
1 Fourier transform

Definition 1.1 (Fourier transform). For f ∈ L1(Rd,C) we call its Fourier transform the
function defined by the following formula

f̂(ξ) := (2π)−
d
2

∫
Rd

e−iξ·xf(x)dx. (1.1)

We use also the notation Ff(ξ) = f̂(ξ).

Example 1.2. We have for any ε > 0

e−ε
|ξ|2
2 = (2πε)−

d
2

∫
Rd

e−iξ·xe−
|x|2
2ε dx. (1.2)

We set also

F∗f(ξ) := (2π)−
d
2

∫
Rd

eiξ·xf(x)dx. (1.3)

We have what follows.

Theorem 1.3. The following facts hold.

(1) We have |f̂(ξ)| ≤ (2π)−
d
2 ∥f∥L1(Rd,C). So in particular we have

∥Ff∥L∞(Rd,C) ≤ (2π)−
d
2 ∥f∥L1(Rd,C). (1.4)

(2) (Riemann– Lebesgue Lemma) We have lim
ξ→∞

f̂(ξ) = 0.

(3) The bounded linear operator F : L1(Rd,C) → L∞(Rd,C) has values in the following
space C0(Rd,C) ⊂ L∞(Rd,C)

C0(Rd,C) := {g ∈ C0(Rd,C) : lim
x→∞

g(x) = 0}. (1.5)

(4) F defines an isomorphism of the space of Schwartz functions S(Rd,C) into itself.

(5) F defines an isomorphism of the space of tempered distributions S ′(Rd,C) into itself.
We have F [∂xjf ] = −iξjFf .

(6) For f, g ∈ L1(Rd,C) we have

f̂ ∗ g(ξ) = (2π)
d
2 f̂(ξ)ĝ(ξ).

Theorem 1.4 (Fourier transform in L2). The following facts hold.
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(1) For a function f ∈ L1(Rd,C) ∩ L2(Rd,C) we have that f̂ ∈ L2(Rd,C) and ∥f̂∥L2 =
∥f∥L2. An operator

F : L2(Rd,C) → L2(Rd,C) (1.6)

remains defined. For f ∈ L2(Rd,C) for any function φ ∈ Cc(Rd,C) with φ = 1 near
0 set

Ff(ξ) := lim
λ↗∞

(2π)−
d
2

∫
Rd

e−iξ·xf(x)φ(x/λ)dx

= lim
λ↗∞

(2π)−
d
2

∫
|x|≤λ

e−iξ·xf(x)dx.
(1.7)

Then (1.7) defines an isometric isomorphism inside L2(Rd,C), so in particular we
have

∥Ff∥L2(Rd,C) = ∥f∥L2(Rd,C). (1.8)

(2) The inverse map is defined by

F∗f(x) = lim
λ↗∞

(2π)−
d
2

∫
Rd

eiξ·xf(ξ)φ(ξ/λ)dξ

= lim
λ↗∞

(2π)
d
2

∫
|ξ|≤λ

eiξ·xf(ξ)dξ.
(1.9)

(3) For f ∈ L1(Rd,C) ∩ L2(Rd,C) the two definitions (1.1) and (1.7) of F coincide (by
dominated convergence). Similarly, for f ∈ L1(Rd,C) ∩ L2(Rd,C) the two definitions
(1.3) and (1.9) of F∗ coincide.

The above notions extend naturally to vector fields. So we have a Fourier transform f →
f̂ from (L1(Rd))d → (C0(Rd))d, from (L2(Rd))d → (L2(Rd))d , from (S(Rd))d → (S(Rd))d
and more generally from (S ′(Rd))d → (S ′(Rd))d. Notice that all these maps excepts the 1st
are isomorphisms, and all are one to one maps.

The Fourier transform extends to the spaces Lp(Rd,C) for p ∈ [1, 2].

Theorem 1.5 (Hausdorff–Young). For p ∈ [1, 2] and f ∈ Lp(Rd,C) then (1.7) defines a
function Ff ∈ Lp

′
(Rd,C) where p′ = p

p−1 and an operator remains defined which satisfies

∥Ff∥Lp′ (Rd,C) ≤ (2π)
−d
(

1
2
− 1

p′

)
∥f∥Lp(Rn,C). (1.10)

We know already cases p = 2 and p = 1. This implies that Theorem 1.5 is a consequence
of the Marcel Riesz interpolation Theorem, which we discuss now.

Theorem 1.6 (Riesz–Thorin). Let T be a linear map from Lp0(Rd)∩Lp1(Rd) to Lq0(Rd)∩
Lq1(Rd) satisfying

∥Tf∥Lqj ≤Mj∥f∥Lpj for j = 0, 1.
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Then for t ∈ (0, 1) and for pt and qt defined by

1

pt
=

1− t

p0
+

t

p1
,

1

qt
=

1− t

q0
+

t

q1

we have

∥Tf∥Lqt ≤ (M0)
1−t(M1)

t∥f∥Lpt for f ∈ Lp0(Rd) ∩ Lp1(Rd).

Proof of the Hausdorff–Young’s Theorem. We have 1
p = 1−t

2 + t for t = 2
p − 1. Hence

1− t = 2(1− 1/p) = 2
p′ and

1
p′ =

1
2

2
p′ +

t
∞ and

∥F∥Lp→Lp′ ≤ (2π)−
d
2
t = (2π)

− d
2

(
2
p
−1
)
= (2π)

d
(

1
p
− 1

2

)
= (2π)

d
(

1
2
+ 1

p
−1
)
= (2π)

−d
(

1
2
− 1

p′

)
.

Proof of Riesz–Thorin’s Interpolation Theorem. First of all notice that if f ∈ La ∩ Lb
with a < b then f ∈ Lc for any c ∈ (a, b). To see this recall Hölder

∥fg∥Lr ≤ ∥f∥Lp∥g∥Lq for
1

r
=

1

p
+

1

q

Then, since 1
c =

t
a +

1−t
b for t ∈ (0, 1) from |f | = |f |t|f |1−t we have

∥f∥Lc = ∥|f |t|f |1−t∥Lc ≤ ∥|f |t∥
L

a
t
∥|f |1−t∥

L
b

1−t
= ∥f∥tLa∥f∥1−tLb .

For pt = p0 = p1 = ∞ (in fact we can repeat a similar argument for pt = p0 = p1 any fixed
value in [1,∞]) we then have

∥Tf∥Lqt ≤ ∥Tf∥tLq1∥Tf∥1−tLq0 ≤ (M0)
1−t(M1)

t∥f∥L∞ .

So let us suppose pt <∞. Then it is enough to prove

|
∫
Tfgdx| ≤ (M0)

1−t(M1)
t∥f∥Lpt∥g∥

Lq′t
= (M0)

1−t(M1)
t

considering only ∥f∥Lpt = ∥g∥
Lq′t

= 1 for simple functions f =
∑m

j=1 ajχEj where we can

take the Ej to be finite measure sets mutually disjoint. If q′t < ∞ we can also reduce to

simple functions g =
∑N

k=1 bkχFk
where the Fj are finite measure sets mutually disjoint.

The case q′t = ∞ reduces to the case pt = ∞ by duality. In fact, see Remark 16 p. 44 [2]

∥T∥L(Lpt ,L1) = ∥T ∗∥L(L∞,Lp′t )
.

Notice that if both p0 < ∞ and p1 < ∞ and since we are treating q0 = q1 = 1 then
∥T∥L(Lpj ,L1) = ∥T ∗∥

L(L∞,L
p′
j )

≤ Mj and so one reduces to the case pt = ∞. If, say,

p0 = ∞, then ∥T∥L(Lp1 ,L1) = ∥T ∗∥L(L∞,Lp′1 )
≤ M1 since p1 < ∞, but ∥T∥L(Lp0 ,L1) =

∥T ∗∥L(L∞,(L∞)′) ≤ M0, so in other words, we don’t get a Lebesgue space. However, the
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issue is to bound for f ∈ Lp0 ∩L∞ a T ∗f ∈ L1 ∩ (L∞)′ = L1 where ∥T ∗f∥(L∞)′ = ∥T ∗f∥L1 ,
so that one can still apply the above argument used for pt = ∞.
Let us turn to the case pt < ∞ and q′t < ∞. For aj = eiθj |aj | and bk = eiψk |bk| the polar
representations, set

fz :=

m∑
j=1

|aj |
α(z)
α(t) eiθjχEj with α(z) :=

1− z

p0
+

z

p1

gz :=
N∑
k=1

|bk|
1−β(z)
1−β(t) eiψkχFk

with β(z) :=
1− z

q0
+
z

q1
.

Notice that since we are assuming q′t < ∞, then qt > 1 and so β(t) = 1
qt
< 1, so that gz is

well defined. Similarly, since pt <∞ we have α(t) = 1
pt
> 0, so also fz is well defined.

We consider now the function

F (z) =

∫
Tfzgzdx.

Our goal is to prove |F (t)| ≤M1−t
0 M t

1.
F (z) is holomorphic in 0 < Re z < 1, continuous and bounded in 0 ≤ Re z ≤ 1. Boundedness
follows from estimates like

||aj |
α(z)
α(t) | = |aj |

α(Re z)
α(t) which is bounded for 0 ≤ Re z ≤ 1.

We have F (t) =
∫
Tfgdx since ft = f and gt = g.

By the 3 lines lemma, see below, which yields |F (z)| ≤ M1−Re z
0 MRe z

1 , our theorem is a
consequence of the following two inequalities

|F (z)| ≤M0 for Re z = 0 ;

|F (z)| ≤M1 for Re z = 1 .

For z = iy we have for p0 <∞

|fiy|p0 =

m∑
j=1

||aj |
α(iy)
α(t) |p0χEj =

m∑
j=1

||aj |

1
p0

+iy( 1
p1

− 1
p0
)

1
pt |p0χEj

=
m∑
j=1

||aj |
iypt

(
1
p1

− 1
p0

)
|aj |

pt
p0 |p0χEj =

m∑
j=1

|aj |ptχEj = |f |pt .

This implies

∥fiy∥p0 = (

∫
Rd

|fiy|p0dx)
1
p0 = (

∫
Rd

|f |ptdx)
1
p0 = 1. (1.11)

Notice that we have also ∥fiy∥∞ = 1 when p0 = ∞.
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Proceeding similarly, using 1− β(z) = 1−z
q′0

+ z
q′1
, for z = iy and q′0 <∞ we have

|giy|q
′
0 =

N∑
k=1

||bk|
1−β(iy)
1−β(t) |q′0χFk

=

N∑
k=1

||bk|

iy

(
1
q′1

− 1
q′0

)
1
q′t |bk|

1
q′0
1
q′t |q′0χFk

=

N∑
j=1

|bk|q
′
tχFk

= |g|q′t .

This implies

∥giy∥q′0 = (

∫
Rd

|giy|q
′
0dx)

1
q′0 = (

∫
Rd

|g|q′tdx)
1
q′0 = 1. (1.12)

Notice that we have also ∥giy∥∞ = 1 when q′0 = ∞..
Then

|F (iy)| ≤ ∥Tfiy∥q0∥giy∥q′0 ≤M0∥fiy∥p0∥giy∥q′0 =M0.

By a similar argument
|f1+iy|p1 = |f |pt

|g1+iy|q
′
1 = |g|q′t .

Indeed by α(1 + iy) = 1+iy
p1

− iy
p0

|f1+iy|p1 =
m∑
j=1

||aj |
α(1+iy)

α(t) |p1χEj =
m∑
j=1

||aj |

1
p1

+iy( 1
p1

− 1
p0
)

1
pt |p1χEj

=
m∑
j=1

||aj |
pt
p1 |p1χEj =

m∑
j=1

|aj |ptχEj = |f |pt

and by 1− β(1 + iy) = 1+iy
q′1

− iy
q′0

|g1+iy|q
′
1 =

N∑
k=1

||bk|
1−β(1+iy)

1−β(t) |q′1χFk
=

N∑
k=1

||bk|

iy

(
1
q′1

− 1
q′0

)
1
q′t |bk|

1
q′1
1
q′t |q′1χFk

=
N∑
j=1

|bk|q
′
tχFk

= |g|q′t .

Finally

|F (1 + iy)| ≤ ∥Tf1+iy∥q1∥g1+iy∥q′1 ≤M1∥f1+iy∥p1∥g1+iy∥q′1 =M1∥f∥
pt
p1
pt ∥g∥

q′t
q′1
q′t

=M1.

Here we have used the following lemma.

Lemma 1.7 (Three Lines Lemma). Let F (z) be holomorphic in the strip 0 < Re z < 1,
continuous and bounded in 0 ≤ Re z ≤ 1 and such that

|F (z)| ≤M0 for Re z = 0 ;

|F (z)| ≤M1 for Re z = 1 .
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Then we have |F (z)| ≤M1−Re z
0 MRe z

1 for all 0 < Re z < 1.

Proof. Let us start with the special case M0 = M1 = 1 and set B := ∥F∥L∞ . Set hϵ(z) :=
(1 + ϵz)−1 with ϵ > 0. Since Re(1 + ϵz) = 1 + ϵx ≥ 1 it follows |hϵ(z)| ≤ 1 in the strip.
Furthermore Im(1+ ϵz) = ϵy implies also |hϵ(z)| ≤ |ϵy|−1. Consider now the two horizontal
lines y = ±B/ϵ and let R be the rectangle 0 ≤ x ≤ 1 and |y| ≤ B/ϵ. In |y| ≥ B/ϵ we have

|F (z)hϵ(z)| ≤
B

|ϵy|
≤ B

|ϵB/ϵ|
= 1.

On the other hand by the maximum modulus principle

sup
R

|F (z)hϵ(z)| = sup
∂R

|F (z)hϵ(z)| ≤ 1,

where on the horizontal sides the last inequality follows from the previous inequality and
on the vertical sides follows from |F (z)| ≤ 1 for Re z = 0, 1 and from |hϵ(z)| ≤ 1.
Hence in the whole strip 0 ≤ x ≤ 1 we have |F (z)hϵ(z)| ≤ 1 for any ϵ > 0. This implies

lim
ϵ↘0

|F (z)hϵ(z)| = |F (z)| ≤ 1

in the whole strip 0 ≤ x ≤ 1.
In the general case (M0,M1) ̸= (1, 1) set g(z) :=M1−z

0 M z
1 . Notice that

g(z) = e(1−z) logM0ez logM1 ⇒ |g(z)| =M1−x
0 Mx

1 ⇒
min(M0,M1) ≤ |g(z)| ≤ max(M0,M1).

So F (z)g−1(z) satisfies the hypotheses of the case M0 = M1 = 1 and so |F (z)| ≤ |g(z)| =
M1−Re z

0 MRe z
1

We consider now for △ :=
∑

j
∂2

∂x2j
and for f ∈ S ′(Rd,C) the heat equation

ut −△u = 0 , u(0, x) = f(x). (1.13)

By applying F we transform the above problem into

ût + |ξ|2û = 0 , û(0, ξ) = f̂(ξ).

This yields û(t, ξ) = e−t|ξ|
2
f̂(ξ). Notice that since f̂ ∈ S ′(Rd,C) and e−t|·|2 ∈ S(Rd,C) for

any t > 0, the last product is well defined. Furthermore, we have û(t, ·) ∈ C0([0,+∞),S ′(Rd,C))
and, as a consequence, since F is an isomorphism of S ′(Rd,C) also u(t, ·) ∈ C0([0,+∞),S ′(Rn,C)).

We have e−t|ξ|
2
= Ĝ(t, ξ) with G(t, x) = (2t)−

d
2 e−

|x|2
4t . Then, from û(t, ξ) = Ĝ(t, ξ)f̂(ξ) it

follows u(t, x) = (2π)−
d
2G(t, ·) ∗ f(x). In particular, for f ∈ Lp(Rd,C), we have

u(t, x) = (4πt)−
d
2

∫
Rd

e−
|x−y|2

4t f(y)dy.
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Notice that by (1.2) we have

(4πt)−
d
2

∫
Rd

e−
|x|2
4t dx = 1.

We will write

et△f(x) := (4πt)−
d
2

∫
Rd

e−
|x−y|2

4t f(y)dy. (1.14)

Notice that for p ≥ 1 we have ∥et△f∥Lp(Rd) ≤ ∥f∥Lp(Rd) and for f ∈ L1(Rd) and any x ∈ Rd

|et△f(x)| ≤ (4πt)−
d
2

∫
Rd

e−
|x−y|2

4t |f(y)|dy ≤ (4πt)−
d
2

∫
Rd

|f(y)|dy = (4πt)−
d
2 ∥f∥L1(Rd).

We set also Kt(x) := (4πt)−
d
2 e−

|x|2
4t . Then et△f = Kt ∗ f . Kt(x− y) is the Heath Kernel.

As a corollary to the Riesz–Thorin Theorem we obtain the following result.

Corollary 1.8. For any q ≥ p ≥ 1 and any f ∈ Lp(Rd) we have

∥et△f∥Lq(Rd) ≤ (4πt)
− d

2

(
1
p
− 1

q

)
∥f∥Lp(Rd). (1.15)

Proof. Notice that (1.15) is true for p = q and for q = ∞ and p = 1. For q > p = 1

Riesz–Thorin and
1

q
=

1− 1
q

∞
+

1
q

1
yields

∥et△∥L1→Lq ≤ ∥et△∥
1− 1

q

L1→L∞∥et△∥
1
q

L1→L1 ≤ (4πt)
− d

2

(
1− 1

q

)
= (4πt)

− d
2q′ with q′ =

q

q − 1
.

Next, for 1 < p < q we have 1
p = α+ 1−α

q = 1
q +

α
q′ s.t. α = q′

(
1
p −

1
q

)
. Then

∥et△∥Lp→Lq ≤ ∥et△∥αL1→Lq∥et△∥1−αLq→Lq ≤ (4πt)
− d

2q′ α = (4πt)
− d

2

(
1
p
− 1

q

)
.

Theorem 1.9. ρ ∈ L1(Rd) be s.t.
∫
ρ(x)dx = 1. Set ρϵ(x) := ϵ−dρ(x/ϵ). Consider

Cc(Rd,C) and for each p ∈ [1,∞] let Cc(Rd,C)p be the closure of Cc(Rd,C) in Lp(Rd,C),
so that Cc(Rd,C)p = Lp(Rd,C) for p < ∞ and Cc(Rd,C)∞ = C0(Rd,C) $ L∞(Rd,C).
Then for any f ∈ Cc(Rd,C)p we have

lim
ϵ↘0

ρϵ ∗ f = f in Lp(Rd,C). (1.16)

In particular we have
lim
t↘0

et△f = f in Lp(Rd,C). (1.17)
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Proof. Clearly, (1.17) is a special case of (A.10) setting ϵ =
√
t and ρ(x) = (4π)−

d
2 e−

|x|2
4 .

To prove (A.10) we start with f ∈ Cc(Rd,C). In this case

ρϵ ∗ f(x)− f(x) =

∫
Rd

(f(x− ϵy)− f(x))ρ(y)dy

so that, by Minkowski inequality and for ∆(y) := ∥f(· − y)− f(·)∥Lp , we have

∥ρϵ ∗ f(x)− f(x)∥Lp ≤
∫

|ρ(y)|∆(ϵ y)dy.

Now we have limy→0∆(y) = 0 and ∆(y) ≤ 2∥f∥Lp . So, by dominated convergence we get

lim
ϵ↘0

∥ρϵ ∗ f(x)− f(x)∥Lp = lim
ϵ↘0

∫
|ρ(y)|∆(ϵ y)dy = 0.

So this proves (A.10) for f ∈ Cc(Rd,C). The general case is proved by a density argument.

2 Some spaces of functions

We start by defining L2 Sobolev spaces. We will introduce the homogeneous Sobolev spaces
Ḣk(Rd) and the standard Sobolev spaces Hk(Rd). For ξ ∈ Rd let ⟨ξ⟩ =

√
1 + |ξ|2 be the

Japanese bracket. For a tempered distribution u we denote by û its Fourier transform. The
following spaces are formed by tempered distributions u s.t. û is in L1

loc(Rd) for s ∈ R:

Ḣs(Rd) defined with ∥u∥Ḣs(Rd) := ∥|ξ|sû∥L2(Rd) ; (2.1)

Hs(Rd) defined with ∥u∥Hs(Rd) := ∥⟨ξ⟩sû∥L2(Rd) . (2.2)

The following lemma is elementary.

Lemma 2.1. The following statements are true.

