. Then
pk—l 1 k 4 _ 1 Lé 0 4 _ L1{
1 p p _1 A p 1\~
t=DpF !By < (u(t)) Pk <> = tr1e!2yg < ( )
HG= HG=

(4
)y If[log(p:l) -’ =1 j oo ¢ ¢
o pT) o XiZep los(C501 ) < (X pflos(8') o 4o
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This proves (13.15).

Proof of the case p =1+ % We return to the proof of Theorem 13.15 when p =1 + %.
If instead of looking at solutions in Co(R?) we look at solutions in X := Co(R?) N L} (R%)
then our u € C°([0,T,), Co(RY)) is also u € C°([0,T,,), X). Indeed, if the lifespan in X
was shorter, then for some ¢ty < 7T}, we would have

lim [|u(t = oo while su u(t)|| 700 < 0.
Jim ()] S ()] e

But this is impossible because from (13.14) for ¢ < ty we get

t
[l 1 ey < lluollzrre) +/0 ()11 gyl (5) | 2 et ds

implies by the Gronwall inequality

to(suPo< < [1(0) | oo gty )~

w21 (®ay < lluollzr(raye < 00

and so

—1
oo = lim [lu(t)l| 1 ey < ol 1y’ S Poststo 1O ace ™ < oo,
0

which is absurd.

Hence we conclude that ty = Ty, and we have u € C°([0, T,,), L*(R%)), and so u(t) € L' (R%)
forallt € [0,T,,). Since any such ¢ can be taken as an initial value at time ¢ for our solution,
it follows that

d
T2

(e™®u(t))(z) < C for a fixed C >0, any z € R? and 0 < 7 < Tp,, —
and for all ¢ € [0,T,,). In particular if T,,, = oo, by the argument in (13.16), we have

u(t) ]| 1 ety < (47)5C for all ¢ > 0. (13.19)

. 2
Initially we assume that uy > kK,, for K,(x) := (47ra)_ge_%. Notice that K, = e*2 4.
Then we have (a bit formally, but can be checked)

u(t) > ePuy > ket® K, = ket® e85y = kel@ D25, = kKot
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Now we have

t t
sy > | / =242 (5) s 1y = / dz / =941 (5) () ds
0 Rd 0

t t
= / ds/ dret=) 2P (s)(z) = / ||e(t_s)Aup(s)HL1(Rd)ds (by commuting the order of integration)
0 R4 0
t
> [ et gy s
0

= [as Lo [ vk so—netur = [ds [ avetup) [ i)

1
t t t
— /0 (€2 0P|l s ayds > K7 /0 (€2 K o)Pds]| 13 oy = AP /0 VKol gy ds.

Now notice that

x 2 x 2
Kl(2) = (4n8)"40e "5 = (4nB) 30 Dp~t(4np/p)~Re B = (4rg) 300y

= (4nB) p 2 K% ()

K (x)
by p=1+2/d.
p

This implies that, if by contradiction we suppose T;,, = +o00, then we have

t
d -
[u(®)ll 21 (e zp‘Qkp/o (47(a+9)) " | Kas | 1 ey ds

t

= pgkp(llﬂ')l/ (a4 5)"tds — +oo as t 7 oo.
0

This contradicts (13.19).

Suppose now we don’t have ug > kK,. Let us set v(t) = u(t+¢) for some € > 0. Then v(t)
is a solution of (13.14) with initial value u(c). We have u(g) > e*®ug

N _d _Jz—y? _d _lz? lot+yl? w2
v(0) = u(e) > e Cug = (dme) "2 [ e E= f(y)dy = (4me) 2 = e e 2 f(y)dy
R4 R4

_a =l P
> (4dme) " 2e” 2= e 2 f(y)dy = kK
R4

£
2

where we used the parallelogram formula

@+ g + |z — yl* = 22 + 2]y
But then v(¢) blows up in finite time, and so u(t) does too. This completes the proof of
Theorem 13.15 also in the case p =1+ %.
O
So far we have proved the blow up when 1 <p <1+ % for positive initial data with

ug € CY(RY)NLYRY). But in fact the result holds for ug € C§(R?) because of the maximum
principle.
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Lemma 13.16. Suppose that 0 < vy < ug are in CJ(RY) and let u(t),v(t) € C°([0,T], CJ(R?))
be corresponding solutions of (13.14). Then u(t) > v(t).

This follows by Lemma 13.10 and means that if ug € CJ(RY) but vy ¢ L'(R%), the
solution u blows up, because we can find a 0 < vy < ug with vg € CJ(RY) N LY(RY) and
v non zero whose corresponding v(¢) blows up. Then by the maximum principle also u(t)
blows up. ]

This completes the proof of Theorem 13.1. O

Remark 13.17. The coefficient p =1 + % is critical. In fact, for any p > 1 + % there exists
€p > 0s.t. ifug € X := CJ(RY) N L (RY) satisfies |Jup||x < €, then equation (13.14) admits
a global solution in CP([0,00), CY(R?) N L1(RY)).

A Appendix. On the Bochner integral

For this part see [3]. Let X be a Banach space.

Definition A.1 (Strong measurability). Let I be an interval. A function f : I — X is
strongly measurable if there exists a set £ of measure 0 and a sequence (f,(¢)) in C.(1, X)

sit. fu(t) = f(t) for any t € I\ E.

Remark A.2. Notice that when dim X < oo a function is measurable (in the sense that
f~1(B) is measurable for any Borel set B) if an only if it is strongly measurable in the
above sense. Indeed if f is strongly measurable in the above sense then as a point wise limit
of measurable functions f is measurable, see Theorem 1.14 p. 14 Rudin [11]. Viceversa
if f is measurable, then f is strongly measurable in the above sense, see the Corollary to
Lusin’s Theorem in Rudin [11] p. 54.

Ezample A.3. Consider {z;}7_; in X and {A4;}}]_; measurable sets in I with |A4;] < oo and
with A; N A =0 for j # k. Then we claim that the simple function

Z%XA T X (A1)

is measurable. Indeed, see Rudin [11] p. 54, there are sequences {‘Pj,k}keN in CCU (I,R) with
k—o0
@jk() =" xa,(t) a.e. and hence

COI,R) > fi(t) ij%k ) "29° £(t) ae. in I

Proposition A.4. If (f,) is a sequence of strongly measurable functions from I to X
convergent a.e. to a f: 1 — X, then f is strongly measurable.
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n—oo

Proof. There is an E with |E| = 0 s.t. fu(t) — f(t) for any ¢t € I\E. Consider for any

k—o00

n a sequence Ce(I,X) > for — fn a.e. We will suppose first that |I| < co. By applying

k—o00

Egorov Theorem to {|| fn.x — fnl }xen there is E,, C I with |E,| < 27" s.t. |[for—foll = 0
uniformly in I\E,, Let k(n) be s.t. ||fnrm) — full < 1/nin I\E, and set g, = fy, x(n)- Set
F = EUJ(N,, Upsm £n). Then [F| = 0. Indeed for any m

o o
[F|<|E|+ ) |Ea| <|E[+ ) 27" "3"0.
n=m n=m

n—oo

Let t € I\F'. Since t ¢ E we have f,,(t) — f(t). Furthermore, for n large enough we have
t € I\E,. Indeed

t%ﬂ UEn:>Eims.t.t€ UEnj tZ€ B,V n>m.

m n>m n>m
Then [|gn(t) — fn(t)|| < 1/n and g,(t) "= f(t). So f(t) is measurable in the case |I| < co.
Now we consider the case |I| = co. We express I = U,I, for an increasing sequence of

intervals with |I,,| < oo. Consider for any n a sequence C.(Ip, X) > fn i hopo f a.e. in I,.
k—o00

Then by Egorov Theorem to || f, 1 — fnll there is E, C I,, with |E,| <27 st. for — fo

uniformly in I,,\ B, Let k(n) be s.t. || f xn)— fall < 1/nin I,\E, and set g, = f, j(n)- Then

defining F' like above, the remainder of the proof works exactly like for the case |I| < oo.
O