• L2(Rd) → Hs(Rd) defined by f → F∗
(

f̂
⟨ξ⟩s

)
is an isometric isomorphism and all the

Hs(Rd) are Hilbert spaces with inner product ⟨f, g⟩Hs = ⟨⟨ξ⟩sf̂ , ⟨ξ⟩sĝ⟩L2 .

• We have S(Rd) ⊆ Ḣs(Rd) if and only if s > −d/2.

• The Ḣs(Rd) have an inner product defined by ⟨f, g⟩Ḣs = ⟨|ξ|sf̂ , |ξ|sĝ⟩L2

While the Ḣs(Rd) have an inner product, in general they are not complete topological
vector spaces.

Proposition 2.2. For s < d/2 the space Ḣs(Rd) is complete and the Fourier transform
establishes an isometric isomorphism F : Ḣs(Rd) → L2(Rd, |ξ|2sdξ).
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The above proposition is a consequence of the following lemma.

Lemma 2.3. Let s < d
2 . Then we have the following facts.

• L2(Rd, |ξ|2sdξ) ⊂ L1
loc(Rd, dξ)

• L2(Rd, |ξ|2sdξ) ⊂ S ′(Rd)

• The Fourier transform F : S ′(Rd) → S ′(Rd) is s.t. F
(
Ḣs(Rd)

)
= L2(Rd, |ξ|2sdξ)

and establishes an isometry between these two spaces.

Proof. Let g ∈ L2(Rd, |ξ|2sdξ). Obviously g ∈ L1
loc(Rd\{0}, dξ). Let now B = {ξ ∈ Rd :

|ξ| ≤ 1}. Then∫
B
|g(ξ)|dξ ≤

(∫
B
|ξ|2s|g(ξ)|2dξ

) 1
2
(∫

B
|ξ|−2sdξ

) 1
2

≤
√

vol(Sd−1)(

∫ 1

0
rd−1−2sdr)

1
2 ∥g∥L2(Rd,|ξ|2sdξ) =

√
vol(Sd−1)

d− 2s
∥g∥L2(Rd,|ξ|2sdξ).

Next, we check that L2(Rd, |ξ|2sdξ) ⊂ S ′(Rd). We split g = χBg + χBcg. Then χBg ∈
L1(Rd, dξ) implies χBg ∈ S ′(Rd). On the other hand we have χBcg ∈ L2(Rd, ⟨ξ⟩2sdξ). This
in turn implies χBcg ∈ S ′(Rd), where the embedding L2(Rd, ⟨ξ⟩2σdξ) ⊂ S ′(Rd) for any
σ ∈ R follows from∫

Rd

f(ξ)φ(ξ)dξ =

∫
Rd

⟨ξ⟩σf(ξ)⟨ξ⟩−σφ(ξ)dξ ≤ ∥f∥L2(Rd,⟨ξ⟩2σdξ)(

∫
Rd

⟨ξ⟩−2σφ(ξ)dξ)
1
2

≤ ∥f∥L2(Rd,⟨ξ⟩2σdξ)(

∫
Rd

⟨ξ⟩−2σ−mdξ)
1
2 ∥⟨ξ⟩mφ∥L∞(Rd)

for m chosen s.t. 2σ +m > d.

Remark 2.4. For s ≥ d
2 the space Ḣs(Rd) is not a complete space for the norm indicated.

In particular, the Fourier trasform defines an embedding Ḣs(Rd) F
↪→ L2(Rd, |ξ|2sdξ) with

image which is strictly contained and dense in L2(Rd, |ξ|2sdξ). The fact that the image
is dense can be seen observing that C∞

c (Rd\{0}) is dense in L2(Rd, |ξ|2sdξ) and we have
FḢs(Rd) ⊇ C∞

c (Rd\{0}).

For s = d
2 + ε0 with ε0 > 0, if we pick f ∈ C∞

c (Rd) with f(0) ̸= 0, then
f(ξ)

|ξ|d+
ε0
2

is a Borel

function not contained in L1
loc(Rd, dξ). But |ξ|2s

∣∣∣∣∣ f(ξ)

|ξ|d+
ε0
2

∣∣∣∣∣
2

=
|f(ξ)|2

|ξ|d−ε0
∈ L1(Rd, dξ) implies

that
f(ξ)

|ξ|d+
ε0
2

∈ L2(Rd, |ξ|2sdξ).
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For s = d
2 consider f(ξ) =

∞∑
k=1

2kd

k
χ[3/4,5/4](2

k|ξ|). Notice that for each ξ, at most one term

of the sum is non zero, because [2−k3/4, 2−k5/4] ∩ [2−j3/4, 2−j5/4] = ∅ for j ̸= k. Indeed,
if j < k then

2−k5/4 ≤ 2−(j−1)5/4 < 2−j3/4 where the latter follows from 5 < 6.

Then |ξ|
d
2 |f(ξ)| ∈ L2(Rd, dξ) since∫

Rd

|ξ|d|f(ξ)|2dξ =
∞∑
k=1

1

k2
22kd

∫
Rd

|ξ|dχ[3/4,5/4](2
k|ξ|)dξ =

∞∑
k=1

1

k2

∫
Rd

|ξ|dχ[3/4,5/4](|ξ|)dξ <∞

but f , which is supported in the ball B(0, 5/4), is not in L1(Rd, dξ) since otherwise we
would have

∞ >

∫
Rd

|f(ξ)|dξ ≥
n∑
k=1

1

k
2kd
∫
Rd

χ[3/4,5/4](2
k|ξ|)dξ =

n∑
k=1

1

k

∫
Rd

|ξ|dχ[3/4,5/4](|ξ|)dξ
n→∞→ ∞.

Given a vector field u = (uj)dj=1 ∈ (S ′(Rd))d its divergence is

divu = ∇ · u :=

d∑
j=1

∂

∂xj
uj .

Notice that d̂ivu = −i
∑d

j=1 ξ
j ûj so that a u is divergence free, that is divu = 0, if and only

if
∑d

j=1 ξ
j ûj = 0.

We define now an operator P by

(F(Pu))j = ûj − 1

|ξ|2
d∑

k=1

ξjξkû
k. (2.3)

Lemma 2.5. Let s < d
2 . Formula (2.3) defines a bounded operator from (Ḣs−1(Rd))d) into

itself.
P is a projection with image Range(P) represented by the divergence free elements of (Ḣs−1(Rd))d).
It is the orthogonal projection.
We have kerP = ∇Ḣs(Rd).

Proof. First of all for P defined by (2.3) we have

∥Pu∥Ḣs−1 =
d∑
j=1

∥(Pu)j∥Ḣs−1 =
d∑
j=1

∥|ξ|s−1F(Pu)j∥L2 =
d∑
j=1

∥|ξ|s−1(ûj − 1

|ξ|2
d∑

k=1

ξjξkû
k)∥L2

≤
d∑
j=1

∥|ξ|s−1ûj∥L2 +

d∑
j,k=1

∥ξjξk
|ξ|2

∥L∞∥|ξ|s−1ûk∥L2 ≤
d∑
j=1

∥uj∥Ḣs−1 +

d∑
j,k=1

∥uk∥Ḣs−1 ≤ (d+ 1)∥u∥Ḣs−1 .
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Hence this is a bounded linear operator from (Ḣs−1(Rd))d → (Ḣs−1(Rd))d. In fact it is a
projection (so ∥Pu∥Ḣs−1 ≤ ∥u∥Ḣs−1) as we will see in a moment. But first observe that

F(divPu) = i

d∑
j=1

ξj(F(Pu))j = i

d∑
j=1

ξj ûj − i

�
�|ξ|2
�

�
�
��d∑

j=1

(ξj)2
d∑

k=1

ξkû
k = 0

which shows that the image of P is formed by divergence free vector fields. Notice also that
if divu = 0, and hence

∑d
j=1 ξ

j ûj = 0, we have

(F(Pu))j = ûj − 1

|ξ|2
ξj

d∑
k=1

ξkû
k

︸ ︷︷ ︸
0

= ûj ,

and so Pu = u.
Now we check that P2 = P. We have

(F(P2u))j = (F(Pu))j − ξj
|ξ|2

d∑
k=1

ξk(F(Pu))k︸ ︷︷ ︸
0

where we use the fact checked above that divPu = 0.
All the above steps show that (2.3) defines a projection in (Ḣs−1(Rd))d whose image is
formed by the divergence free operators in (Ḣs−1(Rd))d.
Pick now V ∈ Ḣs. Then ∇V ∈ (Ḣs−1(Rd))d and we have

(F(P∇V ))j = −i

(
ξj −

d∑
k=1

ξjξ
2
k

|ξ|2

)
V̂ (ξ) = 0.

Hence kerP ⊇ ∇Ḣs(Rd). We now show kerP ⊆ ∇Ḣs(Rd).
If Pu = 0 then

ûj = −iξj V̂ (ξ) where V̂ (ξ) :=
i

|ξ|2
d∑

k=1

ξkû
k

It is easy to see that V̂ ∈ L2(Rd, |ξ|2sdξ) and in view of the identification of this space with
Ḣs(Rd) through the Fourier transform when s < d

2 we conclude that V ∈ Ḣs(Rd) with
∇V = u.

For u ∈ Ḣk(Rd) and λ > 0 let us set Pλu := F∗(χ|ξ|≤λFu). Notice that this map sends

L2(Rd) into itself since

∥Pλu∥Ḣk(Rd) = ∥|ξ|kχ|ξ|≤λFu∥L2(Rd) ≤ ∥|ξ|kFu∥L2(Rd) = ∥u∥Ḣk(Rd).
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Notice that Pλ is a projection, that is P2
λ = Pλ, by

P2
λu = Pλ ◦Pλu = F∗(χ|ξ|≤λFPλu) = F∗(χ2

|ξ|≤λFu) = F∗(χ|ξ|≤λFu) = Pλu.

If divu = 0 then also divPλu = 0. Indeed

(divu = 0 ⇔
d∑
j=1

ξj ûj = 0) ⇒ F(divPλu) =
d∑
j=1

ξjχ|ξ|≤λû
j = χ|ξ|≤λ

d∑
j=1

ξj ûj = 0,

which in turn implies divPλu = 0.

3 Hardy Littlewood maximal function and Sobolev esti-
mates

Let f ∈ L1
loc(Rd) and consider (for B(x, r) the ball of center x and radius r in Rd) averages

Arf(x) =
1

vol(B(x, r))

∫
B(x,r)

f(y)dy.

Notice that for any r > 0 the function x → Arf(x) is continuous. Indeed, fix δ0 > 0 and
consider δx ∈ B(0, δ0). Then by the triangular inequality B(x+ δx, r) ⊂ B(x, r + δ0). So,
for δx ∈ B(0, δ0)

Arf(x)−Arf(x+δx) =
1

vol(B(0, 1))rd

∫
B(x,r+δ0)

(
χB(x,r)\B(x+δx,r)(y)− χB(x+δx,r)\B(x,r)(y)

)
f(y)dy

with for any y(
χB(x,r)\B(x+δx,r)(y)− χB(x+δx,r)\B(x,r)(y)

)
χB(x,r+δ0)(y)f(y)

|δx|→0→ 0.

By dominated convergence Arf(x)−Arf(x+ δx) → 0. We define

Mf(x) = sup
r>0

Ar|f |(x). (3.1)

From the definition we conclude that Mf is lower semi continuous that is {x :Mf(x) > a}
is open for any a. It also obvious that M is sub additive:

M(f + g)(x) ≤Mf(x) +Mg(x).

We have the following obvious estimate

|Mf(x)| ≤ |f |L∞(Rd). (3.2)
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One important fact is that it is not true that M maps L1(Rd) into itself. Indeed if say
K ⊂ Rd is any compact set and if B(0, c0) ⊃ K, then since for |x| > c0 we have B(x, 2|x|) ⊃
B(0, |x|) ⊃ K, we have computing at r = 2|x|

MχK(x) = sup
r>0

vol(B(x, r) ∩K)

vol(B(0, 1))rd
≥ vol(K)

vol(B(0, 1))2d|x|d

which shows that MχK ̸∈ L1(Rd).
Notice that each g ∈ L1(Rd) satisfies Chebyshev’s inequality:

vol({x : |g(x)| > α}) ≤
|g|L1(Rd)

α
for any α > 0 (3.3)

Indeed (3.3) follows immediately from.

|g|L1(Rd) =

∫
Rd

|g(y)|dy ≥
∫
{x:|g(x)|>α}

|g(y)|dy ≥
∫
{x:|g(x)|>α}

αdy = αvol({x : |g(x)| > α})

If T : L1(Rd) → L1(Rd) satisfies ∥Tf∥L1(Rd) ≤ A∥f∥L1(Rd) for all f ∈ L1(Rd) and for a fixed
constant A, from (3.3) it is easy to conclude that

vol({x : |Tf(x)| > α}) ≤ A

α
|f |L1(Rd) for any α > 0 and any f ∈ L1(Rd).

Unfortunately we have seen that M does not map L1(Rd) into itself. However we will show
that it satisfies the last property. Indeed we will prove now that M is weak (1, 1) bounded,
that is there exists a constant A > 0 (in fact we will prove A = 3d) s.t.

vol({x :Mf(x) > α}) ≤ A

α
|f |L1(Rd) for any α > 0 . (3.4)

To prove this we consider the set {x : Mf(x) > α}. Then, for any x in this set, there is a
ball with center in x, which we denote by Bx, with

∫
Bx

|f | > αvol(Bx). Pick any compact
subset K of the above set, and cover it with such balls Bx. Extract now a finite cover,
corresponding to finitely many points x1, ...xN . We have the following covering result,
which we state without proof.

Theorem 3.1 (Vitali’s lemma). Let Bx1,...,BxN be a finite number of balls in Rd. There
exists a subset of balls

{B1, ..., Bm} ⊆ {Bx1 , ..., BxN } (3.5)

with the B1...Bm pairwise disjoint, s.t.

vol(Bx1 ∪ · · · ∪BxN ) ≤ 3d
m∑
j=1

vol(Bj). (3.6)
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We consider balls B1...Bm as in (3.5) and from

K ⊂ Bx1 ∪ · · · ∪BxN ⇒ vol(K) < vol(Bx1 ∪ · · · ∪BxN ),

from (3.6) and from the definition of the Bxj we get

3−dvol(K) ≤
m∑
j=1

vol(Bj) <

m∑
j=1

1

α

∫
Bj

|f | ≤ |f |1
α
. (3.7)

(3.7) implies vol(K) ≤ 3dα−1|f |1. By vol({x : |Mf(x)| > α}) = supK⊂{x:|Mf(x)|>α} vol(K)
for compact sets K, then (3.7) implies (3.4).

(3.2) and (3.4) imply by the Marcinkiewicz Interpolation Theorem 3.2, proved below,

∥Mf∥Lp(Rd) < Ap∥f∥Lp(Rd) for all p ∈ (1,∞] . (3.8)

We will use this result in the proof of the Hardy-Littlewood-Sobolev Theorem, and of
Sobolev’s estimates.

Before introducing the Marcinkiewicz interpolation Theorem, we recall that for a mea-
surable function g : Rd → R the distribution function is

λ(α) := vol({x ∈ Rd : |g(x)| > α}).

Notice that λ : [0,∞) → [0,∞] is decreasing. This implies that it is measurable.
For a function g ∈ Lp(Rd) with 1 ≤ p <∞ we have∫

Rd

|g(x)|pdx =

∫
Rd

dx

∫ |g(x)|

0
pαp−1dα =

∫ ∞

0
dαpαp−1

∫
{x∈Rd:|g(x)|>α}

dx

=

∫ ∞

0
pαp−1λ(α)dα

(3.9)

where the 1st equality is elementary, the last follows immediately by the definition of λ(α),
and the 2nd follows from Tonelli’s Theorem applied to the positive measurable function
F (x, α) := |α|p−1χR+(|g(x)| − α)χR+(α).

Theorem 3.2 (Marcinkiewicz Interpolation). Let T : L1(Rd) + L∞(Rd) → L1
loc(Rd) be a

sublinear operator s.t. for two constants A1 and A∞ and for all f

∥Tf∥L∞(Rd) ≤ A∞∥f∥L∞(Rd) (3.10)

|{x : |Tf(x)| > α}| ≤ A1

α
|f |L1(Rd) for any α > 0 . (3.11)

Then for any p ∈ (1,∞) there is a constant Ap such that for any f ∈ Lp(Rd) we have

∥Tf∥Lp(Rd) ≤ Ap∥f∥Lp(Rd). (3.12)
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Proof. Dividing T by a constant, we can assume A∞ = 1. Fix p ∈ (1,∞) and f ∈ Lp(Rd).
For α > 0 arbitrary set

f1(x) =

{
f(x) if |f(x)| ≥ α

2
0 otherwise.

Notice that f1 ∈ L1(Rd) by∫
Rd

|f1(x)|dx =

∫
{x:|f(x)|≥α

2
}
|f(x)|dx ≤ 2p−1

αp−1

∫
Rd

|f(x)|pdx.

Using (3.10), we get |Tf(x)| ≤ |Tf1(x)|+ α
2 , since ∥f − f1∥L∞(Rd) ≤ α

2 . Then

{x : |Tf(x)| > α} ⊆ {x : |Tf1(x)| >
α

2
}.

We have, using (3.11),

vol({x : |Tf1(x)| >
α

2
}) ≤ A1

2

α

∫
Rd

|f1(x)|dx = A1
2

α

∫
{x:|f(x)|≥α

2
}
|f(x)|dx.

Substituting g = Tf in (3.9)∫
Rd

|Tf(x)|pdx =

∫ ∞

0
pαp−1vol({x : |Tf(x)| > α})dα

≤
∫ ∞

0
pαp−1vol({x : |Tf1(x)| >

α

2
})dα ≤ 2A1

∫ ∞

0
pαp−2

∫
{x:|f(x)|≥α

2
}
|f(x)|dx

= 2pA1

∫
Rd

dx|f(x)|
∫ 2|f(x)|

0
αp−2dα︸ ︷︷ ︸

2p−1|f(x)|p−1

p−1

=
2pp

p− 1
A1

∫
Rd

|f(x)|pdx.

We will use the properties of the Hardy Littlewood Maximal function, and specifically
the definition and (3.8), to prove the following important theorem.

Theorem 3.3 (Hardy-Littlewood-Sobolev inequality). For any

γ ∈ (0, d) and 1 < p < q <∞ with
1

p
=

1

q
+
d− γ

d
(3.13)

there exists a constant C s.t.

∥
∫
Rd

f(x− y)|y|−γdy∥Lq(Rd) ≤ C∥f∥Lp(Rd). (3.14)
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Proof. For an R > 0 to be chosen momentarily, we split∫
Rd

f(x− y)|y|−γdy =

∫
|y|<R

f(x− y)|y|−γdy +
∫
|y|>R

f(x− y)|y|−γdy.

We claim that

|
∫
|y|<R

f(x− y)|y|−γdy| ≤Mf(x)

∫
|y|<R

|y|−γdy = cRd−γMf(x). (3.15)

We assume for a moment this claim and complete the rest of the proof. By Hölder we have

|
∫
|y|>R

f(x− y)|y|−γdy| ≤ ∥f∥Lp(Rd)∥|y|−γχ{y:|y|>R}∥Lp′ (Rd).

We have |y|−γχ{y:|y|>R} ∈ Lp
′
(Rd) exactly if γp′ > d. The latter inequality is true because

1

p′
− γ

d
= −1

q
< 0 ⇒ γp′ − d =

dp′

q
> 0.

In this case

∥|y|−γχ{y:|y|>R}∥Lp′ (Rd) =

(
vol(Sd−1)

∫
r>R

r−γp
′+d−1dr

) 1
p′

= cR
d
p′−γ = cR

− d
q .

Hence

|
∫
Rd

f(x− y)|y|−γdy| . Rd−γMf(x) + ∥f∥Lp(Rd)R
− d

q .

Now we choose R so that the two terms on the r.h.s. are equal:

Mf(x)

∥f∥Lp
= R

γ−d− d
q = R

− d
p .

Then we get

|
∫
Rd

f(x− y)|y|−γdy| . Rd−γMf(x) + ∥f∥Lp(Rd)R
− d

q = 2∥f∥Lp(Rd)

(
Mf(x)

∥f∥Lp

) d
q
· p
d

= 2 (Mf(x))
p
q ∥f∥

1− p
q

Lp .

Then

∥
∫
Rd

f(x− y)|y|−γdy∥Lq(Rd) . ∥f∥
1− p

q

Lp ∥(Mf)
p
q ∥Lq = ∥f∥

1− p
q

Lp ∥(Mf)∥
p
q

Lp . ∥f∥Lp .