Example A.5. Consider a sequence {z;}jen in X and a sequence {4;};en of measurable
sets in I with |A;| < oo and with A; N Ay = 0 for j # k. Then we claim

F8) = mixa; (1) (A2)
j=1

n

is measurable. Indeed if we set f,(t) := Z%‘XAJ- (t), then we have lim f,(t) = f(t)
— n—o00
‘]:

for any ¢, since if ¢t ¢ U2, A; both sides are 0, and if t € Ay, then for n > ny we have

fn(t) = xn, = f(t). Hence by Proposition A.4 the function f is measurable.
When the sum in (A.2) is finite then the function f is called simple.

Example A.6. Consider a sequence {z;} en in X and a sequence {4;};en of measurable
sets in I where again A; N Ay, = ) for j # k but we allow |A;| = co. Then

F) = wixa,(t) (A3)
j=1
is measurable. To see this consider f,,(t) = X[—nn(t)f(t). Then

fn(t) = Z ijAjﬁ[—n,n] (t)
j=1
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and by Example A.5 we know that each f,(t) is strongly measurable. Since f,(t) — f(t)
for any t € I we conclude by Proposition A.4 that f is strongly measurable.

Another natural definition of measurability is the following one.

Definition A.7 (Weak measurability). Let I be an interval. A function f : I — X is weakly
measurable if for any ' € X’ the function t — (2/, f(¢)) x/x is a measurable function I — R.

Obviously, strongly measurable implies weakly measurable. Let us explore the vicev-
ersa.

Definition A.8. Let I be an interval. A function f : I — X is almost separably valuable
if there exists a 0 measure set N C I s.t. f(I\N) is separable.

The following lemma shows that strongly measurable functions are almost separably
valuable.

Lemma A.9. If f: [ — X is strongly measurable with (f,(t)) a sequence in C.(I,X) s.t.
fu(t) = f(t) for any t € I\E for a 0 measure set E C I then f(I\FE) is separable and there
exists a separable Banach subspace Y C X with f(I\E) C Y.

Proof. First of all f,(I N Q) is a countable dense set in f,,(I). So f,(I) is separable. In a
separable metric space any subspace is separable. So f,, (I\E) is separable. The closed vector
space Y generated by U, f,(I\E) is separable. Indeed let C' C U, f,,(I\E) be a countable
set dense in Uy, f,(I\E). Let Spang(C) be the vector space on Q generated by C. Then
Spang(C) is dense in Y. For C' = {1, ¥, ...} we have Spang(C) = UpZ,Spang ({71, ..., ¥ }).
This proves that Spang(C) is countable and that Y is separable. O
Ezample A.10. Let X be a Hilbert space with an orthonormal basis {e; };cr. Then the map
f:R — X given by f(t) = e; is not strongly measurable. This follows from the fact that it
is not almost separably valuable.

On the other hand if x € X then ¢t — (f(¢), z) is different from 0 only on a countable subset
of R, and as such it is measurable. Hence f is weakly measurable.

Notice however that if C' C [0,1] is the standard Cantor set (which has 0 measure and has
same cardinality of R) and if {€;};cc is another basis of X, then the map

() = e for t € C and
g\ = 0 otherwise

is weakly measurable (like f and for the same reasons) and is almost separably valuable.
Pettis Theorem, which we prove below, implies that g : R — X is strongly measurable.

The following lemma will be used for Pettis Theorem.
Lemma A.11. Let X be a separable Banach space and let S be the unit ball of the dual
X'. Then X' is separable for the weak topology (X', X), see Brezis [2] p.62, that is there

exists a sequence {xy,} in S" s.t. for any x' € S’ there erists a subsequence {x,, } s.t. for
any v € X we have lim (z}  x)xx = (o', 2)xx.
k—o0 k
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Proof. Let {z,} be dense in X. For any n consider
F,: S/ — R” defined by Fn(x’) = (<$/,{L’1>X/X, ceey <x/7xn>X’X)’

Since R™ is separable, and so is F,(S’), there exists a sequence {xz!, , }i s.t. {Fy(x] )}k is
dense in F,(S"). Obviously {2;, ;}nk can be put into a sequence. For any 2’ € S’ for any n
there is a ky, s.t. [(2' — 2], ,2;)x/x| < 1/n for all i < n. This implies that for any fixed i

we have lim (2], . ,2;)x'x = (', ;) x'x. By density this holds for any = € X. O
n—r00 e

Proposition A.12 (Pettis’s Theorem). Consider f : I — X. Then f is strongly measurable
if and only if it is weakly measurable and almost separable valuable.