To complete the proof we need the inequality in (3.15). More generally, we prove that if
Φ ∈ L1(Rd) is radial, positive and decreasing, then

|
∫
Rd

f(x− y)Φ(y)dy| ≤Mf(x)

∫
Rd

Φ(y)dy. (3.16)

16



Then (3.15) is just (3.16) for Φ(y) = |y|−γχ{y:|y|<R}.
Notice that (3.16) is true for radial functions of the form

Φ =
∑
j

ajχBj

for aj > 0, Bj a ball of center 0. Indeed∑
j

aj

∫
Bj

|f(x− y)|dy =
∑
j

aj
vol(Bj)

vol(Bj)

∫
Bj

|f(x− y)|dy ≤
∑
j

ajvol(Bj)Mf(x) =Mf(x)

∫
Φdy.

In the general case the result follows from the fact that Φ can be approximated by these
functions.

For the above proof see [14] p.354, while for the next one see [13] p.73.

Exercise 3.4. Check that, for γ, p and q as above, the operator

Ttf(x) =

∫
|y|≥t

f(x− y)|y|−γdy

satisfies Ttf
t→+∞→ 0 in Lq(Rd) for any f ∈ Lp(Rd) but that it is not true that Tt

t→+∞→ 0
in the Banach space of linear bounded operators from Lp(Rd) to Lq(Rd) (that is, there is
strong convergence but not uniform convergence to the 0 operator).

Lemma 3.5. For any γ ∈ (0, d) there exists cγ > 0 s.t.

F(| · |−γ)(ξ) = cγ |ξ|γ−d. (3.17)

Proof. It is enough to show that for any ϕ ∈ S(Rd) we have∫
Rd

|x|−γϕ(x)dx = cγ

∫
Rd

|ξ|γ−dϕ̂(ξ)dξ. (3.18)

Starting from (1.2) and Plancherel we have∫
Rn

ε−
d
2 e−

|x|2
2ε ϕ(x)dx =

∫
Rd

e−ε
|ξ|2
2 ϕ̂(ξ)dξ.

Now we apply to both sides
∫∞
0

dϵ
ϵ ϵ

d−γ
2 and commuting order of integration we obtain∫

Rd

dxϕ(x)

∫ ∞

0
ε−

γ
2 e−

|x|2
2ε
dϵ

ϵ︸ ︷︷ ︸
aγ |x|−γ

=

∫
Rd

dξϕ̂(ξ)

∫ ∞

0
ϵ
d−γ
2 e−ε

|ξ|2
2
dϵ

ϵ︸ ︷︷ ︸
bγ |ξ|γ−d

for appropriate constants aγ and bγ .
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Theorem 3.6 (Sobolev Embedding Theorem). For any 0 < s < d
2 there exists a C s.t. for

1
q = 1

2 − s
d we have

∥f∥Lq(Rd) ≤ C∥f∥Ḣs(Rd). (3.19)

Proof. For f ∈ S(Rd) we have for some fixed c

f(x) := (2π)−
d
2

∫
Rd

eiξ·x|ξ|−s
(
|ξ|sf̂(ξ)

)
dξ = c

∫
Rd

|x− y|s−dg(y)dy where ĝ(ξ) = |ξ|sf̂(ξ)

where we used φ̂ ∗ T = (2π)
d
2 φ̂ T̂ which holds for φ ∈ S(Rd) and T ∈ S ′(Rd).

Since g ∈ L2(Rd), by the Hardy-Littlewood-Sobolev Theorem we have that f ∈ Lq(Rd) for

1

q
=

1

2
− d− (d− s)

d
=

1

2
− s

d

This extends to all f ∈ Ḣs(Rd) by the density of S(Rd) in Ḣs(Rd) for 0 < s < d
2 .

4 Assorted inequalities

Lemma 4.1 (Interpolation of Sobolev norms). For any s ∈ [0, 1] and any k = sk1+(1−s)k2
we have

∥f∥Ḣk(Rd) ≤ ∥f∥s
Ḣk1 (Rd)

∥f∥1−s
Ḣk2 (Rd)

for any f ∈ Ḣk1(Rd) ∩ Ḣk2(Rd). (4.1)

In particular, for s ∈ [0, 1] and any f ∈ H1(Rd)

∥f∥Ḣs(Rd) ≤ ∥f∥1−s
L2(Rd)

∥f∥s
Ḣ1(Rd)

(4.2)

Proof. (4.2) follows from (4.1) for k1 = 1 and k2 = 0. So let us turn to (4.1).
Obviously there is nothing to prove for s = 0, 1, so we can assume s ∈ (0, 1). Notice that
for p = 1

s we have p′ := p
p−1 = 1

1−s . Now, we have

∥f∥2
Ḣk(Rd)

=

∫ (
|ξ|2sk1 |f̂(ξ)|2s

)(
|ξ|2(1−s)k2 |f̂(ξ)|2(1−s)

)
dξ

≤ ∥|ξ|2sk1 |f̂(ξ)|2s∥
L

1
s (Rd)

∥|ξ|2(1−s)k2 |f̂(ξ)|2(1−s)∥
L

1
1−s (Rd)

= ∥|ξ|k1 |f̂(ξ)|∥2sL2(Rd)∥|ξ|
k1 f̂(ξ)∥2(1−s)

L2(Rd)
= ∥f∥2s

Ḣk1 (Rd)
∥f∥2(1−s)

Ḣk2 (Rd)
.

Theorem 4.2 (Gagliardo–Nirenberg). If p ∈ [2,∞) is s.t. 1
p >

1
2 − 1

d then there exists C
s.t.

∥f∥Lp(Rd) ≤ C∥f∥1−s
L2(Rd)

∥f∥s
Ḣ1(Rd)

where s = d

(
1

2
− 1

p

)
. (4.3)
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Proof. By Sobolev, for 1
p = 1

2 − s
d we have

∥f∥Lp(Rd) ≤ C∥f∥Ḣs(Rd).

Here s is like in the statement. Also s = d
(
1
2 − 1

p

)
< 1 ⇔ 1

2 − 1
p <

1
d . Finally, apply

(4.2).

Remark 4.3. For p = 4 and d = 2, 3 we have s = d/4 and ∥f∥L4(Rd) ≤ C∥f∥1−d/4
L2(Rd)

∥f∥d/4
Ḣ1(Rd)

.

Lemma 4.4 (Gronwall’s inequality). Let T > 0, λ and φ two functions in L1(0, T ), both
≥ 0 a.e., and C1, C2 two non negative constants. Let λφ ∈ L1(0, T ) and let

φ(t) ≤ C1 + C2

∫ t

0
λ(s) φ(s)ds for a.e. t ∈ (0, T ).

Then we have
φ(t) ≤ C1e

C2

∫ t
0 λ(s)ds for a.e. t ∈ (0, T ).

Proof. Set

ψ(t) := C1 + C2

∫ t

0
λ(s) φ(s)ds.

Then ψ(t) is absolutely continuous and so it is differentiable almost everywhere and we have

ψ′(t) = C2λ(t) φ(t) ≤ C2λ(t) ψ(t) for a.e. t ∈ (0, T ).

Also, the function ψ(t)e−C2

∫ t
0 λ(s)ds is absolutely continuous with

d

dt

(
ψ(t)e−C2

∫ t
0 λ(s)ds

)
≤ 0 for a.e. t ∈ (0, T ).

Then we have

ψ(t) ≤ eC2

∫ t
0 λ(s)dsψ(0) = C1e

C2

∫ t
0 λ(s)ds for all t ∈ (0, T ).

Since φ(t) ≤ ψ(t) a.e., the result follows.

5 Linear heat equation

For Sections 5–6 see [5].
Let T ∈ R+ and f : [0, T ] → (Ḣs−1(Rd))d, for d = 2, 3, be an external force s.t. f = Pf

and consider the following heat equation:
ut − ν△u = f

∇ · u = 0

u(0) = u0 ∈ P(Ḣs(Rd))d
(t, x) ∈ [0, T ]× Rd (5.1)

19



Definition 5.1. For a fixed s ∈ [0, 1) let f ∈ L2([0, T ], (Ḣs−1(Rd))d) with f = Pf . Then u
is a solution of (5.1) if

u ∈ L∞([0, T ], (Ḣs(Rd))d) , ∇u ∈ L2([0, T ], (Ḣs(Rd))d
2
), (5.2)

if
u is weakly continuous from [0, T ] into (Ḣs(Rd))d (5.3)

(that is, if for any ψ ∈ (Ḣ−s(Rd))d the function t → ⟨u(t), ψ⟩, which is a well defined
function in L∞([0, T ],R), is in fact in C0([0, T ],R) )
and if for any Ψ ∈ C∞

c ([0, T ]× Rd,Rd) we have

⟨u(t),Ψ(t)⟩L2 =

∫ t

0

(
ν⟨u(t′),△Ψ(t′)⟩L2 + ⟨u(t′), ∂tΨ(t′)⟩L2 + ⟨f(t′),Ψ(t′)⟩L2

)
dt′ + ⟨u0,Ψ(0)⟩L2 .

(5.4)

The following theorem yields existence, uniqueness and energy estimate for (5.1).

Theorem 5.2. Problem (5.1) admits exactly one solution in the sense of the above defini-
tion. For any t the following energy estimate is satisfied:

∥u(t)∥2
Ḣs(Rd)

+ 2ν

∫ t

0
∥∇u(t′)∥2

Ḣs(Rd)
dt′ = ∥u0∥2Ḣs(Rd)

+ 2

∫ t

0
⟨f(t′), u(t′)⟩Ḣs(Rd)dt

′. (5.5)

Furthermore we have
u ∈ C0([0, T ], (Ḣs(Rd))d)) (5.6)

and the formula

û(t, ξ) = e−tν|ξ|
2
û0(ξ) +

∫ t

0
e−(t−t′)ν|ξ|2 f̂(t′, ξ)dt′. (5.7)

Proof. (Uniqueness). It is enough to show that the only solution of the case u0 = 0 and
f = 0 is u = 0. Let u be such a solution. Then

⟨u(t),Ψ(t)⟩L2 =

∫ t

0

(
ν⟨u(t′),△Ψ(t′)⟩L2 + ⟨u(t′), ∂tΨ(t′)⟩L2

)
dt′.

Let Ψ(t, x) = ψ(x) with ψ ∈ C∞
c (Rd,R). Then the above equality reduces to

⟨u(t), ψ⟩L2 = ν

∫ t

0
⟨u(t′),△ψ⟩L2 ,

which extends by density to all ψ ∈ Ḣ−s(Rd,R). In particular we can replace ψ by Pnψ
and get

⟨Pnu(t), ψ⟩L2 =

∫ t

0
ν⟨u(t′),△Pnψ⟩L2 ≤ ν∥△Pnψ∥Ḣ−s

∫ t

0
∥Pnu(t

′)∥Ḣsdt
′

≤ νn2∥ψ∥Ḣ−s

∫ t

0
∥Pnu(t

′)∥Ḣsdt
′
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where the integral
∫ t
0 ∥Pnu(t

′)∥Ḣsdt′ is well defined by Pnu ∈ L∞([0, T ], (Ḣs(Rd))d).
From the above formula

∥Pnu(t)∥Ḣs ≤ νn2
∫ t

0
∥Pnu(t

′)∥Ḣsdt
′

and hence ∥Pnu(t)∥Ḣs = 0 by the Gronwall inequality. This implies u(t) = 0 for t ∈ [0, T ].

(Existence). First of all, there exists a sequence (fn) in C
0([0, T ], (Ḣs−1(Rd))d) s.t. fn

n→∞→
f in L2([0, T ], (Ḣs−1(Rd))d). This follows from the density of C∞

c (I,X) in Lp(I,X) for
p <∞ for I an interval and X a Banach space, see Appendix A.
Applying Pn to (5.1) and replacing f by fn we obtain the equation{

(un)t − νPn△un = Pnfn
un(0) = Pnu0

(5.8)

Notice that Pnfn ∈ C0([0, T ], (Ḣs(Rd))d). Since (5.8) is a standard linear equation it
admits a solution un ∈ C1([0, T ], (Ḣs(Rd))d). Notice furthermore that un = Pnun and so
in particular un ∈ C0([0, T ], (Ḣr(Rd))d) for all r ≥ s.
Furthermore, applying ⟨·, un⟩Ḣs to (5.8) and using

⟨Pn△un, un⟩Ḣs = −
d∑

k=1

∫
B(0,n)

|ξ|2sξ2k|ûn(t, ξ)|2dξ = −
d∑

k=1

⟨ξkûn, ξkûn⟩L2(B(0,n),|ξ|2sdξ)

=

d∑
k=1

⟨ξkûn, ξkûn⟩L2(Rd,|ξ|2sdξ) = ∥∇un∥2Ḣs ,

we obtain
1

2

d

dt
∥un∥2Ḣs + ν∥∇un∥2Ḣs = ⟨Pnfn, un⟩Ḣs

s.t. after integration we obtain

1

2
∥un(t)∥2Ḣs + ν

∫ t

0
∥∇un(t′)∥2Ḣsdt

′ =
1

2
∥Pnu0∥2Ḣs +

∫ t

0
⟨Pnfn(t

′), un(t
′)⟩Ḣsdt

′. (5.9)

The difference un − un+ℓ solves{
(un − un+ℓ)t − νPn+ℓ△(un − un+ℓ) = Pnfn −Pn+ℓfn+ℓ

un(0)− un+ℓ(0) = (Pn −Pn+ℓ)u0
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Then, like for (5.9) we get

1

2
∥un(t)− un+ℓ(t)∥2Ḣs + �2

ν

2

∫ t

0
∥∇(un − un+ℓ)(t

′)∥2
Ḣsdt

′ =

=
1

2
∥(Pn −Pn+ℓ)u0∥2Ḣs +

∫ t

0
⟨Pnfn(t

′)−Pn+ℓfn+ℓ(t
′), (un − un+ℓ)(t

′)⟩Ḣsdt
′

≤ 1

2
∥(Pn −Pn+ℓ)u0∥2Ḣs +

∫ t

0
∥Pnfn(t

′)−Pn+ℓfn+ℓ(t
′)∥Ḣs−1∥∇(un − un+ℓ)(t

′)∥Ḣsdt
′

≤ 1

2
∥(Pn −Pn+ℓ)u0∥2Ḣs +

1

2ν

∫ t

0
∥Pnfn(t

′)−Pn+ℓfn+ℓ(t
′)∥2

Ḣs−1dt
′ +

(((((((((((((((
ν

2

∫ t

0
∥∇(un − un+ℓ)(t

′)∥2
Ḣsdt

′.

Hence

∥un(t)− un+ℓ(t)∥2Ḣs + ν

∫ t

0
∥∇(un − un+ℓ)(s)∥2Ḣsds

≤ ∥(Pn −Pn+ℓ)u0∥2Ḣs +
1

ν

∫ t

0
∥Pnfn(s)−Pn+ℓfn+ℓ(s)∥2Ḣs−1ds.

Since fn
n→∞→ f in L2([0, T ], (Ḣs−1(Rd))d) implies also Pnfn

n→∞→ f therein, the last
inequality implies that (un) is Cauchy in C([0, T ], (Ḣs(Rd))d)) and (∇un) is Cauchy in
L2([0, T ], (Ḣs(Rd))d)). Let u be the limit. Notice that u satisfies (5.2) and (5.6), and so
obviously also (5.3).
Taking the limit in (5.9) we see that u satisfies the energy equality(5.5).
Next, we check that u is a weak solution of (5.1) in the sense of Def. 5.1. We apply
⟨.,Ψ(t)⟩L2 to (5.8) with Ψ ∈ C∞

c ([0,∞)× Rd,Rd). Then we have

d

dt
⟨un,Ψ⟩L2 = ν⟨△un,Ψ⟩L2 + ⟨Pnfn,Ψ⟩L2 + ⟨un, ∂tΨ⟩L2 .

Integrating we have

⟨un(t),Ψ(t)⟩L2 = ⟨Pnu0,Ψ(0)⟩L2 − ν

∫ t

0
⟨un(t′),△Ψ(t′)⟩L2dt′

+

∫ t

0
⟨Pnfn(t

′),Ψ(t′)⟩L2dt′ +

∫ t

0
⟨un(t′), ∂tΨ(t′)⟩L2dt′.

Taking the limit for n→ ∞ we get

⟨u(t),Ψ(t)⟩L2 = ⟨u0,Ψ(0)⟩L2 − ν

∫ t

0
⟨u(t′),△Ψ(t′)⟩L2dt′ +

∫ t

0
⟨f(t′),Ψ(t′)⟩L2dt′ +

∫ t

0
⟨u(t′), ∂tΨ(t′)⟩L2dt′.

which yields (11.5). Hence u is a weak solution of (5.1) in the sense of Def. 5.1.
Next, we prove the Duhamel formula (10.8). Applying the Fourier transform to (5.8){

∂tûn(t, ξ) + νχ|ξ|≤n|ξ|2ûn(t, ξ) = χ|ξ|≤nf̂n(t, ξ)

ûn(0, ξ) = χ|ξ|≤nû0(ξ)
(5.10)
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Notice that suppûn(t, ·) ⊆ {|ξ| ≤ n} so that χ|ξ|≤n|ξ|2ûn(t, ξ) = |ξ|2ûn(t, ξ). Then, by the
variation of parameters formula

ûn(t, ξ) = e−tν|ξ|
2
χ|ξ|≤nû0(ξ) +

∫ t

0
e−(t−t′)ν|ξ|2χ|ξ|≤nf̂n(t

′, ξ)dt′. (5.11)

Now we know

ûn(t, ξ)
n→∞→ û(t, ξ) in C([0, T ], L2(Rd, |ξ|2sdξ))

χ|ξ|≤nû0(ξ)
n→∞→ û0(ξ) in L

2(Rd, |ξ|2sdξ),

χ|ξ|≤nf̂n(t
′, ξ)

n→∞→ f̂(t′, ξ) in L2([0, T ]× Rd, |ξ|2(s−1)dtdξ)

Notice that

Tg(t, ξ) :=

∫ t

0
e−(t−t′)ν|ξ|2g(t′, ξ)dt′

is a bounded operator from L2([0, T ]×Rd, |ξ|2(s−1)dtdξ) into L∞([0, T ], L2(Rd, |ξ|2sdξ). In-
deed for t ∈ [0, T ] and fixed ξ ∈ Rd and for g ∈ Cc([0, T ]× (Rd\{0}))

|Tg(t, ξ)| ≤ (

∫ t

0
e−2(t−t′)ν|ξ|2dt′)

1
2 (

∫ t

0
|g(t′, ξ)|2dt′)

1
2 ≤ 1√

2ν|ξ|
(

∫ t

0
|g(t′, ξ)|2dt′)

1
2

and so ∫
Rd

|ξ|2s|Tg(t, ξ)|2dξ ≤ 1

2ν

∫
[0,T ]×Rd

|ξ|2(s−1)|g(t′, ξ)|2dt′dξ.

This implies

∥Tg∥L∞([0,T ],L2(Rd,|ξ|2sdξ) ≤
√

1/2ν∥g∥L2([0,T ]×Rd,|ξ|2(s−1)dtdξ).

Since Cc([0, T ]× (Rd\{0})) is dense in L2([0, T ]×Rd, |ξ|2(s−1)dtdξ) a well defined bounded
operator remains defined. Taking the limit for n → ∞ in (5.11) all terms converge in
L∞([0, T ], L2(Rd, |ξ|2sdξ)) to the corresponding terms of

û(t, ξ) = e−tν|ξ|
2
û0(ξ) +

∫ t

0
e−(t−t′)ν|ξ|2 f̂(t′, ξ)dt′.

Remark 5.3. Notice that applying the Fourier transform to (10.8) we get

u(t) = etν△u0 +

∫ t

0
e(t−t

′)ν△f(t′)dt′. (5.12)

The following theorem yields additional estimates.
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Theorem 5.4. Let f be like in Theorem 5.2 and consider the corresponding solution

u ∈ C([0, T ], Ḣs) , ∇u ∈ L2([0, T ], Ḣs).

Then, additionally, we have

∥u(t)∥
Ḣ

s+2
p
∈ Lp([0, T ],R) for any p ≥ 2. (5.13)

Moreover we have

V (t) :=

∫
Rd

|ξ|2s
(

sup
0≤t′≤t

|û(t′, ξ)|

)2

dξ

 1
2

≤ ∥u0∥Ḣs +
1

(2ν)
1
2

∥f∥L2([0,t],Ḣs−1) ;

∥∥u∥
Ḣ

s+2
p
∥Lp(0,T ) ≤ ν

− 1
p

(
∥u0∥Ḣs + ν−

1
2 ∥f∥L2([0,T ],Ḣs−1)

)
.

(5.14)

Proof. From the Duhamel formula (10.8) and the previous computation

|û(t, ξ)| ≤ e−tν|ξ|
2 |û0(ξ)|+

1√
2ν|ξ|

∥f̂(·, ξ)∥L2(0,t).

so that

|ξ|s sup
0≤t′≤t

|û(t′, ξ)| ≤ |ξ|s|û0(ξ)|+ |ξ|s 1√
2ν|ξ|

∥f̂(·, ξ)∥L2(0,t).

Taking the L2(Rd, dξ) norm we get

V (t) ≤ ∥u0(ξ)∥L2(Rd,|ξ|2sdξ) +
1√
2ν

∥f̂∥L2((0,t),L2(Rd,|ξ|2(s−1)dξ)).

and this yields the 1st line in (5.14).
To get the 2nd line in (5.14), from the energy estimate (5.5) we obtain

∥u(t)∥2
Ḣs + �2ν

∫ t

0
∥∇u(t′)∥2

Ḣsdt
′ ≤ ∥u0∥2Ḣs + 2

∫ t

0

1√
ν
∥f(t′)∥Ḣs−1

√
ν∥∇u(t′)∥Ḣsdt

′

≤ ∥u0∥2Ḣs +
����������
ν

∫ t

0
∥∇u(t′)∥2

Ḣsdt
′ +

1

ν

∫ t

0
∥f(t′)∥2

Ḣs−1dt
′.

This yields

∥u(t)∥2
Ḣs + ν

∫ t

0
∥∇u(t′)∥2

Ḣsdt
′ ≤ ∥u0∥2Ḣs +

1

ν

∫ t

0
∥f(t′)∥2

Ḣs−1dt
′.

and hence
∥u∥L∞([0,T ],Ḣs) ≤ ∥u0∥Ḣs + ν−

1
2 ∥f∥L2([0,T ],Ḣs)

∥∥u∥Ḣs+1∥L2(0,T ) ≤ ν−
1
2

(
∥u0∥Ḣs + ν−

1
2 ∥f∥L2([0,T ],Ḣs)

)
.
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So by the interpolation of Sobolev norms Lemma 4.1 for 2 < p <∞

∥∥u∥
Ḣ

s+2
p
∥Lp(0,T ) ≤ ∥∥u∥

1− 2
p

Ḣs
∥∇u∥

2
p

Ḣs
∥Lp(0,T ) ≤ ∥u∥

1− 2
p

L∞([0,T ],Ḣs)
∥∥∇u∥

2
p

Ḣs
∥Lp(0,T )

= ∥u∥
1− 2

p

L∞([0,T ],Ḣs)
∥∇u∥

2
p

L2([0,T ],Ḣs)
≤ ν

− 1
p

(
∥u0∥Ḣs + ν−

1
2 ∥f∥L2([0,T ],Ḣs)

)
.

6 The Navier Stokes equation

We will only deal with the Incompressible Navier Stokes (NS) equation:
ut + u · ∇u− ν△u = −∇p

∇ · u = 0
u(0, x) = u0(x)

(t, x) ∈ [0,∞)× Rd (6.1)

where u : [0,∞)× Rd → Rd with u =
∑d

j=1 u
jej with ej the standard basis of Rd,

△ :=

d∑
j=1

∂2

∂x2j
, ∇ · u =

d∑
j=1

∂

∂xj
uj , u · ∇v =

d∑
j=1

uj
∂

∂xj
v.

Here ν > 0 is a fixed constant. We could normalize ν = 1. p is the pressure and its function
is simply to absorb the divergence part of the l.h.s. of (6.1).

We can write

u · ∇u = div(u⊗ u) for div(u⊗ v)j :=

d∑
k=1

∂k(u
kvj) since (6.2)

div(u⊗ u)j =

d∑
k=1

∂k(u
kuj) =

d∑
k=1

uk∂ku
j + uj divu︸︷︷︸

0

= u · ∇uj

So we rewrite (6.1) and
ut + div(u⊗ u)− ν△u = −∇p

∇ · u = 0
u(0, x) = u0(x)

(t, x) ∈ [0,∞)× Rd (6.3)

Definition 6.1 (Weak solutions). Let u0 be in L2(Rd). A vector field u ∈ L2
loc([0,∞)×Rd)

which is weakly continuous as a function from [0,∞) to (L2(Rd))d is a weak solution of
(6.3) if for Ψ ∈ C∞

c ([0,∞)× Rd,Rd) with divΨ = 0 we have

⟨u(t),Ψ(t)⟩L2 =

∫ t

0

(
ν⟨u(t′),△Ψ(t′)⟩L2 + ⟨u(t′), ∂tΨ(t′)⟩L2

−⟨div(u⊗ u)(t′),Ψ(t′)⟩L2

)
dt′ + ⟨u0,Ψ(0)⟩L2 .

(6.4)
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Notice that formally (6.4) is obtained from (6.3) writing∫ t

0

∫
Rd

(ut + div(u⊗ u)− ν△u) ·Ψ = −
∫ t

0

∫
Rd

∇p ·Ψ =

∫ t

0

∫
Rd

p∇ ·Ψ︸ ︷︷ ︸
0

.

So integrating by parts (which is formal if u is not sufficiently regular) we have

0 =

∫
Rd

u ·Ψ
∣∣∣∣t
0

−
∫ t

0

∫
Rd

u · ∂tΨ+

∫ t

0

∫
Rd

∂k(u
juk)Ψj − ν

∫ t

0

∫
Rd

u · △Ψ

=

∫
Rd

u ·Ψ
∣∣∣∣t
0

−
∫ t

0

∫
Rd

u · ∂tΨ−
∫ t

0

∫
Rd

ujuk∂kΨ
j − ν

∫ t

0

∫
Rd

u · △Ψ

which gives the desired result. In particular, (6.3) implies (6.4) when u is regular.
But the opposite is also true, and when u is regular (6.4) implies (6.3). Indeed, suppose
that u is regular and that it satisfies (6.4) for all the Ψ as in Def. 6.1. Then∫

Rd

u(t, x) ·Ψ(t, x)dx−
∫
Rd

u0(x) ·Ψ(0, x)dx =

∫ t

0

∫
Rd

(νu · △Ψ+ u⊗ u : ∇Ψ+ u∂tΨ) (t′, x)dxdt′

=

∫ t

0

∫
Rd

(ν△u− div(u⊗ u)− ∂tu) ·Ψ+

∫
Rd

u(t, x) ·Ψ(t, x)dx−
∫
Rd

u(0, x) ·Ψ(0, x)dx.

Hence we get∫
Rd

u0(x) ·Ψ(0, x)dx =

∫ t

0

∫
Rd

(∂tu− ν△u+ div(u⊗ u)) ·Ψ+

∫
Rd

u(0, x) ·Ψ(0, x)dx.

Taking Ψ = φ(t)ψ(x) with φ ∈ C∞
c ((0, T ),R) and ψ ∈ C∞

c (Rd,Rd) and divergence free, we
conclude that ∫ t

0
dt′φ(t)

∫
Rd

[(∂tu− ν△u+ div(u⊗ u)) · ψ(x)] dx.

This implies that for all t

⟨ν△u− div(u⊗ u)− ∂tu, ψ⟩L2(Rd) = 0

for any t and for any divergence free vector field ψ ∈ C∞
c (Rd,Rd). Formally, this implies

that the above holds for ψ = PΘ for any vector field Θ ∈ C∞
c (Rd,Rd). Then, by P∗ = P,

we conclude that

⟨P(ν△u− div(u⊗ u)− ∂tu),Θ⟩L2(Rd) = 0 for all Θ ∈ C∞
c (Rd,Rd).

This implies

P(ν△u− div(u⊗ u)− ∂tu) = 0 ⇒ ut + u · ∇u− ν△u = −∇p

for some p, see Lemma 2.5.
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Then we get ∫
Rd

u0(x) ·Ψ(0, x)dx =

∫
Rd

u(0, x) ·Ψ(0, x)dx

and so u(0, x) = u0(x).

Let us now formally take the inner product of the first line of (6.1) with u and integrate
in Rd

1

2

d

dt
∥u∥2L2 + ⟨u · ∇u, u⟩L2 − ν⟨△u, u⟩L2 = −⟨∇p, u⟩L2

We have, summing on repeated indexes,

⟨u · ∇u, u⟩L2 =

∫
Rd

ujuk∂ju
kdx = 2−1

∫
Rd

uj∂j(u
kuk)2dx = −2−1

∫
Rd

|u|2divu dx = 0 and

⟨∇p, u⟩L2 =

∫
Rd

uj∂jpdx = −
∫
Rd

pdivu dx = 0.

So, formally (rigorously if u is regular and we can integrate by parts), we get

1

2

d

dt
∥u∥2L2 + ν∥∇u∥2L2 = 0

This in particular yields the following energy equality

∥u(t)∥2L2(Rd) + 2ν

∫ t

0
∥∇u(t′)∥2L2(Rd)dt

′ = ∥u0∥2L2(Rd). (6.5)

Theorem 6.2 (Leray). Let u0 ∈ L2(Rd) for d = 2, 3 be divergence free. Then (6.3) admits
a weak solution with u(t) ∈ L∞(R+, L

2) ∩ L2
loc(R+,H

1) such that the following energy
inequality holds:

∥u(t)∥2L2(Rd) + 2ν

∫ t

0
∥∇u(t′)∥2L2(Rd)dt

′ ≤ ∥u0∥2L2(Rd). (6.6)

We will also see the following.

Theorem 6.3 (Case d = 2). When d = 2 the solution in Theorem 6.2 is unique, it satisfies
(6.5) and u(t) ∈ C0([0,∞), L2).

Notice that if we apply formally the operator P to equation (6.3) we obtain formally{
ut − ν△u = QNS(u, u)

u(0, x) = u0(x)
(t, x) ∈ [0,∞)× Rd (6.7)

where we set

QNS(u, v) := −1

2
P(div(u⊗ v))− 1

2
P(div(v ⊗ u)). (6.8)
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Here notice that

P(div(u⊗ v))j =

d∑
l=1

∂l

(
(ulvj)− 1

△

d∑
k=1

∂j∂k(u
lvk)

)
. (6.9)

Before starting the proof of Theorem 6.2 we need some preliminary results on 1st order
ODE’s in Banach spaces.

Definition 6.4. Given a Banach space X a function F : X → X is locally Lipschitz if for
any M > 0 ∃ L(M) ∈ (0,+∞) s.t.

∥F (x)− F (y)∥ ≤ L(M)∥x− y∥ for all x, y with ∥x∥ ≤M and ∥y∥ ≤M. (6.10)

Now consider the system
u̇ = F (u) , u(0) = x (6.11)

which we write in integral form as

u(t) = x+

∫ t

0
F (u(s))ds. (6.12)

Proposition 6.5. Let F be as in Definition 6.4. Then for any M > 0, for TM defined by

TM :=
1

2L(2M + ∥F (0)∥) + 2
. (6.13)

and for any x ∈ X with ∥x∥ ≤M there is a unique solution u ∈ C0([0, TM ], X) of (6.12).

Proof. Set K = 2M + ∥F (0)∥ and

E = {u ∈ C0([0, TM ], X) : ∥u(t)∥ ≤ K for all t ∈ [0, TM ]}

with distance dE(u, v) := sup0≤t≤TM ∥u(t)−v(t)∥. (E, dE) is a complete metric space. Next
consider the map u ∈ E → Φu

Φu(t) := x+

∫ t

0
F (u(s))ds for all t ∈ [0, TM ].

By TM = 1
2(L(K)+1) for all t ∈ [0, TM ] we have

∥F (u(t))∥ ≤ ∥F (0)∥+ ∥F (u(t))− F (0)∥ ≤ ∥F (0)∥+KL(K)

= ∥F (0)∥+ (2M + ∥F (0)∥)L(K) ≤ (M + ∥F (0)∥) 2 (L(K) + 1) =
M + ∥F (0)∥

TM

So for t ∈ [0, TM ] we have

∥Φu(t)∥ ≤M + t
M + ∥F (0)∥

TM
≤ 2M + ∥F (0)∥ = K

28



and so Φu ∈ E.
For u, v ∈ E we have

∥Φu(t)− Φv(t)∥ ≤
∫ t

0
∥F (u(s))− F (v(s))∥ds ≤ TML(K)∥u− v∥L∞([0,T ],X) = TML(K)dE(u, v).

So by TML(K) < TM (L(K) + 1) = 2−1

dE(Φu,Φv) ≤ 2−1dE(u, v)

Hence u→ Φu is a contraction in E and so it has exactly one fixed point.

We have the following application of Gronwall’s inequality.

Lemma 6.6. Let T > 0, x ∈ X and let u, v ∈ C0([0, T ], X) solve (6.12) then u = v.

Proof. Let M = max0≤t≤T {∥u(t)∥, ∥v(t)∥}. Then

∥u(t)− v(t)∥ ≤
∫ t

0
∥F (u(s))− F (v(s))∥ds ≤ L(M)

∫ t

0
∥u(s)− v(s)∥ds

and apply Gronwall’s inequality.
It remains defined a function T : X → (0,∞] where for any x ∈ X

T (x) = sup{T > 0 : ∃u ∈ C0([0, T ), X) solution of (6.12) }

and the interval [0, T (x)) is the largest (positive) half open interval of existence of the
(unique, by Lemma 13.6) solution of (6.12).

Theorem 6.7. We have, for u(t) the corresponding solution in C([0, T (x)), X),

2L(∥F (0)∥+ 2∥u(t)∥) ≥ 1

T (x)− t
− 2 (6.14)

for all t ∈ [0, T (x)). We have the alternatives

(1) either T (x) = +∞;

(2) or if T (x) < +∞ then lim
t↗T (x)

∥u(t)∥ = +∞.

Proof. First of all it is obvious that if T (x) < +∞ then by (13.10)

lim
t↗T (x)

L(∥F (0)∥+ 2∥u(t)∥) = +∞ ⇒ lim
t↗T (x)

∥u(t)∥ = +∞

where the implication follows from the fact that M → L(M) is an increasing function.
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We are left with the proof of (13.10), which is clearly true if T (x) = ∞. Now suppose
that T (x) <∞ and that (13.10) is false. This means that there exists a t ∈ [0, T (x)) with

1

TM
− 2 = 2L(∥F (0)∥+ 2∥u(t)∥) < 1

T (x)− t
− 2 ⇒ T (x)− t < TM

for M = ∥u(t)∥, where we recall TM := 1
2L(2M+∥F (0)∥)+2 in (6.13). Consider now v ∈

C0([0, TM ], X) the solution of

v(s) = u(t) +

∫ s

0
F (v(s′))ds′ for all s ∈ [0, TM ].

which exists by the previous Proposition 6.5. Then define

w(s) :=

{
u(s) for s ∈ [0, t]

v(s− t) for s ∈ [t, t+ TM ].

We claim that w ∈ C0([0, t + TM ], X) is a solution of (6.12). In [0, t] this is obvious since
in w = u in [0, t] and u ∈ C0([0, t], X) is a solution of (6.12). Let now s ∈ (t, t + TM ]. We
have

w(s) = v(s− t) = u(t) +

∫ s−t

0
F (v(s′))ds′

= x+

∫ t

0
F (u(s′))ds′ +

∫ s−t

0
F (v(s′))ds′

= x+

∫ t

0
F (u(s′)︸ ︷︷ ︸

w(s′)

)ds′ +

∫ s

t
F (v(s′ − t)︸ ︷︷ ︸

w(s′)

)ds′

= x+

∫ s

0
F (w(s′))ds.

6.1 Proof of Theorem 6.2

We will need the following elementary lemma.

Lemma 6.8. Let d = 2, 3. Then the trilinear form

(u, v, φ) ∈ (C∞
c (Rd))d × (C∞

c (Rd))d × (C∞
c (Rd))d → ⟨div(u⊗ v), φ⟩L2 ∈ R (6.15)

extends into a unique bounded trilinear form (H1(Rd))d × (H1(Rd))d × (H1(Rd))d which
satisfies for a fixed C

⟨div(u⊗ v), φ⟩L2 ≤ C∥∇u∥
d
4

L2∥∇v∥
d
4

L2∥u∥
1− d

4

L2 ∥v∥1−
d
4

L2 ∥∇φ∥L2 (6.16)

If furthermore div u = 0 then
⟨div(u⊗ v), v⟩L2 = 0. (6.17)
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Proof. Recall that from (6.2) we have div(u⊗ v)j :=
∑d

k=1 ∂k(u
kvj). Then for fields like in

(6.15) we have

⟨div(u⊗ v), φ⟩L2 =

d∑
j=1

⟨div(u⊗ v)j , φj⟩L2 =

d∑
j=1

⟨
d∑

k=1

∂k(u
kvj), φj⟩L2 = −

d∑
j=1

d∑
k=1

⟨ukvj , ∂kφj⟩L2 .

Now the r.h.s. can be bounded by

|⟨ukvj , ∂kφj⟩L2 | ≤ ∥ukvj∥L2∥∇φ∥L2 ≤ ∥uk∥L4∥vj∥L4∥∇φ∥L2 .

Finally, we apply Gagliardo-Nirenberg inequality writing

∥uk∥L4 ≤ C∥∇uk∥
d
4

L2∥uk∥
1− d

4

L2 .

The same equality holds for vj . Then we obtain (6.16), obviously with a different C. This
implies that that the form in (6.15) is continuous, and by density of C∞

c (Rd) in H1(Rd) it
extends in a unique way.
Next, we write for φ = v

⟨div(u⊗ v), v⟩L2 = −
d∑
j=1

d∑
k=1

⟨ukvj , ∂kvj⟩L2

= −2−1
d∑
j=1

d∑
k=1

⟨uk, ∂k(vj)2⟩L2 = 2−1
d∑
j=1

⟨(divu)vj , vj⟩L2 = 0.

Notice that this formal computation (the Leibnitz rule used for the 2nd equality requires
some explaining) is certainly rigorous for v ∈ (C∞

c (Rd))d. On the other hand inequality
(6.16) yields (6.17) by a density argument also for v ∈ (H1(Rd))d.
Remark 6.9. Notice that u, v ∈ (H1(Rd))d implies div(u⊗ v) ∈ (L1(Rd))d. Indeed we have

div(u⊗ v)j =
d∑

k=1

∂k(u
kvj) =

d∑
k=1

(vj∂ku
k + uk∂kv

j) (6.18)

where the above product rule can be proved by taking sequences (C∞
c (Rd))d ∋ un

n→∞→ u
in (H1(Rd))d and (C∞

c (Rd))d ∋ vn
n→∞→ v in (H1(Rd))d. Then clearly for ψ ∈ (S∞(Rd))d

summing on double indexes

⟨∂k(ukvj), ψj⟩ = −⟨ukvj , ∂kψj⟩ = − lim
n→∞

⟨uknvjn, ∂kψj⟩

= lim
n→∞

(
⟨vjn∂kukn, ψj + ukn∂kv

j
n, ψ

j⟩
)
= ⟨vj∂kuk + uk∂kv

j , ψj⟩

and this yields (6.18).
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Hence F := F(div(u ⊗ v)) ∈ (L∞(Rd))d ⊂ (L1
loc(Rd))d. Furthermore, (6.16) implies that

F ∈ (L2(Rd, |ξ|−2dξ))d. Indeed the bilinear map

⟨·, ·⟩L2(Rd,dξ) : L
2(Rd, |ξ|−2dξ)× L2(Rd, |ξ|2dξ) → R

can be used to define an embedding

L2(Rd, |ξ|−2dξ) ↪→ (L2(Rd, |ξ|2dξ))′

by f → ⟨f, ·⟩L2(Rd,dξ). Furthermore we have the commutative diagram

L2(Rd, |ξ|−2dξ)
f→⟨f,·⟩

L2(Rd,dξ)→ (L2(Rd, |ξ|2dξ))′

f → |ξ|−1f ↓ ↑

L2(Rd, dξ)
h→⟨h,·⟩

L2(Rd,dξ)→ (L2(Rd, dξ))′

(6.19)

where the ↑ is the map (L2(Rd, dξ))′ → (L2(Rd, |ξ|2dξ))′ given by ⟨g, ·⟩L2(Rd,dξ) → ⟨|ξ|−1g, ·⟩L2(Rd,|ξ|2dξ)
where the latter map is an isomorphism since it closes the diagram

L2(Rd, dξ) f→|ξ|−1f→ L2(Rd, |ξ|2dξ)
f → ⟨f, ·⟩L2(Rd,dξ) ↓ ↓ f → ⟨f, ·⟩L2(Rd,|ξ|2dξ)

(L2(Rd, dξ))′ 99K (L2(Rd, |ξ|2dξ))′

Since the other maps in (6.19) are isomorphisms, also the 1st line in (6.19) is an isomorphism.
Hence we conclude that F ∈ (L2(Rd, |ξ|−2dξ))d since ⟨F, ·⟩L2(Rd,dξ) ∈ (L2(Rd, |ξ|2dξ))′ by
(6.16).
So we conclude div(u⊗ v) ∈ (Ḣ−1(Rd))d. Now applying Lemma 2.5 we have in (Ḣ−1(Rd))d

div(u⊗ u) = Pdiv(u⊗ u)−∇p

for a function p ∈ L2(Rd) which is what we get in the r.h.s. in (6.1).