Proof. The necessity has been already proved, so we focus on the sufficiency only. By
modifying f we can assume that f(I) is separable. By replacing X by a smaller space, we
can assume that X is separable.

Fix now x € X. Then we claim that ¢ — || f(¢) — x| is measurable. Indeed for any a > 0

ftel:|f(t)—al < a} = Npes{t € T+ (@, £(t) — 2)xox| < a}.}

Using the fact that S’ is separable in the weak topology o(X’, X) and the notation in
Lemma A.11, we have

{tel:|f(t) =l <a} = Nnendt € I+ (), £() — 2)x0x] < a}.

Since the set in the r.h.s. is measurable, we conclude that ¢ — || f(¢) — z|| is measurable and
so our claim is correct.

Consider now n > 1. Since f(I) is separable there is a sequence of balls {B(z;, 2)};>0
whose union contains f(I). Set now

{ W = {t: f(t) € B(zo, 1)},
w](‘n) = {t: f(t) € Bxj, 1)} Upej wil”
and

Fa(t) =) wix om (1)
=0 7

Notice that szow](n) = I and they are pairwise disjoint and measurable. By Example A.6
we know that f, : I — X is strongly measurable. Furthermore, for any ¢ € I there is a j

s.t. te wjn) and this implies

% > Hf(t) —l’j” = ||f(t) - fn(t)”

In other words, || f(t) — fn(t)|| < 1/n for any ¢t € I. Then f,(t) — f(t) for any ¢, and so by
Proposition A.4 the function f: I — X is strongly measurable. O
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Ezample A.13. Consider the map f : (0,1) — L°°(0, 1) defined by ¢t EN X(0,t)- This map is
not almost separable valued. Indeed t # s implies ||f(t) — f(5)|loo = 1. If f was almost
separable valued then there would exist a 0 measure subset E in (0,1) and a countable set
N = {tp}n in (0,1)\E such that for any ¢ € (0,1)\(EUN) there would exist a subsequence
ng with f(t,,) Fope f(t) in L*°(0,1). But this is impossible since || f(t) — f(tn,)]|oc = 1.
On the other hand f : (0,1) — L?(0,1) defined in the same way, is strongly measurable.
First of, since L?(0,1) is separable, it is almost separable valued. Next for any given any
w € L?(0,1) we have

() w) 2o) = /0 w(z)dz

which is a continuous, and hence measurable, function. So f is also weakly measurable and
hence it is strongly measurable by Pettis Theorem.

Recall that in Remark A.2 we mentioned another possible notion of measurability, that
is that f : I — X could be defined as measurable if f~1(A) is a measurable set for any open
subset A C X. We have the following fact.

Proposition A.14. Consider f : I — X. Then f is strongly measurable < it almost
separably valuable and f~1(A) is a measurable set for any open subset A C X.

Proof. The 7<= follows from the fact that for any a open subset of R and for any 2’ € X
the set A = {x € X : (z,2')x x» € a} is open and for g(t) := (f(t),2')x,x» we have
fYA) = g7'(a). So the latter being measurable it follows that g is measurable and
hence f is weakly measurable. Hence by Pettis Theorem we conclude that f is strongly
measurable.