We consider now the following truncation of the NS equation.

{
(un)t +PnPdiv(Pnun ⊗Pnun)− ν(Pn△)un = 0

un(0, x) = Pnu0(x).
(t, x) ∈ [0,∞)× Rd (6.20)

Lemma 6.10. For any n the system (6.3) admits exactly one solution

un ∈ C∞([0,∞), (HN (Rd))d) for any N ∈ N ∪ {0}.

Furthermore we have Pun = un and Pnun = un.
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Proof. First of all, we consider for any n local existence. Set

Fn(v) := ν(Pn△)v −PnPdiv(Pnv ⊗Pnv).

Then we have

∥Fn(v)∥(HN (Rd))d ≤ ∥ν(Pn△)v∥(HN (Rd))d + ∥PnPdiv(Pnv ⊗Pnv)∥(HN (Rd))d

with
∥ν(Pn△)v∥(HN (Rd))d ≤ νn2+N∥v∥(L2(Rd))d

and

∥PnPdiv(Pnv ⊗Pnv)∥(HN (Rd))d . nN+1∥Pnv ⊗Pnv∥L2 . nN+1∥Pnv∥2L4

. nN+1∥∇Pnv∥
d
4

L2∥∇Pnv∥
d
4

L2∥Pnv∥
1− d

4

L2 ∥Pnv∥
1− d

4

L2

. nN+1+ d
2 ∥v∥2L2 .

So for some constant Cn,N we have

∥Fn(v)∥(HN (Rd))d ≤ Cn,N (∥v∥(L2(Rd))d + ∥v∥2(L2(Rd))d).

Furthermore, as a sum of a bounded linear operator and a bounded quadratic form each Fn
is a locally Lipchitz function. Then for any n and N we know that (6.3) admits a solution
un ∈ C1([0, Tn,N ), (H

N (Rd))d)) for some maximal Tn,N > 0. Furthermore we must have

lim
t↗Tn,N

∥un(t)∥(HN (Rd))d = +∞ if Tn,N <∞. (6.21)

Next we have un = Pun since applying 1− P to (6.20){
((1− P)un)t − ν(Pn△)(1− P)un = 0

(1− P)un(0, x) = 0
⇒ (1− P)un = 0,

and un = Pnun since applying 1−Pn to (6.20){
((1−Pn)un)t = 0
(1−Pn)un(0, x) = 0

⇒ (1−Pn)un = 0

Now we show that the finite time blow up in (6.21) cannot occur for any (n,N) (in fact, the
following argument proves that also infinite time blow up, that is (6.21) but with Tn,N = ∞,
cannot occur).
Let us consider (6.21) first in the case N = 0. When we apply ⟨·, un⟩L2 to the 1st line in
(6.3) and get

1

2

d

dt
∥un∥2L2 + ⟨PnPdiv(un ⊗ un), un⟩L2 − ν⟨△un, un⟩L2 = 0 .
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Notice that summing on repeated indexes ⟨△un, φ⟩L2 = −⟨∂jun, ∂jφ⟩L2 for all φ ∈ (C∞
0 (Rd))d

and since this is dense in (H1(Rd))d and both sides define bounded functionals in (H1(Rd))d,
we conclude

ν⟨△un, un⟩L2 = −ν∥∇un∥2L2 .

Next, using P∗ = P, P∗
n = Pn and (6.17), we have

⟨PnPdiv(un ⊗ un), un⟩L2 = ⟨div(un ⊗ un), un⟩L2 = 0.

Hence we conclude
1

2

d

dt
∥un∥2(L2(Rd))d + ν∥∇un∥2(L2(Rd))d

2 = 0

and we obtain

∥un(t)∥2(L2(Rd))d + 2ν

∫ t

0
∥∇un(t′)∥2(L2(Rd))d2

dt′ = ∥Pnu0∥2(L2(Rd))d . (6.22)

In particular this yields the bound ∥un(t)∥L2 ≤ ∥Pnu0∥L2 for all t ∈ [0, Tn,0) and by (6.21)
we conclude that the lifespan is Tn,0 = ∞ for all n ∈ N. This proves the case N = 0 in
Lemma 6.10.
Consider now the case N ∈ N. If un ∈ C1([0, Tn,N ), (H

N (Rd))d) with Tn,N <∞ is a maxi-
mal solution, obviously it is the restriction in [0, Tn,N ) of a solution un ∈ C1([0,∞), (L2(Rd))d).
On the other hand, the blow up (6.21) is impossible because otherwise we would have

∞ = lim
t↗Tn,N

∥un(t)∥(HN (Rd))d ≤ nN lim
t↗Tn,N

∥un(t)∥(L2(Rd))d ≤ nN∥Pnu0∥L2 <∞

which is absurd. Hence the lifespan is Tn,N = ∞ for all n ∈ N and N ∈ N ∪ {0}.

6.1.1 Compactness properties of {un}n∈N

Now we consider the sequence of solutions {un}n∈N of solutions of (6.3). We will prove the
following result.

Proposition 6.11. There exists a u ∈ L∞(R+, (L
2(Rd))d)∩L2

loc(R+,H
1(Rd))d) with div u =

0 and a subsequence of {un}n∈N such that for any T > 0 and any compact subset K ⊂ Rd
we have (after extracting this subsequence)

lim
n→∞

∫
[0,T ]×K

|un(t, x)− u(t, x)|2dtdx = 0. (6.23)

Moreover, for all vector fields Ψ ∈ L2([0, T ], (H1(Rd))d) and all Φ ∈ L2([0, T ]× Rd,Rd) we
have

lim
n→∞

∫
[0,T ]×Rd

(un(t, x)− u(t, x)) · Φ(t, x)dtdx = 0, (6.24)

lim
n→∞

d∑
j,k=1

∫
[0,T ]×Rd

∂k(u
j
n(t, x)− uj(t, x))∂kΨ

j(t, x)dtdx = 0. (6.25)
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Finally, for any ψ ∈ C0([0,∞), (H1(Rd))d) we have ⟨un, ψ⟩(L2(Rd))d → ⟨u, ψ⟩(L2(Rd))d in
L∞
loc([0,∞)), that is

lim
n→∞

∥⟨un(t)− u(t), ψ(t)⟩∥L∞([0,T ]) = 0 for any T . (6.26)

Proof. Fix an arbitrary T > 0 and an arbitrary compact subset K of Rd.

Claim 6.12. The set {un}n∈N gives a relatively compact set in L2([0, T ]×K,Rd).

Proof of Claim 6.12. Notice that (6.22) implies that un ∈ L2([0, T ]×Rd,Rd) for all n.
We will show the following statement, which is equivalent to Claim 6.12.

Claim 6.13. For any ε > 0 there exists a finite family of balls of the space L2([0, T ]×K,Rd)
which have radius ε and whose union covers the set {un}n∈N.

Proof of Claim 6.13. First of all, if we want to approximate {un}n∈N with {Pn0un}n∈N
for a fixed n0, we can use the fact that for any n0 and any n we have

∥un −Pn0un∥L2([0,T ]×Rd,Rd) =

∫ T

0
∥un −Pn0un∥2(L2(Rd))ddt

≤ n−2
0

∫ T

0
∥∇un −∇Pn0un∥2(L2(Rd))d2

dt ≤ 4n−2
0

∫ T

0
∥∇un∥2(L2(Rd))d2

dt ≤ 4n−2
0 ∥u0∥2(L2(Rd))d .

Hence we can choose n0 large enough s.t.

∥un −Pn0un∥L2([0,T ]×Rd,Rd) <
ε

2
for all n ∈ N. (6.27)

Now consider {Pn0un}n∈N. Then Claim 6.13 is a consequence of

Claim 6.14. {Pn0un}n∈N is relatively compact in L2([0, T ]×K,Rd).

Indeed Claim 6.14 implies that for any ε > 0 there is a finite number of ballsBL2([0,T ]×K,Rd)(fj ,
ε

2
)

which cover {Pn0un}n∈N. Hence by (6.27) we conclude that for any ε > 0 the balls
BL2([0,T ]×K,Rd)(fj , ε) cover {un}n∈N and so we get Claim 6.13.

Proof of Claim 6.14. It will be a consequence of the following stronger claim.

Claim 6.15. {Pn0un}n∈N is relatively compact in C0([0, T ], (L2(K))d) ⊂ L∞([0, T ], (L2(K))d).

Proof of Claim 6.15. To get this result we want to apply the Ascoli–Arzela Theorem
(for which a sufficient condition for a sequence of continuous functions fn : K → X, with K
compact and separable metric space and X a complete metric space, to admit a subsequence
that converges uniformly to a continuous function f : K → X is that it is equicontinuous and
{fn(k)}n is relatively compact for any k ∈ K 1). So it is enough to show that {Pn0un}n∈N

1The proof goes as follows. One first considers a dense countable subset N of K. Then by a diagonal
argument, one considers a subsequence {fnm} s.t. {fnm(k)} converges for any k ∈ N to a limit that we
denote by f(k). Using equicontinuity and the completeness of X it is easy to see that {fnm(k)} converges for
any k ∈ K. We denote again by f(k) the limit. Finally, using equicontinuity we conclude that f : K → X
is continuous
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is a sequence of equicontinuous functions in C0([0, T ], (L2(K))d) and that for any t ∈ [0, T ]
the sequence {Pn0un(t)}n∈N is relatively compact in (L2(K))d.
First of all we want to show that {Pn0un}n∈N is a sequence of equicontinuous functions in
C0([0, T ], (L2(K))d). This will follow from Hölder (since 4

d > 1 if d = 2, 3) and from the
following claim.

Claim 6.16. There exists a fixed constant C s.t.

∥(Pn0un)t∥L 4
d ([0,T ],(L2(Rd))d)

≤ C for all n.

Proof of Claim 6.16. We apply Pn0 to (6.3) and we obtain

(Pn0un)t = −Pn0PnPdiv(un ⊗ un) + νPn0△un.

We have
∥νPn0△un∥(L2(Rd))d ≤ νn20∥un∥(L2(Rd))d ≤ νn20∥u0∥(L2(Rd))d

and, by the Gagliardo-Nirenberg inequality,

∥Pn0PnPdiv(un ⊗ un)∥(L2(Rd))d ≤ ∥Pn0div(un ⊗ un)∥(L2(Rd))d

=

d∑
j=1

∥Pn0

d∑
k=1

∂k(u
k
nu

j
n)∥L2(Rd) ≤ n0

d∑
j,k=1

∥uknujn∥L2(Rd)

≤ Cn0∥un∥2(L4(Rd))d ≤ C ′n0

(
∥∇un∥

d
4

L2∥un∥
1− d

4

L2

)2

.

Then we have

∥(Pn0un)t∥L 4
d ([0,T ],(L2(Rd))d)

≤ νn20T
d
4 ∥u0∥(L2(Rd))d

+ C ′n0∥un∥
2(1− d

4 )
L∞([0,T ],(L2(Rd))d)

∥∇un∥
d
2

L2([0,T ],L2 ≤ C

for some constant C independent of n by the energy equality (6.22) and the fact that
∥Pnu0∥(L2(Rd))d ≤ ∥u0∥(L2(Rd))d for all n.
Hence we concluded the proof that {Pn0un}n∈N is a sequence of equicontinuous functions
in C0([0, T ], (L2(Rd))d).
To complete the proof of Claim 6.15 we need to show that for any t ∈ [0, T ] the sequence
{Pn0un(t)}n∈N is relatively compact in (L2(K))d. It is here that we will exploit the fact
that K is a compact subspace of Rd.
We know that {Pn0un(t)}n∈N is a bounded sequence in (H1(Rd))d for any t ∈ [0, T ]. This
follows immediately from ∥Pn0un(t)∥H1 ≤ n0∥un(t)∥L2 ≤ n0∥u0∥L2 , which follows from the
energy inequality (6.22) which guarantees ∥un(t)∥L2 ≤ ∥u0∥L2 . We recall now that

Claim 6.17. The restriction map H1(Rd) → L2(K) is compact for any compact K .
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Sketch of proof Indeed this is equivalent at showing that

T f := χKF∗
(
f

⟨ξ⟩

)
is compact as L2(Rd) → L2(Rd).

But we have T f =
∫
K(x, ξ)f(ξ)dξ with integral kernel K(x, ξ) := χK(x)⟨ξ⟩−1e−ix·ξ. It

is easy to see that Tn
n→∞→ T in the operator norm where the Tn has kernel Kn(x, ξ) :=

χK(x)⟨ξ⟩−1e−ix·ξχB(0,n)(ξ). Now Kn ∈ L2(Rdx × Rdξ) so that Tn is Hilbert–Schmidt with
∥Tn∥HS := ∥Kn∥L2(Rd

x×Rd
ξ)
. Now it is easy to show that ∥Tn∥L2→L2 ≤ ∥Tn∥HS . Kn is the

limit in L2(Rdx×Rdξ) of elements in L2(Rdx)⊗L2(Rdξ). The latter ones are integral kernels of
finite rank operators and their operators converge in the Hilbert–Schmidt norm, and so also
in the ∥ · ∥L2→L2 norm, to Tn. We conclude that there is a sequence of finite rank operators
which converges in the operator norm to T , which then is compact.
It follows that {Pn0un(t)}n∈N is relatively compact in (L2(K))d for any t ∈ [0, T ].
Hence the hypotheses of the Ascoli–Arzela Theorem have been checked and we can conclude
that Claim 6.15, that is the claim that {Pn0un}n∈N is relatively compact in C0([0, T ], (L2(K))d),
is true.
Hence there exists a subsequence of {un}n∈N (and it is not restrictive to assume this is
true for the whole sequence) which converges to an u ∈ L2([0, T ] ×K,Rd). By a diagonal
argument, we can assume that this is true for any compact K ⊂ Rd and any T > 0. This
yields (6.23). Notice that this implies

un → u in D′((0, T )× Rd,Rd). (6.28)

We claim now that u ∈ L2([0, T ]× Rd,Rd) and that

un ⇀ u in L2([0, T ]× Rd,Rd) (6.29)

(convergence in the weak topology). Indeed, since from (6.22) we have that {un}n∈N is
uniformly bounded in L2([0, T ] × Rd,Rd), it follows that up to a subsequence we have
un ⇀ v for some v ∈ L2([0, T ]×Rd,Rd). Then (6.28) implies that v = u as distributions in
D′((0, T )× Rd,Rd). This implies that u ∈ L2([0, T ]× Rd,Rd) with u = v.
In particular this implies

lim
n→∞

∫
[0,T ]×Rd

(un(t, x)− u(t, x)) · Φ(t, x)dtdx = 0 for all Φ ∈ L2([0, T ]× Rd,Rd),

that is (6.24).
We now turn to the proof of (6.25).

By (6.22) we know that {∇un}n∈N is bounded in L2((0, T )×Rd, (Rd)d). This implies that up
to a subsequence there exists V ∈ L2((0, T )×Rd, (Rd)d) s.t. ∇un ⇀ V . On the other hand
(6.29) implies un → u in D′((0, T )×Rd). This in turn implies ∂jun → ∂ju in D′((0, T )×Rd)
for any j = 1, ..., d. Hence ∇u = V in D′((0, T ) × Rd), ∇u ∈ L2((0, T ) × Rd, (Rd)d) and
∇u = V in L2((0, T )× Rd, (Rd)d). This proves (6.25).
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Notice also that, up to a subsequence, un(t, x) → u(t, x) and ∇un(t, x) → ∇u(t, x) almost
everywhere. Then the energy inequalities (6.22) imply by Fathou

∥u(t)∥2L2(Rd) + 2ν

∫ t

0
∥∇u(t′)∥2L2(Rd)dt

′ ≤ ∥u0∥2L2(Rd). (6.6)

We turn now to the proof of (6.26).
Fix a function ψ ∈ C0([0,∞),P(H1(Rd))d) like in the statement of Proposition 6.11. For a
given n0 consider

gn(t) := ⟨un(t), ψ(t)⟩(L2(Rd))d and g(n0)
n (t) := ⟨Pn0un(t), ψ(t)⟩(L2(Rd))d .

Then for any ϵ > 0 and any fixed T > 0 there exists n0 s.t.

∥(Pn0 − 1)ψ(t)∥L∞([0,T ],(L2(Rd))d) < ϵ.

This and ∥un(t)∥L∞([0,T ],(L2(Rd))d) ≤ ∥u0∥(L2(Rd))d imply

∥gn − g(n0)
n ∥L∞([0,T ] ≤ ∥u0∥(L2(Rd))dTϵ.

Furthermore, for any fixed T > 0 there exists a compact K s.t.

∥ψ(t)∥L∞([0,T ],(L2(Rd\K))d) < ϵ.

Then, if we set g
(n0,K)
n (t) := ⟨Pn0un(t), ψ(t)⟩(L2(K)))d we have

∥g(n0,K)
n − g(n0)

n ∥L∞([0,T ] ≤ ∥u0∥(L2(Rd))dTϵ.

Since by Claim 6.15 we know that Pn0un → Pn0u in C0([0, T ], (L2(K))d), we conclude that

{g(n0,K)
n }n = ⟨Pn0un(t), ψ(t)⟩(L2(K)))d → ⟨Pn0u(t), ψ(t)⟩(L2(K)))d in C0([0, T ]).

But then also

∥⟨un(t), ψ(t)⟩(L2(Rd))d − ⟨u(t), ψ(t)⟩(L2(Rd))d∥L∞([0,T ]

≤ ∥⟨Pn0un(t), ψ(t)⟩(L2(K))d − ⟨Pn0u(t), ψ(t)⟩(L2(K))d∥L∞([0,T ] + 2∥u0∥(L2(Rd))dTϵ

+ ⟨u(t), (1−Pn0)ψ(t)⟩(L2(Rd))d∥L∞([0,T ] + ⟨u(t), (1− χK)ψ(t)⟩(L2(Rd))d∥L∞([0,T ] ≤
≤ ∥⟨Pn0un(t), ψ(t)⟩(L2(K))d − ⟨Pn0u(t), ψ(t)⟩(L2(K))d∥L∞([0,T ] + 4∥u0∥(L2(Rd))dTϵ.

Since T is fixed and ϵ is arbitrarily small, it follows that we obtain that gn converges to
⟨u(t), ψ(t)⟩(L2(Rd))d in L∞([0, T ]), and hence in C0([0, T ]). In particular we have shown that

u ∈ C0([0,∞), L2
w(Rd,Rd)). The proof of Proposition 6.11 is completed.
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6.1.2 End of the proof of Leray’s Theorem 6.2

Proposition 6.11 has provided us with a function

u ∈ L∞([0,∞), L2(Rd,Rd)) ∩ L2
loc([0,∞),H1(Rd,Rd)) ∩ C0([0,∞), L2

w(Rd,Rd))

which satisfies the energy inequality

∥u(t)∥2L2(Rd) + 2ν

∫ t

0
∥∇u(t′)∥2L2(Rd)dt

′ ≤ ∥u0∥2L2(Rd). (6.6)

Our aim in this section is to prove that u is a weak solution in the sense of Definition 6.1.
Let us consider Ψ ∈ C1([0,∞),P(H1(Rd))d) and let us apply to (6.3) the inner product
⟨·,Ψ⟩L2 . Then we get

⟨(un)t,Ψ⟩(L2(Rd))d + ⟨PnPdiv(un ⊗ un),Ψ⟩(L2(Rd))d − ν⟨△un,Ψ⟩(L2(Rd))d = 0.

Hence

d

dt
⟨un,Ψ⟩(L2(Rd))d − ⟨un,Ψt⟩(L2(Rd))d + ⟨div(un ⊗ un),PnΨ⟩(L2(Rd))d + ν⟨△un,Ψ⟩(L2(Rd))d = 0.