We now assume that f is strongly measurable. We know from Lemma A.9 that f is almost
separably valuable. Let U be an open subset of X. Let (f,), be a sequence in C%(I, X) with
fu(t) "= f(t) ae. outside a 0 measure set E C I. Let U, = {z € X : dist(z,U°) > r}.
Then

FTHUNE = (Up>1 Up>1 menfk_l(Ui))\E~ (A4)
To check this, notice that if ¢t belongs to the left hand side , then f(¢t) € U__ for some
mo

n—o0

mo and, since f,(t) — f(t), for n large we have fi(t) € U if k > n for m; > myp
preassigned. Viceversa if ¢ belongs to the right hand side, the;nllthere exist n and m s.t.
fx(t) € Ux for all k > n. Then by fi(¢) hope f(t) it follows that f(t) € U1 with the latter
a subset of U. This proves (A.4). Since the r.h.s. is a measurable set, this completes the
proof. O

Definition A.15 (Bochner integrability). A strongly measurable function f : I — X is
Bochner—integrable if there exists a sequence (fy,(t)) in Cc(I, X) s.t.

lim /I | ult) — F(0) [t = 0. (A.5)

n—oo
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Notice that || f,(t) — f(¢)||x is measurable.

Ezample A.16. Consider the situation of Example A.13 of a Hilbert space X with an or-
thonormal basis {e;}ier and the map f: R — X, which we saw is not strongly measurable
and hence is not Bochner—integrable. Notice that f is Riemann integrable in any compact
interval [a,b] with [* f(t)dt = 0.

To see this recall that the Riemann integral is, if it exists, the limit

b
t)dt = lim ti)|1;| with ¢; € I; arbitrar
IR Jim, 22 FIG with < 1y axbiary

where A varies among all possible decompositions of [a,b] and |A| = maxjea [I|. We have

1D el il = ety ee) Ikl < 2 |11 = 2|A)(b — a)

LieA Jk J

A|—0
2500,

Proposition A.17. Let f : I — X be Bochner—integrable. Then there exists an x € X s.t.
if (fu(t)) is a sequence in C.(I,X) satisfying (A.5) then we have

lim x, = x where x,, = /fn(t)dt. (A.6)

Proof. First of all we check that x,, is Cauchy. This follows immediately from (A.5) and
from

20 — 2mlx = H/ fa(t) = fm(t))dt||x </!fn ) = fm (1)) xdt

< /1 1) — F(O) | xdt + / 1£(E) = Fn(®))|x .

Let us set © = limx,,. Let (g,(t)) be another sequence in C.(I, X) satisfying (A.5). Then
lim f[ gn = x by

|/gn dt—xnx—n/gn R dt+/fn it — zx

/Hgn fn ’th‘f"/fn dt—wuxdt

< / lgn(t) — F(8) | xdt + / 1) — F(0)l|xcde + | / fut)dt — | xdt.

O]

Definition A.18. Let f : I — X be Bochner—integrable and let x € X be the corresponding
element obtained from Proposition A.17. The we set [, f ;f(t)dt = .

Theorem A.19 (Bochner’s Theorem). Let f: I — X be strongly measurable. Then f is
Bochner—integrable if and only if || f|| is Lebesque integrable. Furthermore, we have

u /I F(tydt] < /I 1£(8) . (A7)
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Proof. Let f be Bochner—integrable. Then there is a sequence (f,(t)) in C.(I, X) satisfying
(A.5). We have || f|| < ||fall + IIf = full. Since both functions in the r.h.s. are Lebesgue
integrable and || f|| is measurable it follows that|| f|| is Lebesgue integrable.

Conversely let ||f|| be Lebesgue integrable. Then there exist a sequence (g,(t)) in
Ce(I,R) and g € LY(I) s.t. [ gn(t) — || f(®)|||dt — 0 and |gn(t)| < g(t). In fact it is possible
to choose such a sequence so that ||gn — gml[1() < 27" for any n and any m > n (just by
extracting an appropriate subsequence from a starting g, 3). Then if we set

Z |90 (t) = gn1(t)] (A.8)

we have |[Sn|[z1r) < 1. Since {Sn(t)}nen is increasing, the limit S(t) := limp— o0 Sn(?)

remains defined, is finite a.e. and [[S]|p1) < 1. Then |g,(t)] < [g1(t)] + S(t) =: g(?)

everywhere, where g € L!(I). Notice that lim g,(¢) is convergent almost everywhere (it
n—oo

convergent in all points where lim,,—, . Sy (t) is convergent). By dominated convergence it
follows that this limit holds also in L!(I) and hence it is equal to | f|.
Let (fn(t)) in C.(1,X) s.t. fn(t) — f(t) a.e. (this sequence exists by the strong measura-

bility of f(¢)). Set
g
R TAOTER S
Notice that (un(t)) is in C.(I, X). We have

AQINIFAQI
1£a O] + 5

We have (where the 2nd equality holds because because ILm gn(t) = ||f(t)]| and le ()] =
IF @Il a-e.)