So, integrating in t we get∫
Rd

un(t, x) ·Ψ(t, x)dx =

∫
Rd

Pnu0(x) ·Ψ(0, x)dx−
∫ t

0
ds

∫
Rd

un(s, x)⊗ un(s, x) : ∇PnΨ(s, x)dx

+

∫ t

0
ds

∫
Rd

un(s, x) ·Ψt(s, x)dx− ν
∑
j,k

∫ t

0
ds

∫
Rd

∂ku
j
n(s, x)∂kΨ

j(s, x)dx. (6.30)

By (6.26) for any t

lim
n→∞

∫
Rd

un(t, x) ·Ψ(t, x)dx =

∫
Rd

u(t, x) ·Ψ(t, x)dx. (6.31)

By the definition of Pn we have

lim
n→∞

∫
Rd

Pnu0(x) ·Ψ(0, x)dx =

∫
Rd

u0(x) ·Ψ(0, x)dx. (6.32)

By (6.24) we have

lim
n→∞

∫ t

0
ds

∫
Rd

un(s, x) ·Ψt(s, x)dx =

∫ t

0
ds

∫
Rd

u(s, x) ·Ψt(s, x)dx. (6.33)

By (6.25) we have

lim
n→∞

ν

∫ t

0
ds

∫
Rd

∂ku
j
n(s, x)∂kΨ

j(s, x)dx = ν

∫ t

0
ds

∫
Rd

∂ku
j(s, x)∂kΨ

j(s, x)dx. (6.34)

The above limits (6.31)–(6.34) are straightforward consequences of Proposition 6.11. By
taking the limit in (6.30), Leray’s Theorem will be a consequence of the following claim,
which is the delicate point of this part of the proof.
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Claim 6.18. We have

lim
n→∞

∫ t

0
ds

∫
Rd

un(s, x)⊗ un(s, x) : ∇PnΨ(s, x)dx =

∫ t

0
ds

∫
Rd

u(s, x)⊗ u(s, x) : ∇Ψ(s, x)dx.

(6.35)

Proof of Claim 6.18. The 1st step, algebraic, is to write∫ t

0
ds

∫
Rd

un(s, x)⊗ un(s, x) : ∇PnΨ(s, x)dx =

∫ t

0
ds

∫
Rd

un(s, x)⊗ un(s, x) : ∇Ψ(s, x)dx

+

∫ t

0
ds

∫
Rd

un(s, x)⊗ un(s, x) : ∇(PnΨ(s, x)−Ψ(s, x))dx.

Claim 6.18 will be a consequence of

lim
n→∞

∫ t

0
ds

∫
Rd

un(s, x)⊗ un(s, x) : ∇Ψ(s, x)dx =

∫ t

0
ds

∫
Rd

u(s, x)⊗ u(s, x) : ∇Ψ(s, x)dx.

(6.36)
and of

lim
n→∞

∫ t

0
ds

∫
Rd

un(s, x)⊗ un(s, x) : ∇(PnΨ(s, x)−Ψ(s, x))dx = 0. (6.37)

In order to prove (6.36)–(6.37) we observe that since Ψ ∈ C1([0,∞), (H1(Rd))d) for any
ε > 0 there is a compact set K ⊂ Rd s.t.

sup
s∈[0,T ]

∥∇Ψ(s, ·)∥L2(Rd\K) < ε. (6.38)

(6.38) is elementary to prove and it is assumed in the sequel. Now we show (6.36).
By Hölder, (6.38), Gagliardo–Nirenberg and the energy equality (6.22) we have

|
∫ t

0
ds

∫
Rd\K

un(s, x)⊗ un(s, x) : ∇Ψ(s, x)dx| ≤
∫ T

0
ds∥un ⊗ un∥L2(Rd)∥∇Ψ(s)∥L2(Rd\K)

≤ T
4−d
4 ∥un ⊗ un∥

L
4
d ([0,T ],L2(Rd))

∥∇Ψ∥L∞([0,T ],L2(Rd\K))

≤ T
4−d
4 ∥∥un∥2L4(Rd)∥L 4

d (0,T )
ε . εT

4−d
4 ∥∥un∥2(1−d/4)L2(Rd)

∥∇un∥d/2L2(Rd)
∥
L

4
d (0,T )

. εT
4−d
4 ∥un∥

2(1− d
4 )

L∞([0,T ],L2(Rd))
∥∇un∥

d
2

L2([0,T ],L2(Rd))
≤ εT

4−d
4 ∥u0∥2L2(Rd).

Hence, to prove (6.36) it is enough to show for any compact set K ⊂ Rd

lim
n→∞

∫ t

0
ds

∫
K
un(s, x)⊗ un(s, x) : ∇Ψ(s, x)dx =

∫ t

0
ds

∫
K
u(s, x)⊗ u(s, x) : ∇Ψ(s, x)dx.

(6.39)
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The limit (6.39) is a consequence of

lim
n→∞

un ⊗ un = u⊗ u in L1([0, T ], L2(K))

which in turn is a consequence of

lim
n→∞

un = u in L2([0, T ], L4(K)). (6.40)

Let us consider χ ∈ C∞
c (Rd, [0, 1]) s.t. χ = 1 in K, Ω := suppχ and with ∥∇χ∥L∞(Rd) ≤ 1.

Then by Gagliardo Nirenberg we have

∥f∥L4(K) ≤ C∥f∥1−d/4
L2(Ω)

(∥χ∇f∥L2(Rd) + ∥f∇χ∥L2(Rd))
d/4 ≤ C∥f∥1−d/4

L2(Ω)
∥f∥d/4

H1(Rd)
.

Using this inequality and Hölder (using
1

2
=

4− d

8
+
d

8
):

∥u− un∥L2([0,T ],L4(K)) . ∥∥u− un∥
1− d

4

L2(Ω)
∥u− un∥

d
4

H1(Rd)
∥L2(0,T )

≤ ∥∥u− un∥
1− d

4

L2(Ω)
∥
L

8
4−d (0,T )

∥∥u− un∥
d
4

H1(Rd)
∥
L

8
d (0,T )

= ∥u− un∥
1− d

4

L2([0,T ],L2(Ω))
∥u− un∥

d
4

L2([0,T ],H1(Rd))

≤ (2(1 +
√
T )∥u0∥(L2(Rd))d)

d
4 ∥u− un∥

1− d
4

L2([0,T ],L2(Ω))

n→∞→ 0

where the limit holds because un
n→∞→ u in L∞([0, T ], (L2(Ω))d), as we saw earlier. This

yields (6.40) and so also (6.39).
The proof of (6.37) will follow from the fact that for any ε > 0 there is N s.t. n ≥ N implies

sup
s∈[0,T ]

∥∇(PnΨ(s)−Ψ(s))∥L2(Rd) < ε

In turn this, like (6.38), is a simple consequence of the fact that Ψ ∈ C1([0,∞), (H1(Rd))d).
To prove (6.37) observe that

|r.h.s. of (6.37)| ≤ ∥un ⊗ un∥L1([0,T ],(L2(Rd))d
2
)
∥∇(PnΨ−Ψ)∥L2([0,T ],(L2(Rd))d)

≤ ε∥un∥2L2([0,T ],(L4(Rd))d) = ε∥∥un∥L4(Rd)∥2L2(0,T ) . ε∥∥un∥1−d/4L2(Rd)
∥∇un∥d/4L2(Rd)

∥2L2(0,T )

. ε∥un∥
2(1− d

4
)

L∞([0,T ],L2(Rd))
∥∇un∥

d
2

L2([0,T ],L2(Rd))
≤ T 1− d

4 ε∥u0∥2(L2(Rd))d
ε→0→ 0

This completes the proof of Leray’s Theorem 6.2.

In the next section we prove the 2nd Leray’s theorem, that is Theorem 6.3. Uniqueness
in this case will follow from the fact that we will frame the problem as a fixed point argument
using a contraction.
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7 Well posedness in Sobolev spaces

For this section see [1].
Consider the equation (6.7). If QNS(u, u) is a force like the f in (5.1), we can interpret

the solutions of (6.7) as solutions of a linear heat equation (5.1). We denote by B(u, v) the
weak solution of {

∂tB(u, v)− ν△B(u, v) = QNS(u, v)
B(u, v)|t=0 = 0.

(7.1)

Then, when we are within the scope of the theory of Sect. 5, the solutions of (6.7) can be
rewritten as

u = eνt△u0 +B(u, u). (7.2)

In the sequel we will use repeatedly the following abstract lemma.

Lemma 7.1. Let X be a Banach space and B : X2 → X a continuous bilinear map. Let
α < 1

4∥B∥ where ∥B∥ = sup∥x∥=∥y∥=1 ∥B(x, y)∥. Then for any x0 ∈ X in DX(0, α) (the open

ball of center 0 and radius α in X) there exists a unique x ∈ DX(0, 2α) s.t. x = x0+B(x, x).

Proof. We consider the map
x→ x0 +B(x, x). (7.3)

We will frame this as a fixed point problem in DX(0, 2α).
First of all, we claim that the map (7.3) leaves DX(0, 2α) invariant. Indeed

∥x0 +B(x, x)∥ ≤ ∥x0∥+ ∥B(x, x)∥ ≤ ∥x0∥+ ∥B∥∥x∥2 ≤ α

≤2︷ ︸︸ ︷
(1 + 4∥B∥α︸ ︷︷ ︸

<1

) < 2α.

Next, we check that the map (7.3) is a contraction. Indeed

∥B(x, x)−B(y, y)∥ ≤ ∥B(x− y, x)∥+ ∥B(y, x− y)∥ ≤ 4α∥B∥∥x− y∥

where 4α∥B∥ < 1. So the map (7.3) has a unique fixed point in DX(0, 2α).

Using the above lemma we will prove the following well posedness result.

Theorem 7.2. For any u0 ∈ (Ḣ
d
2
−1(Rd))d there exists a T and a solution of (7.2) with

u ∈ L4([0, T ], (Ḣ
d−1
2 (Rd))d). This solution is unique. Furthermore we have

u ∈ C([0, T ], (Ḣ
d
2
−1(Rd))d), ∇u ∈ L2([0, T ], (Ḣ

d
2
−1(Rd))d

2
). (7.4)

Let Tu0 be the lifespan of the solution. Then:

(1) there exists a c s.t.
∥u0∥

(Ḣ
d
2−1(Rd))d

≤ cν ⇒ Tu0 = ∞;
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(2) if Tu0 <∞ then ∫ Tu0

0
∥u(t)∥4

(Ḣ
d−1
2 (Rd))d

dt = ∞. (7.5)

(3) if Tu0 <∞ then ∫ Tu0

0
∥∇u(t)∥2

Ḣ
d
2−1

dt = ∞. (7.6)

Moreover, if u and v are solutions, then

∥u(t)− v(t)∥2
(Ḣ

d
2−1(Rd))d

+ ν

∫ t

0
∥∇(u− v)(s)∥2

(Ḣ
d
2−1(Rd))d

ds

≤ ∥u0 − v0∥2
(Ḣ

d
2−1(Rd))d

e
Cν−3

∫ t
0

(
∥u(t′)∥4

(Ḣ
d−1
2 (Rd))d

+∥v(t′)∥4
(Ḣ

d−1
2 (Rd))d

)
dt′

(7.7)

where C is a fixed constant.

Remark 7.3. While for d = 2 the solutions provided by Theorem 7.2 are exactly Leray’s
solutions, for d = 3 we could have u0 ∈ (Ḣ

1
2 (R3))3 with u0 ̸∈ (L2(R3))3. The corresponding

solutions of the Navier Stokes equations provided by Theorem 7.2 are not Leray’s solutions.

Remark 7.4. Notice that the finite lifespan (7.5) is relevant only for d = 3. Furthermore, if
Tu0 <∞, it has been shown that

∥u∥L∞([0,Tu0 ],(Ḣ
1(R3))3) = ∞,

but the proof is a much harder.
There is no blow up at T = ∞. Indeed, we will see in Sect. 8.1 that if Tu0 = ∞ we have
lim

t→+∞
∥u(t)∥

Ḣ
1
2 (R3)

= 0.

We will assume for the moment Theorem 7.2 and prove the following.

8 Proof of Theorem 7.2

This section is devoted to the proof of this theorem. First we have the following lemma.

Lemma 8.1. Let d = 2, 3. There exists a constant C > 0 s.t.

∥QNS(u, v)∥
Ḣ

d
2−2(Rd,Rd)

≤ C∥u∥
Ḣ

d−1
2 (Rd,Rd)

∥v∥
Ḣ

d−1
2 (Rd,Rd)

. (8.1)

Proof. If d = 2 we have

∥QNS(u, v)∥Ḣ−1 ≤
2∑

j,k=1

(
∥∂k(ukvj)∥Ḣ−1 + ∥∂k(vkuj)∥Ḣ−1

)

≤ 2

2∑
j,k

∥ukvj∥L2 ≤ C∥u∥L4∥v∥L4 ≤ C∥u∥
Ḣ

1
2
∥v∥

Ḣ
1
2

43



by the Sobolev embedding Ḣ
1
2 (R2) ⊂ L4(R2) , since 1

4 = 1
2 −

1
2
2 . This yields (8.1) for d = 2.

For d = 3

∥QNS(u, v)∥
Ḣ− 1

2 (R3)
≤

2∑
j,k

(
∥∂k(ukvj)∥

Ḣ− 1
2 (R3)

+ ∥∂k(vkuj)∥
Ḣ− 1

2 (R3)

)
. ∥(∇u)v∥

Ḣ− 1
2 (R3)

+ ∥u∇v∥
Ḣ− 1

2 (R3)
. ∥(∇u)v∥

L
3
2 (R3)

+ ∥u∇v∥
L

3
2 (R3)

where we are using the Sobolev embedding Ḣ
1
2 (R3) ⊂ L3(R3) (since 1

3 = 1
2 −

1
2
3 ) which in

turn by duality implies L
3
2 (R3) ⊂ Ḣ− 1

2 (R3).
Hence, by 2

3 = 1
2 + 1

6 and Hölder,

∥QNS(u, v)∥
Ḣ− 1

2 (R3)
. ∥∇u∥L2(R3)∥v∥L6(R3) + ∥u∥L6(R3)∥∇v∥L2(R3) ≤ 2∥u∥Ḣ1(R3)∥v∥Ḣ1(R3).

This yields (8.1) for d = 3.
A straightforward consequence of Lemma 8.1 is the following for C the constant in

Lemma 8.1.

Lemma 8.2. Let d = 2, 3. Then for u, v ∈ L4([0, T ], (Ḣ
d−1
2 (Rd,Rd)) we have

∥QNS(u, v)∥
L2([0,T ],Ḣ

d
2−2(Rd,Rd))

≤ C∥u∥
L4([0,T ],Ḣ

d−1
2 (Rd,Rd))

∥v∥
L4([0,T ],Ḣ

d−1
2 (Rd,Rd))

(8.2)

Proof of Theorem 7.2. By Theorem 5.4 we have for s = d
2 − 1 and p = 4

∥B(u, v)∥
L4([0,T ],Ḣ

d−1
2 )

= ∥∥B(u, v)∥
Ḣs+2

4
∥Lp(0,T ) .

1

ν
1
p
+ 1

2

∥QNS(u, v)∥L2([0,T ],Ḣs−1)

= ν−
3
4 ∥QNS(u, v)∥

L2([0,T ],Ḣ
d
2−2)

≤ Cν−
3
4 ∥u∥

L4([0,T ],Ḣ
d−1
2
∥v∥

L4([0,T ],Ḣ
d−1
2 )
.

(8.3)

So in the Banach space X = L4([0, T ], Ḣ
d−1
2 ) we have ∥B∥ ≤ Cν−

3
4 . Obviously this is the

same as ν
3
4

4C ≤ 1
4∥B∥ . Our strategy is to prove

∥eνt△u0∥
L4([0,T ],Ḣ

d−1
2 )

<
ν

3
4

4C
≤ 1

4∥B∥
(8.4)

where eνt△u0 plays the role of x0 in the abstract Lemma 7.1.
If (8.4) happens, that is if the l.h.s.of (8.4) is less than an α < 1

4∥B∥ , then by Lemma 7.1

we can conclude that problem (7.2) admits a unique solution in L4([0, T ], Ḣ
d−1
2 ) with norm

less than 2α < ν
3
4

2C .
We consider two distinct proofs of (8.4). The 1st, simpler, is valid only if ∥u0∥

Ḣ
d
2−1 is

sufficiently small and shows that (8.4) holds for all T . In the second proof, which is general,
we drop the assumption that ∥u0∥

Ḣ
d
2−1 is small, and we prove (8.4) for T sufficiently small.
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Step 1: small initial data. By Theorem 5.4 we have for s = d
2 − 1 and p = 4

∥eνt△u0∥
L4([0,T ],Ḣ

d−1
2 )

= ∥∥eνt△u0∥
Ḣ

s+2
p
∥Lp(0,T ) ≤ ν

− 1
p ∥u0∥Ḣs = ν−

1
4 ∥u0∥

Ḣ
d
2−1 . (8.5)

So, if ∥u0∥
Ḣ

d
2−1 <

ν
4C then (8.4) is true for any T > 0. In particular Tu0 = ∞ and we have

just proved (1) in Theorem 7.2.

Step 2: possibly large initial data. Now we consider the case when u0 ∈ Ḣ
d
2
−1(Rd)

is possibly large. We consider a low–high energy decomposition: u0 = Pρu0 + χ√
−△≥ρu0

where we pick ρ = ρu0 large enough so that

∥χ√
−△≥ρu0∥Ḣ d

2−1 <
ν

8C
.

Then by (8.5) we get

∥eνt△u0∥
L4([0,T ],Ḣ

d−1
2 )

≤ ∥eνt△χ√
−△≥ρu0∥L4([0,T ],Ḣ

d−1
2 )

+ ∥eνt△Pρu0∥
L4([0,T ],Ḣ

d−1
2 )

<
ν

3
4

8C
+ ∥eνt△Pρu0∥

L4([0,T ],Ḣ
d−1
2 )

(8.6)

where we made the high energy contribution small by the choice of ρ large.
We now exploit the fact that we have the freedom to choose T small, in order to make the
contribution to (8.6) small too. Indeed we have

∥eνt△Pρu0∥
L4([0,T ],Ḣ

d−1
2 )

= ∥eνt△χ[0,ρ](
√

−△)u0∥
L4([0,T ],Ḣ

d−1
2 )

= ∥eνt△χ[0,ρ](
√

−△)
√
ρ
(−△)

1
4

√
ρ

u0∥
L4([0,T ],Ḣ

d
2−1)

≤ √
ρ∥eνt△χ[0,ρ](

√
−△)u0∥

L4([0,T ],Ḣ
d
2−1)

=
√
ρ∥eνt△Pρu0∥

L4([0,T ],Ḣ
d
2−1)

≤ (ρ2T )
1
4 ∥eνt△Pρu0∥

L∞([0,T ],Ḣ
d
2−1)

≤ (ρ2T )
1
4 ∥Pρu0∥

Ḣ
d
2−1 ≤ (ρ2T )

1
4 ∥u0∥

Ḣ
d
2−1 ≤ ν

3
4

8C

if we choose T small enough so that the last inequality holds, that is if we choose T such
that

T ≤

 ν
3
4

8ρ
1
2C∥u0∥

Ḣ
d
2−1

4

. (8.7)

So all terms in the r.h.s. of (8.6) have been made small enough s.t.

∥eνt△u0∥
L4([0,T ],Ḣ

d−1
2 )

<
ν

3
4

4C
≤ 1

4∥B∥
,

that is we obtained (8.4).
We have proved the 1st sentence in the statement of Theorem 7.2.
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Now we turn to the proof that a solution u ∈ L4([0, T ], Ḣ
d−1
2 ) satisfies (7.4).

By (8.1) we have QNS(u, u) ∈ L2([0, T ], Ḣ
d
2
−2). Then it must be remarked that by its

definition B(u, u) is a solution in the sense of Definition 5.1 of the Heat Equation written
above (7.2). Similarly, by Theorem 5.2 also eνt△u0 is a solution of the homogeneous Heat
Equation with initial value u0. Hence, since u satisfies (7.2), then u is the solution of the
Heat Equation (6.7), where the latter can be framed in terms of the theory in Sect. 5 for

s = d
2 − 1. Then by Theorem 5.2 we have u ∈ C0([0, T ], Ḣ

d
2
−1) and ∇u ∈ L2([0, T ], Ḣ

d
2 ).