[un (8] < < lgn(®)] < 9(1).

lim u,(t) = lim ‘g"( ) 1fn( )= lim fo(t) = f(t) ace..

Then we have
Jim lun(t) = f(B)]| = 0 ae. with [lun(t) — f()] < g(8) + [IF(D)] € L'(D).

By dominated convergence we conclude

lim /Hun (t)]|dt = 0.
n—oo

3Suppose we start with a given {gn}. Then for any 27" there exists N, s.t. ni,n2 > N, implies
lgny — gnallniry < 27" Let now {¢(n)} be a strictly increasing sequence in N s.t. ¢(n) > N, for any n.

Then ||gy(n) — Gom)llLr(ry < 27" for any pair m > n. Rename g, (n) as gn.
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This implies that f is Bochner—integrable. Finally, we have
I [ il =t | [ unttrat] <l [ Juntelie = [ 50t

Corollary A.20 (Dominated Convergence). Consider a sequence (fy,(t)) of Bochner—integrable
functions I — X, g : I — R Lebesgue integrable and let f : I — X. Suppose that

| fn(®)| < g(t) for alln
Jim fo(t) = f(t) for almost allt.

O]

Then f is Bochner—integrable with [, f(t) = limy, [} fu(t)

Proof. By Dominated Convergence in L'(I,R) we have [;[|f(t)|| = lim, [;|fa(t)]l. By
Proposition A.4, as a pointwise limit a.e. of a sequence of strongly measurable functions, f
is strongly measurable. By Bochner’s Theorem f is Bochner—integrable. By the triangular

inequality
i sup | / — fa(®)] < lim / 1F(t) = ful®)] =0
)] <

where the last inequality follows from ||f(t) — IIf ()] + g(t) and the standard
Dominated Convergence. 0

Definition A.21. Let p € [1,00]. We denote by LP(I, X) the set of equivalence classes
of strongly measurable functions f : I — X s.t. [[f(¢)|| € LP(I,R). We set ||f|lrr(7,x) :=
A e 1 )

Proposition A.22. (LP(1,X),|| ||z») is a Banach space.

Proof. The proof is similar to the case X =R, see [2].
(Case p = 00). Let (f,) be Cauchy sequence in L>(I, X). For any k > 1 there is a N, s.t.

I frn = fmllLoe(r,x) < 7 for all n,m > Ny.

e

So there exists an Ej, C I with |Eg| = 0 s.t.
1
| fn(t) — fr(t)||x < Z for all n,m > Nj and for all for ¢t € I\ F.

Set E := UpE). Then for any ¢t € I'\E the sequence (f,(t)) is convergent. So a function
f(t) remains defined with

1
Ifn) — fO)]lx < Z for all n > Ny, and for all for ¢t € I\ E. (A.9)
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By Proposition A.4 the function f is strongly measurable. By (A.9) we have f € L*°(I, X)

and
1

" for all n > N

1fn = fllze.x) <
and so f, — fin L*™(1, X).
(Case p < 00). Let (fy) be Cauchy sequence in LP(I, X) and let (fy,) be a subsequence
with
1 = Frnen ooy < 27°

Set now l
9i(t) = () = frgr (D)llx
k=1

Then
lgill e (rry < 1.

By monotone convergence we have that (g;(¢)); converges a.e. to a g € LP(I,R). Further-
more, for 2 < k <

-1
1) = FarOllx = D 1y () = frjs D)l x < g(t) = g1 (8)-
=k

Then a.e. the sequence (fy, (t)) is Cauchy in X for a.e. ¢t and so it converges for a.e. t to
some f(t). By Proposition A.4 the function f is strongly measurable. Furthermore,

1 () = frr )]l x < g(2).