This yields (7.4).
We turn now to the proof of (7.7). We consider two solutions u and v, and set w = u− v.
Then {

wt − ν△w = QNS(w, u+ v)
w(0) = u0 − v0

where we used the symmetry QNS(u, v) = QNS(v, u) and

QNS(u− v, u+ v) = QNS(u, u)−QNS(v, v) +QNS(u, v)−QNS(v, u)︸ ︷︷ ︸
0

.

By the energy estimate (5.5) for s = d
2 − 1 we have

∆w := ∥w(t)∥2
Ḣ

d
2−1

+ 2ν

∫ t

0
∥∇w(t′)∥2

Ḣ
d
2−1

dt′ = ∥w0∥2
Ḣ

d
2−1

+ 2

∫ t

0
⟨QNS(w, u+ v), w⟩

Ḣ
d
2−1(t

′)dt′.

Claim 8.3. We have

⟨QNS(a, b), c⟩
Ḣ

d
2−1 ≤ C∥a∥

Ḣ
d−1
2
∥b∥

Ḣ
d−1
2
∥c∥

Ḣ
d
2
. (8.8)

Proof. Indeed, trading derivatives we have

⟨QNS(a, b), c⟩
Ḣ

d
2−1 ≤ ∥QNS(a, b)∥

Ḣ
d
2−2∥c∥Ḣ d

2

and by (8.1) we have

∥QNS(a, b)∥
Ḣ

d
2−2 ≤ C∥a∥

Ḣ
d−1
2
∥b∥

Ḣ
d−1
2
.

This proves Claim 8.3.
Now for N(t) := ∥u(t)∥

Ḣ
d−1
2

+ ∥v(t)∥
Ḣ

d−1
2

by Claim 8.3 we have

∆w ≤ ∥w0∥2
Ḣ

d
2−1

+ 2

∫ t

0
∥w(t′)∥

Ḣ
d−1
2
N(t′)∥∇w(t′)∥

Ḣ
d
2−1dt

′.

By the interpolation estimate in Lemma 4.1 we have

∥w(t′)∥
Ḣ

d−1
2

≤ ∥w(t′)∥
1
2

Ḣ
d
2−1

∥∇w(t′)∥
1
2

Ḣ
d
2−1

.
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This implies

∆w ≤ ∥w0∥2
Ḣ

d
2−1

+ 2

∫ t

0
∥w(t′)∥

1
2

Ḣ
d
2−1

N(t′)∥∇w(t′)∥
3
2

Ḣ
d
2−1

dt′.

Using the inequality ab ≤ 1
4a

4 + 3
4b

4
3 , which follows by

log(ab) =
1

4
log(a4) +

3

4
log(b

4
3 ) ≤ log

(
1

4
a4 +

3

4
b
4
3

)
,

we get

the integrand =

(
∥w(t′)∥

1
2

Ḣ
d
2−1

N(t′)ν−
3
4

(
3

4

) 3
4

)(
4

3
ν∥∇w(t′)∥2

Ḣ
d
2−1

) 3
4

≤ C

ν3
∥w(t′)∥2

Ḣ
d
2−1

N4(t′) + ν∥∇w(t′)∥2
Ḣ

d
2−1

.

Then

∆w ≤ ∥w0∥2
Ḣ

d
2−1

+
C

ν3

∫ t

0
∥w(t′)∥2

Ḣ
d
2−1

N4(t′)dt′ + ν

∫ t

0
∥∇w(t′)∥2

Ḣ
d
2−1

dt′.

In other words, by the definition of ∆w

∥w(t)∥2
Ḣ

d
2−1

+ �2ν

∫ t

0
∥∇w(t′)∥2

Ḣ
d
2−1

dt′

≤ ∥w0∥2
Ḣ

d
2−1

+
C

ν3

∫ t

0
∥w(t′)∥2

Ḣ
d
2−1

N4(t′)dt′ +
�����������
ν

∫ t

0
∥∇w(t′)∥2

Ḣ
d
2−1

dt′

so that, if we set

X(t) := ∥w(t)∥2
Ḣ

d
2−1

+ ν

∫ t

0
∥∇w(t′)∥2

Ḣ
d
2−1

dt′

we have

X(t) ≤ ∥w0∥2
Ḣ

d
2−1

+
C

ν3

∫ t

0
∥w(t′)∥2

Ḣ
d
2−1

N4(t′)dt′.

Hence

X(t) ≤ ∥w0∥2
Ḣ

d
2−1

+
C

ν3

∫ t

0
X(t′)N4(t′)dt′

and so by Gronwall’s inequality

∥w(t)∥2
Ḣ

d
2−1

+ ν

∫ t

0
∥∇w(t′)∥2

Ḣ
d
2−1

dt′ ≤ ∥w0∥2
Ḣ

d
2−1

e
C
ν3

∫ t
0 N

4(t′)dt′ .

This proves the stability inequality (7.7)
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We now consider the blow up criterion (7.5). Suppose that u(t) is a solution in [0, T )
with ∫ T

0
∥u(t)∥4

Ḣ
d−1
2
dt <∞.

Notice that then u ∈ L4([0, T ], Ḣ
d−1
2 ) and

∥QNS(u, u)∥
L2([0,T ],Ḣ

d
2−2)

≤ C∥u∥2
L4([0,T ],Ḣ

d−1
2
. (8.9)

We claim that we can extend u(t) beyond T .

Claim 8.4. There exists a τ > 0 s.t. u extends in a solution in L4([0, T+τ), Ḣ
d−1
2 (Rd,Rd)).

First of all we set
g(ξ) := sup

0≤t′≤T
|û(t′, ξ)|.

Claim 8.5. We have |ξ|
d
2
−1g ∈ L2(Rd).

Proof of Claim 8.5. By (5.14) for s = d
2 − 1 and by (8.1) we have

∥|ξ|
d
2
−1g∥L2 =

∫
Rd

|ξ|d−2

(
sup

0≤t′≤t
|û(t′, ξ)|

)2

dξ

 1
2

≤ ∥u0∥
Ḣ

d
2−1 +

1

(2ν)
1
2

∥QNS∥
L2([0,T ],Ḣ

d
2−2)

≤ ∥u0∥
Ḣ

d
2−1 +

C

(2ν)
1
2

∥u∥2
L4([0,T ],Ḣ

d−1
2 )

<∞.

This proves Claim 8.5.
Proof of Claim 8.4. Claim 8.5 implies∫

|ξ|≥ρ
|ξ|d−2|g(ξ)|2dξ ρ→∞→ 0.

Thus there exists ρ > 0 s.t for any preassigned c > 0∫
|ξ|≥ρ

|ξ|d−2|û(t, ξ)|2dξ < (cν)2 for all t ∈ [0, T ).

Now, recalling the splitting in high and low energies in the proof of the 1st sentence in the
statement of Theorem 7.2, there exists a fixed τ > 0 s.t. the lifespan of the solution with
initial datum u(t) is bounded below by τ independently of t ∈ [0, T ). Indeed there exists a
c1 > 0 independent from t ∈ [0, T ) s.t. ν

3
4

8ρ
1
2C∥u(t)∥

Ḣ
d
2−1

4

> c1 > 0.
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This follows from the fact that

∥u(t)∥
Ḣ

d
2−1 ≤ ∥|ξ|

d
2
−1g∥L2 <∞

So we can take τ = c1. Then Tu0 ≥ T + τ and this yields Claim 8.4.
Let us now discuss the blow up criterion (7.6). Suppose that Tu0 <∞ and that

CL2 :=

∫ Tu0

0
∥∇u(t)∥2

Ḣ
d
2−1

dt <∞. (8.10)

Since we have (7.5) and

L4([0, T ], (Ḣ
d−1
2 (Rd))d) ⊆ L∞([0, T ], (Ḣ

d
2
−1(Rd))d) ∩ L2([0, T ], (Ḣ

d
2 (Rd))d

2
)

it follows that since we must have (7.5), then (8.10) implies that

lim
T→Tu0

∥u(t)∥
L∞([0,T ],Ḣ

d
2−1)

= ∞ (8.11)

For 0 ≥ t ≤ T < Tu0 we have, by (8.8) and interpolation,

∥u(t)∥2
Ḣ

d
2−1

+ 2ν

∫ t

0
∥∇u(t′)∥2

Ḣ
d
2−1

dt′ = ∥u(t1)∥2Ḣσs
+ 2

∫ t

0
⟨Q(u(t′), u(t′)), u(t′)⟩

Ḣ
d
2−1dt

′

6 ∥u(0)∥2
Ḣ

d
2−1

+ C ′
d

∫ t

0
∥u(t′)∥2

Ḣ
d−1
2
∥∇u(t′)∥

Ḣ
d
2−1dt

′

6 ∥u(0)∥2
Ḣ

d
2−1

+ Cd

∫ t

0
∥u(t′)∥

Ḣ
d
2−1∥∇u(t′)∥2

Ḣ
d
2−1

dt′

(8.12)
and so

∥u∥2
L∞([0,T ],Ḣ

d
2−1)

6 ∥u(0)∥2
Ḣ

d
2−1

+ CdCL2∥u∥
L∞([0,T ],Ḣ

d
2−1)

.

But this means that

∥u∥
L∞([0,T ],Ḣ

d
2−1)

≤ 1

2
CdCL2 +

1

2

√
C2
dC

2
L2 + 4∥u(0)∥2

Ḣ
d
2−1

<∞,

in contradicting (8.11). This contradiction proves the blow up criterion (7.6).
The proof of Theorem 7.2 is completed.

Corollary 8.6. In the case d = 2, Theorem 7.2 implies Leray’s Theorem 6.3 for d = 2

Proof. By the Leray’s Theorem 6.2 we know that given a divergence free u0 ∈ L2(R2)
there are weak solutions in the sense of Leray with u ∈ L∞([0,∞), L2(R2,R2)) and ∇u ∈
L2([0,∞), L2(R2,R4)). Interpolating, for each such a solution we have

∥∥u∥
Ḣ

1
2
∥L4

t
≤ ∥∥u∥

1
2

L2∥∇u∥
1
2

L2∥L4
t
≤ ∥u∥

1
2

L∞
t L2∥∇u∥

1
2

L2
tL

2
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and so we obtain also u ∈ L4([0,∞), Ḣ
1
2 (R2,R2)).

By Lemma 8.2 we know that this implies

QNS(u, u) ∈ L2([0,∞), Ḣ−1(R2,R2)).

Notice that the right hand side of (6.7) satisfies the hypothesis of the force term in the
linear heat equation (5.1). As a weak solution of the Navier Stokes equation in the sense
of Definition 6.1, u is then also a solution of the linear heat equation (5.1) in the sense of
Definition 5.1. This means that it is also a solution of (7.2). Since by Theorem 7.2 such
solution is a unique, we conclude that the solution of Leray’s Theorem 6.2 in the case d = 2
is unique. Furthermore by Theorem 7.2 we know also that u ∈ C0([0,∞), L2(R2,R2)).
We now turn to the energy identity. By Leray’s Theorem 6.2 we know that

∥u(t)∥2L2(R2) + 2ν

∫ t

0
∥∇u(t′)∥2L2(R2)dt

′ ≤ ∥u0∥2L2(R2).

We want now to prove that ≤ can be replaced by = in this formula. As we have mentioned
above, u solves in the sense of Definition 5.1 the problem

∂tu− ν△u = QNS(u, u) with QNS(u, u) ∈ L2(R+, Ḣ
−1(R2,R2)),

Then, by Theorem 5.2 for s = 0 the identity (5.5) yields

∥u(t)∥2L2 + 2ν

∫ t

0
∥∇u(t′)∥2L2dt

′ = ∥u0∥2L2 + 2

∫ t

0
⟨QNS(u(t

′), u(t′)), u(t′)⟩L2dt′.

By Lemma 6.8 we have the cancelation

⟨QNS(u, u), u⟩ = ⟨P(div(u⊗ u), u⟩ = ⟨div(u⊗ u), u⟩ = 0.

This completes the proof, by giving the energy identity.

8.1 Global solutions.

We start with the following lemma.

Lemma 8.7. There exists ε1 > 0 s.t. for ∥u0∥
Ḣ

d
2−1 ≤ ε1 the function t → ∥u(t)∥

Ḣ
d
2−1 is

decreasing.

Proof. From Theorem 7.2 we know that for ε1 ∈ (0, ε0] then we have ∥u(t)∥
Ḣ

d
2−1 .

∥u0∥
Ḣ

d
2−1 ≤ ε1 for all t. Now, given any pair 0 ≤ t1 < t2 we have like in (8.12)

∥u(t2)∥2
Ḣ

d
2−1

+ 2ν

∫ t2

t1

∥∇u(t′)∥2
Ḣ

d
2−1

dt′ 6 ∥u(t1)∥2
Ḣ

d
2−1

+ C

∫ t2

t1

∥u(t′)∥
Ḣ

d
2−1∥∇u(t′)∥2

Ḣ
d
2−1

dt′

6 ∥u(t1)∥2
Ḣ

d
2−1

+ Cε1

∫ t2

t1

∥∇u(t′)∥2
Ḣ

d
2−1

dt′,
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where C is a fixed constant. Choosing ε1 s.t. Cε1 < ν, it follows

∥u(t2)∥2
Ḣ

d
2−1

+ ν

∫ t2

t1

∥∇u(t′)∥2
Ḣ

d
2−1

dt′ 6 ∥u(t1)∥2
Ḣ

d
2−1

. (8.13)

Hence t→ ∥u(t)∥
Ḣ

d
2−1 is decreasing.

Proposition 8.8. Let d = 3 and let u0 ∈ H
1
2 (R3,R3) be s.t. Tu0 = ∞. Then

lim
t→+∞

∥u(t)∥
Ḣ

1
2 (R3,R3))

= 0. (8.14)

Proof. Since u0 ∈ H
1
2 (R3,R3)) we have also u0 ∈ L2(R3,R3)), and u is also a weak solution

in the sense of Leray. Hence it satisfies the energy inequality

∥u(t)∥2L2(R3) + 2ν

∫ t

0
∥∇u(t′)∥2L2(R3)dt

′ ≤ ∥u0∥2L2(R3),

which implies in particular

∥∇u∥L2(R+,L2(R3)) ≤
1√
2ν

∥u0∥L2(R3) and

∥u∥L∞(R+,L2(R3)) ≤ ∥u0∥L2(R3).

So by Hölder inequality and the interpolation of Lemma 4.1, we have

∥u∥
L4(R+,Ḣ

1
2 (R3))

≤ 1
4
√
2ν

∥u0∥L2(R3).

This implies that for 1 ≫ ϵ > 0 arbitrarily small, there exists tϵ > 0 s.t. ∥u(tϵ)∥
Ḣ

1
2 (R3)

≤ ϵ.

So, in the half-line [tϵ,∞) the function u(t) is a small solution as of Theorem 7.2. But then
∥u(t)∥

Ḣ
1
2 (R3)

≤ ϵ for all t ≥ tϵ by Lemma 8.7, and, since ϵ > 0 is arbitrary, we have the

limit in (8.14).

9 The case of initial data in L3(R3)

It is possible to prove the following theorem.

Theorem 9.1. For any divergence free u0 ∈ L3(R3,R3) there is a T > 0 and a unique
solution u ∈ C0([0, T ), L3(R3,R3)) of

u = eνt△u0 +B(u, u). (7.2)

Furthermore there exists a ε3,ν > 0 s.t. for ∥u0∥L3 < ε3,ν we have T = ∞. Furthermore, if
u0 ∈ Ḣ1/2(R3,R3), the life span is the same of Theorem 7.2.

Exercise 9.2. Prove that the mapping Ḣ1/2(R3,R3) → L3(R3,R3) is not surjective.
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Exercise 9.3. Prove that the subspace of divergence free vector fields in Ḣ1/2(R3,R3) is
closed in Ḣ1/2(R3,R3). Prove the same for with Ḣ1/2(R3,R3) replaced by L3(R3,R3).

Exercise 9.4. Prove that the Sobolev embedding from the subspace of divergence free
vector fields in Ḣ1/2(R3,R3) to the subspace of divergence free vector fields in L3(R3,R3)
is not surjective.

Exercise 9.5. Pick a divergence free u0 belonging to L3(R3,R3) but not to Ḣ1/2(R3,R3).

Show that there exists a sequence of divergence free vector fields {u(n)0 } in Ḣ1/2(R3,R3)

with u
(n)
0 → u0 in L3(R3,R3). Show also that ∥u(n)0 ∥Ḣ1/2 → ∞.

Exercise 9.6. Show that it is possible to define divergence free sequences {v(n)0 } in Ḣ1/2(R3,R3)

with ∥v(n)0 ∥Ḣ1/2 → ∞ and ∥v(n)0 ∥L3 → 0.

Remark 9.7. For a sequence such as in Exercise 9.6, for n≫ 1 the corresponding solutions
of the NS equation are globally defined in time by Theorem 9.14, while Theorem 7.2 is able
to guarantee only on short intervals of time.

To prove Theorem 9.14 we will apply the abstract Lemma 7.1 in an appropriate Ba-
nach space X. The striking fact though, is that the space X will not be of the form
C0([0, T ], L3(R3,R3)). This because if X where this space, then the bilinear form B defined
by (7.1) is known not to be continuous. It turns out that to get the right Banach space X,
has required a certain degree of imagination and insight.

Definition 9.8. For p ∈ [3,∞] and T ∈ (0,∞) we set

Kp(T ) = {u ∈ C0((0, T ], Lp(R3,R3)) : ∥u∥Kp(T ) := sup
t∈(0,T ]

(νt)
3
2

(
1
3
− 1

p

)
∥u(t)∥Lp <∞}

(9.1)
and for p ∈ [1, 3)

Kp(T ) = {u ∈ C0([0, T ], Lp(R3,R3)) : ∥u∥Kp(T ) := sup
t∈(0,T ]

(νt)
3
2

(
1
3
− 1

p

)
∥u(t)∥Lp <∞}.

(9.2)
We denote by Kp(∞) the spaces defined as above, with (0, T ] replaced by (0,∞).

We recall that the solution of the heat equation ut − ν△u = 0 is etν△f = Kt ∗ f
where Kt(x) := (4πνt)−

3
2 e−

|x|2
4tν . Notice that Kt(x) = (νt)−

3
2K((νt)−

1
2x), where K(x) :=

(4π)−
d
2 e−

|x|2
4 and where K̂(ξ) = e−|ξ|2 .

Notice that for u0 ∈ L3(R3) and p ≥ 3 we have from (1.15),

∥etν∆u0∥Lp(R3) 6 (4πνt)
3
2

(
1
p
− 1

3

)
∥u0∥L3(R3) for all p ≥ 3, (9.3)

it can be proved that etν∆u0 ∈ C(R+, L
p), and so etν∆u0 ∈ Kp(∞).
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Lemma 9.9. Let u0 ∈ L3(R3,R3) and p > 3. Then

lim
T→0

∥etν∆u0∥Kp(T ) = 0. (9.4)

Proof. For any ϵ > 0 there exists ϕ ∈ L3(R3,R3) ∩ Lp(R3,R3) s.t. ∥u− ϕ∥L3 < ϵ. Then by
(9.3) we have

∥u− ϕ∥Kp(T ) ≤ (4π)
3
2

(
1
p
− 1

3

)
ϵ.

Since ∥etν∆ϕ∥Lp ≤ ∥ϕ∥Lp , it follows

∥etν△ϕ∥Kp(T ) = sup
t∈(0,T ]

(νt)
3
2

(
1
3
− 1

p

)
∥etν∆ϕ∥Lp ≤ (νT )

3
2

(
1
3
− 1

p

)
∥ϕ∥Lp → 0 as T → 0.

Lemma 9.10. Let p, q and r satisfy

0 <
1

p
+

1

q
6 1

1

r
6 1

p
+

1

q
<

1

3
+

1

r

(9.5)

Then the bilinear map B defined in (7.1) maps Kp(T ) × Kq(T ) → Kr(T ) and there is a
constant C independent from T s.t.

∥B(u, v)∥Kr(T ) 6 C∥u∥Kp(T )∥v∥Kq(T ). (9.6)

To prove Lemma 9.10 we consider for any m = 1, 2, 3 the problem{
(Lmf)t − ν△Lmf = P∂mf

Lmf(0, x) = 0
(9.7)

(Lmf is by definition the solution of the above heat equation). Then by (10.8) and (6.9)
for appropriate constants cjk we have

L̂mf(t, ξ) =
3∑

j,k=1

cjk

∫ t

0
e−(t−t′)ν|ξ|2ξjξkξm|ξ|−2f̂(t′, ξ)dt′. (9.8)

This means, for Γjkm(t, x) the inverse Fourier transform of e−tν|ξ|
2
ξjξkξm|ξ|−2,

Lmf(t) =
3∑

j,k=1

cjk

∫ t

0
Γjkm(t− t′) ∗ f̂(t′)dt′. (9.9)

We claim the following.
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Claim 9.11. We have for a fixed C > 0

|Γjkm(t, x)| 6 C(
√
νt+ |x|)−4. (9.10)

Proof. It is elementary that Γjkm(t, x) = (νt)−2Γjkm((νt)
−1/2x) with Γ̂jkm(x) = e−|ξ|2ξjξkξm|ξ|−2.