It follows that f — f,, € LP(I,X), and so also f € LP(I,X). Finally we claim |f —
Jrellze(r,xy — 0. First of all we have || f(t) — fu, (t)[[x — 0 for a.e. t and

1) = e DN < ¢7(2)

by dominated convergence we obtain that || f — f,,||x — 0 in LP(I,R). Hence f,, — f in
IP(1, X). O

Proposition A.23. C°(1,X) is a dense subspace of LP(I, X)) for p < cc.

Proof. We split the proof in two parts. We first show that C?(I, X) is a dense subspace of
LP(I,X) for p < oco. For p = 1 this follows from the definition of integrable functions in
Definition A.15. For 1 < p < oo going through the proof of Bochner’s Theorem A.19, the
functions u, considered in that proof can be taken to belong to C%(I, X) and converge to
fin LP(1,X).

The second part of the proof consists in showing that C°(1, X)) is a dense subspace of
CY(I,X) inside LP(I, X) for p < co. Let f € CY(I,X). We consider p € C°(R, [0,1]) s.t.
[ p(x)dx = 1. Set pe(x) := € *p(x/€). Then for € > 0 small enough p x f € C(I, X). We
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extend both f and p * f on R setting them 0 in R\7. In this way p. x f € C°(R, X) and

f € CR,X) and it is enough to show that p * f =l fin LP(R, X)..
We have

pex F(8) — () = / (F(t — es) — F())p(s)dy

R
so that, by Minkowski inequality and for A(s) := || f(- —s) — f(:)||r, we have

lpes £(1) = F(t)luo < / ()| Ae s)ds.

Now we have lims_,0 A(s) = 0 and A(s) < 2||f||zr. So, by dominated convergence we get

sy o £ = e =ty [ |p(s)| e 5)ds = .

So
lim pe x f = f in LP(R, X). (A.10)

Definition A.24. We denote by D'(1, X) the space L(D(I,R), X).
Proposition A.25. Let p € [1,00) and f € LP(R, X). Set
t+h

Tnf(t) =h~1 (s)ds fort € R and h # 0.
t

Then T f € LP(R, X) N L¥(R, X) N C°R, X) and Ty f h30 fin LP(R, X)) and for almost
every t.

0
Corollary A.26. Let f € L} (I,X) be such that f =0 in D'(I,X). Then f =0 a.e.

loc

Proof. First of all we have [ fdt = 0 for any J C I compact. Indeed, let (¢,) € D(I) with
0 <y, <1and ¢, — xs a.e. Then

/fdt: lim pnfdt =0
J J

n——+oo

where we applied Dominated Convergence for the last equality.
Set now f(t) = f(t) in J and f(t) = 0 outside J. Then T}, f = 0 for all h > 0. Then f(t) =0

for a.e. t. So f(t) =0 for a.e. t € J. This implies f(t) =0 for a.e. t € R. O
Corollary A.27. Let g € L, (I, X), to € I, and f € C(I,X) given by f(t) = ftz g(s)ds.
Then:

(1) f'=g inD'(I,X);
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(2) f is differentiable a.e. with f' =g a.e.

Proof. Tt is not restrictive to consider the case I = R and g € L!'(R, X). We have

t+h B
Tyg(t) = hl/t g(s)ds = ‘w

By Proposition A.25 Tjg h=0 g for almost every t. This yields (2).
For ¢ € D(R) we have

(f' o) = —/Rf(t)go'(t)dt.

Furthermore fh .
%0 (t+ 1) — ot £t —m)— £(t)
/ _ 2 - s - -
R N B e N e

= —lim [ ()T ng(t)dt = (g, ¢).
=0 JRr

Definition A.28. Let p € [1,00]. We denote by W1P(I, X) the space formed by the
ferlP(I,X)st. ffeD,X)isalso f' € LP(I,X) and we set || f|lyw1.r = || fllze + ||/ Le-
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