Then (9.10) is a consequence of

|Γjkm(x)| 6 C(1 + |x|)−4. (9.11)

Notice that Γjkm ∈ C∞(R4) ∩ L∞(R4), and this is straightforward by the rapid decay to 0

at infinity of e−|ξ|2ξjξkξm|ξ|−2. Hence, to prove (9.11) it suffices to consider |x| ≫ 1.For χ0

a smooth cutoff of compact support equal to 1 near 0 and with χ1 = 1− χ0, we set

Γjkm(x) = (2π)−
3
2

∫
R3

e−iξ·xχ0 (|x|ξ) e−|ξ|2ξjξkξm|ξ|−2dξ

+ (2π)−
3
2

∫
R3

e−iξ·xχ1 (|x|ξ) e−|ξ|2ξjξkξm|ξ|−2dξ

The 1st term in the r.h.s. is

.
∫
|ξ|≤|x|−1

|ξ| dξ ∼ |x|−4.

For the other term we set L := i x
|x|2 · ∇ξ noticing that Le−iξ·x = e−iξ·x. Then, the 2nd term

is

(2π)−
3
2

∫
R3

e−iξ·xL6
(
χ1 (|x|ξ) e−|ξ|2ξjξkξm|ξ|−2

)
dξ.

The absolute value of the integrand is for fixed C∣∣L6 (· · ·)
∣∣ ≤ C|x|−6e−|ξ|2 |ξ|−5.

Here we used that in the support of ∇ξ (χ1 (|x|ξ)) we have |x| ∼ |ξ|−1. So the last integral
is bounded

. |x|−6

∫
1≥|ξ|≥|x|−1

|ξ|−5dξ + |x|−6

∫
|ξ|≥1

e−|ξ|2dξ

where the 2nd term is ∼ |x|−6 ≪ |x|−4 and the 1st term is ∼ |x|−6|x|2 = |x|−4. This
completes the proof of Claim 9.11.

Completion of proof of Lemma 9.10. By (9.10) we have by Young’s inequality for
convolutions and Hölder’s inequality for the tensor product of u and v the bound (here
1
a = 1 + 1

r −
1
β and 1

β = 1
p +

1
q )

∥B(u, v)∥Lr 6 C1

∑
j,m,k

∫ t

0

∥∥Γj,m,k(t− t′)
∥∥
La

∥∥u(t′)⊗ v(t′)
∥∥
Lβ dt

′

6 C1

∑
j,m,k

∫ t

0

∥∥Γj,m,k(t− t′)
∥∥
La

∥∥u(t′)∥∥
Lp

∥∥v(t′)∥∥
Lq dt

′

.
∫ t

0
(t− t′)

− 1
2
− 3

2

(
1
p
+ 1

q
− 1

r

)
(t′)

− 3
2

(
2
3
− 1

p
− 1

q

)
dt′ ∥u∥Kp(t)

∥v∥Kq(t)
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where in the 3rd line we used

∥∥Γj,m,k(t− t′)
∥∥
La(R3)

.
∥∥∥(√t− t′ + |x|)−4

∥∥∥
La(R3)

= (t− t′)−2∥
(
1 +

|x|√
t− t′

)−4

∥La(R3)

= (t− t′)−2(t− t′)
3
2a

∥∥(1 + |x|)−4
∥∥
La(R3)

∼ (t− t′)
−2+ 3

2

(
1+ 1

r
− 1

p
− 1

q

)

= (t− t′)
− 1

2
− 3

2

(
1
p
+ 1

q
− 1

r

)
.

We then conclude

∥B(u, v)∥Lr 6 Ct−
3
2(

1
3
− 1

r ) ∥u∥Kp(t)
∥v∥Kq(t)

(9.12)

where we the fact that ∀ α, β ∈ (−∞, 1) there is a C(α, β) ∈ R+ s.t.∫ t

0
(t− t′)−α(t′)−βdt′ 6 C(α, β)t1−α−β for all t > 0 (9.13)

and
1

2
+

3

2

(
1

p
+

1

q
− 1

r

)
+

3

2

(
2

3
− 1

p
− 1

q

)
=

1

2
+

3

2

(
2

3
− 1

r

)
=

1

2
+ 1− 3

2r

= 2− 1

2
− 3

2r
= 1 + 1− 3

2r
= 1 +

3

2

(
1

3
− 1

r

)
.

Notice that in the inequalities in (9.5) we need:

• 1

β
:=

1

p
+

1

q
6 1 in order for u⊗ v to belong to the Lebesgue space Lβ(R3);

• 0 <
1

p
+

1

q
is needed because otherwise in (9.12) we get (t′)−1 and the integral is

undefined;

• 1

r
6 1

p
+

1

q
is needed for a ≥ 1;

• 1

p
+

1

q
<

1

3
+

1

r
is needed to get −1

2
− 3

2

(
1

p
+

1

q
− 1

r

)
> −1 in the exponent of (t− t′)

in (9.12).

Exercise 9.12. Prove (9.13). Hint, split the integral into sum of integrals in [0, t/2] and
[t/2, t].

We have the following fact.
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Proposition 9.13. For any p ∈ (3,∞] there exists a constant εpν > 0 s.t. if

∥et△u0∥Kp(T ) < εpν (9.14)

then there exists and is unique u in the ball of center 0 and radius 2εpν in Kp(T ) which
satisfies (7.2).

Proof. Setting r = q = p, we see that for p > 3 we have B : Kp(T ) ×Kp(T ) → Kp(T ) is
bounded and with norm that admits a finite upper bound independent from T . The proof
follows then from the abstract Lemma 7.1.

Theorem 9.14. For any u0 ∈ L3(R3,R3) there is a T > 0 and solution u ∈ C0([0, T ), L3(R3,R3))
of (7.2) which is unique. Furthermore there exists a ε3 > 0 s.t. for ∥u0∥L3 < ε3ν we have
T = ∞.

Proof. We have et△u0 ∈ Kp(T ) for any p > 3, see (9.3). Furthermore, ∥et△u0∥Kp(T )
T→0+→ 0

for p > 3 by Lemma 9.9. Then we can apply Proposition 9.13 concluding that there exists
a solution u of (7.2) in K6(T ) for T > 0 small enough. Applying Lemma 9.10 for p = q = 6
and r = 3 we get B(u, u) ∈ C0([0, T ], L3), and so u ∈ C0([0, T ], L3).
We assume now that there are two solutions u1 and u2. Setting u21 = u2 − u1 and wj =
B(uj , uj) we have {

∂tu21 − ν△u21 = f21
u21(0) = 0

with

f21 = 2Q(eνt△u0, u21) +Q(w2, u21) +Q(w1, u21).

By L
3
2 (R3) ↪→ Ḣ− 1

2 (R3), which is the dual of Sobolev’s Embedding Ḣ
1
2 (R3) ↪→ L3(R3), we

have
∥Q(u, v)∥

Ḣ− 3
2 (R3)

≤ ∥u⊗ v∥
Ḣ− 1

2 (R3)
. ∥u⊗ v∥

L
3
2 (R3)

≤ ∥u∥L3∥v∥L3 .

Then, by (5.5) and entering the definition of f21

∥u21(t)∥2
Ḣ− 1

2
+ 2ν

∫ t

0
∥∇u21(t′)∥2

Ḣ− 1
2
dt′ ≤ 4

∫ t

0
⟨f(t′), u(t′)⟩

Ḣ− 1
2
dt′

≤ 2

∫ t

0
∥Q(eνt

′△u0, u21)∥
Ḣ− 3

2
∥∇u21(t′)∥

Ḣ− 1
2
dt′

+ 2

∫ t

0
∥Q(w2, u21) +Q(w1, u21)∥

Ḣ− 3
2
∥∇u21(t′)∥

Ḣ− 1
2
dt′. (9.15)

We bound the last line with for j = 1, 2

2

∫ t

0
∥Q(wj , u21)∥

Ḣ− 3
2
∥∇u21(t′)∥

Ḣ− 1
2
dt′ . ∥wj∥K3(t)

∫ t

0
∥u21(t′)∥L3∥∇u21(t′)∥

Ḣ− 1
2
dt′

. ∥wj∥K3(t)

∫ t

0
∥∇u21(t′)∥2

Ḣ− 1
2
dt′, (9.16)
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where in the last line we used Sobolev’s Embedding Ḣ
1
2 (R3) ↪→ L3(R3).

So, the last line of (9.15) is

.
(
∥w1∥K3(t) + ∥w2∥K3(t)

) ∫ t

0
∥∇u21(t′)∥2

Ḣ− 1
2
dt′. (9.17)

We split now

u0 = u
(1)
0 + u

(2)
0 with ∥u(1)0 ∥L3 < ϵ and u

(2)
0 ∈ L6 ∩ L3

and we bound similarly to (9.16)∫ t

0
∥Q(eνt

′△u
(1)
0 , u21)∥

Ḣ− 3
2
∥∇u21(t′)∥

Ḣ− 1
2
dt′ . ∥u(1)0 ∥L3

∫ t

0
∥∇u21(t′)∥2

Ḣ− 1
2
dt′.

Finally, we bound∫ t

0
∥Q(eνt

′△u
(2)
0 , u21)∥

Ḣ− 3
2
∥∇u21(t′)∥

Ḣ− 1
2
dt′

≤
∫ t

0
∥eνt′△u(2)0 ⊗ u21∥

Ḣ− 1
2
∥∇u21(t′)∥

Ḣ− 1
2
dt′ .

∫ t

0
∥eνt′△u(2)0 ⊗ u21∥

L
3
2
∥∇u21(t′)∥

Ḣ− 1
2
dt′

≤
∫ t

0
∥eνt′△u(2)0 ∥L6 ∥u21∥L2∥∇u21∥

H
1
2
dt′ ≤ ∥u(2)0 ∥L6

∫ t

0
∥u21∥

1
2

H− 1
2
∥∇u21∥

3
2

H
1
2
dt′.

So we get

∥u21(t)∥2
Ḣ− 1

2
+ 2ν

∫ t

0
∥∇u21(t′)∥2

Ḣ− 1
2
dt′ .

(
∥w1∥K3(t) + ∥w2∥K3(t) + ∥u(1)0 ∥L3

)∫ t

0
∥∇u21(t′)∥2

Ḣ− 1
2
dt

+
3

4C
4
3

∫ t

0
∥∇u21(t′)∥2

Ḣ− 1
2
dt′ +

C4

4
∥u(2)0 ∥4L6

∫ t

0
∥u21∥2

H− 1
2
dt′.

Taking C large, and t small, so that ∥w1∥K3(t)+∥w2∥K3(t)+∥u(1)0 ∥L3 < 3ϵ with ϵ sufficiently
small, we obtain

∥u21(t)∥2
Ḣ− 1

2
+ ν

∫ t

0
∥∇u21(t′)∥2

Ḣ− 1
2
dt′ . C4

4
∥u(2)0 ∥4L6

∫ t

0
∥u21∥2

H− 1
2
dt′.

Gronwall’s Inequality implies that u21(t
′) = 0 for t′ ∈ [0, t] with t > 0 sufficiently small.

The above argument shows that the set

{t ∈ [0, T ) : u21 ≡ 0 in [0, t]}

is open (and, obviously, non empty) in [0, T ). On the other hand, since u21 ∈ C0([0, T ), L3(R3,R3))
it is also closed in [0, T ). Hence it coincides with [0, T ).
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Remark 9.15. Let u0 ∈ Ḣ
1
2 (R3,R3). Then it can be proved that if T3 > 0 is the lifespan

of the corresponding solution u ∈ C0([0, T3), L
3(R3,R3)) provided by Theorem 9.14 and if

Tu0 > 0 is the lifespan of the solution provided by Theorem 7.2, we have T3 = Tu0 . We will
prove the simpler result in Proposition 9.16.

Proposition 9.16. Let u0 ∈ Ḣ
1
2 (R3,R3). There there exists ϵ3ν > 0 s.t. for ∥u0∥L3(R3) <

ϵ3ν and if Tu0 > 0 is the lifespan of the solution provided by Theorem 7.2, we have Tu0 = ∞.

Proof. Taking ϵ3ν > 0 sufficiently small we can assume by Theorem 9.14 that u ∈ C0([0,∞), L3).
In fact, if it is sufficiently small we can prove ∥u∥L∞([0,∞),L3) < Cν∥u0∥L3 for a fixed Cν > 0.
Suppose that Tu0 <∞. Then by Theorem 7.2 we have the blow up

lim
T↗Tu0

∫ T

0
∥∇u(t)∥2

Ḣ
1
2
dt = ∞. (9.18)

By Theorem 7.2 and by (5.5), for 0 < t ≤ T < Tu0 we have

∥u(t)∥2
Ḣ

1
2
+ 2ν

∫ t

0
∥∇u(t′)∥2

Ḣ
1
2
dt′ = ∥u0∥2

Ḣ
1
2
+ 2

∫ t

0
⟨u(t′) · ∇u(t′), u(t′)⟩

Ḣ
1
2
dt′. (9.19)

By Sobolev’s Embedding Ḣ
1
2 (R3,R3) ↪→ L3(R3,R3) we obtain

|⟨u · ∇u, u⟩
Ḣ

1
2
| = |⟨u · ∇u,∇u⟩L2 | ≤ ∥u∥L3∥∇u∥2L3 ≤ C∥u∥L3∥∇u∥2

Ḣ
1
2
.

Then

∥u(t)∥2
Ḣ

1
2
+ 2ν

∫ t

0
∥∇u(t′)∥2

Ḣ
1
2
dt′ ≤ ∥u0∥2

Ḣ
1
2
+ C∥u∥L∞(R+,L3)

∫ t

0
∥∇u(t′)∥2

Ḣ
1
2
dt′

≤ ∥u0∥2
Ḣ

1
2
+ CνC∥u0∥L3

∫ t

0
∥∇u(t′)∥2

Ḣ
1
2
dt′.

So, for CνC∥u0∥L3 < ν, we get

∥u(t)∥2
Ḣ

1
2
+ ν

∫ t

0
∥∇u(t′)∥2

Ḣ
1
2
dt′ ≤ ∥u0∥2

Ḣ
1
2
,

which contradicts (9.18).

10 Schrödinger equations

For u0 ∈ S ′(Rd,C) the linear homogeneous Schrödinger equation is

iut +△u = 0 , u(0, x) = u0(x).
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By applying F we transform the above problem into

ût + i|ξ|2û = 0 , û(0, ξ) = û0(ξ).

This yields û(t, ξ) = e−it|ξ|2 û0(ξ). We have e−it|ξ|2 = Ĝ(t, ξ) with G(t, x) = (2ti)−
d
2 e

i|x|2
4t .

This follows from the following generalization of (1.2) for Re z > 0

e−z
|ξ|2
2 = (2πz)−

d
2

∫
Rd

e−iξ·xe−
|x|2
2z dx.

This formula follows from the fact that both sides are holomorphic in Re z > 0 and coincide
for z ∈ R+. Then taking the limit z → 2i for Re z > 0 and using the continuity of F in
S ′(Rd,C) we get

e−i|ξ|2 = (4πi)−
d
2

∫
Rd

e−iξ·xe
i|x|2
4 dx.

Then u(t, x) = (2π)−
d
2G(t, ·) ∗ u0(x). In particular, for u0 ∈ Lp(Rd,C) for p ∈ [1, 2] and by

Reisz’s interpolation defines for any t > 0 an operator which we denote by

ei△tu0(x) = (4πit)−
d
2

∫
Rd

e
i|x−y|2

4t u0(y)dy (10.1)

which is s.t. ei△t : Lp(Rd,C) → Lp
′
(Rd,C) for p ∈ [1, 2] and p′ = p

p−1 with ∥ei△tu0∥Lp′ ≤

(4πt)
−d( 1

2
− 1

p′ )∥u0∥Lp by Riesz interpolation.

Remark 10.1. Notice that for no p ̸= 2 and t > 0 we have that ei△t defines a bounded
operator Lp(Rd,C) → Lp(Rd,C), see [9].

Remark 10.2. Notice that e△t : Lp(Rd) → Lq(Rd) is a bounded operator for all 1 ≤ p ≤ q ≤
∞.

In the sequel, given v, w ∈ L2(Rd,C) we will use the notation

⟨v, w⟩ = Re

∫
Rd

v(x)w(x)dx.

We consider
iut +△u = f , u(0) = u0 ∈ H1(Rd). (10.2)

Definition 10.3. Let s ∈ R. For f ∈ L1([0, T ],Hs−2(Rd)) we say that

u ∈ L∞([0, T ],Hs(Rd)), (10.3)

is a weak solution of (10.2) if

u is weakly continuous from [0, T ] into Hs(Rd) (10.4)

(that is, if for any ψ ∈ H−s(Rd) the function t→ ⟨u(t), ψ⟩, which is a well defined function
in L∞([0, T ],R), is in fact in C0([0, T ],R) )

59



and if for any Ψ ∈ C∞
c ([0, T ]× Rd) we have

⟨u(t),Ψ(t)⟩L2 =

∫ t

0

(
⟨−iu(t′),△Ψ(t′)⟩L2 + ⟨u(t′), ∂tΨ(t′)⟩L2 + ⟨−if(t′),Ψ(t′)⟩L2

)
dt′ + ⟨u0,Ψ(0)⟩L2 .

(10.5)
If also

u ∈ C0([0, T ],Hs(Rd)), (10.6)

we say that u is a strong solution of (10.2).

Theorem 10.4. In Problem (10.2) assume f ∈ L1([0, T ],Hs(Rd)). Then there is exactly
one solution in the sense of the above definition. For any t we have:

∥u(t)∥Hs(Rd) ≤ ∥u0∥Hs(Rd) + ∥f∥L1(0,t),Hs(Rd)). (10.7)

Furthermore, the solution is strong, that is u ∈ C0([0, T ],Hs(Rd)), and the following formula
holds

û(t, ξ) = eit|ξ|
2
û0(ξ)− i

∫ t

0
ei(t−t

′)|ξ|2 f̂(t′, ξ)dt′. (10.8)

Proof. The proof is similar to that of Theorem 5.2 and is skipped.

Notice that (10.8) can be written as

u(t) = e−it△u0 − i

∫ t

0
e−i(t−t′)△f(t′)dt′. (10.9)

We say that a pair (q, r) is admissible when

2

q
= d

(
1

2
− 1

r

)
2 ≤ r ≤ 2d

d− 2
(2 ≤ r ≤ ∞ if d = 1, 2 ≤ r <∞ if d = 2).

(10.10)

The pair (∞, 2) is always admissible. The endpoint (2,
2d

d− 2
) is admissible for d ≥ 3. We

have the following important result.

Theorem 10.5 (Strichartz’s estimates). The following facts hold.

(1) For every u0 ∈ L2(Rd) we have ei△tu0 ∈ Lq(R, Lr(Rd)) ∩ C0(R, L2(Rd)) for every
admissible (q, r). Furthermore, there exists a C s.t.

∥ei△tu0∥Lq(R,Lr(Rd)) ≤ C∥u0∥L2 . (10.11)
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(2) Let I be an interval and let t0 ∈ I. If (γ, ρ) is an admissible pair and f ∈ Lγ
′
(I, Lρ

′
(Rd))

then for any admissible pair (q, r) the function

T f(t) =
∫ t

t0

ei△(t−s)f(s)ds (10.12)

belongs to Lq(I, Lr(Rd))∩C0(I, L2(Rd)) and there exists a constant C independent of
I and f s.t.

∥T f∥Lq(I,Lr(Rd)) ≤ C∥f∥Lγ′ (I,Lρ′ (Rd)). (10.13)

Proof. The proof is skipped. See the very readable account in [8].

11 The semilinear Schrödinger equation

We will consider pure power semilinear Schrödinger equations{
iut = −△u+ λ|u|p−1u for (t, x) ∈ [0,∞)× Rd

u(0, x) = u0(x)
(11.1)

for λ ∈ R\{0} and p > 1. Here p < d∗ with d∗ = ∞ for d = 1, 2 and d∗ = d+2
d−2 for d ≥ 3.

We collect here a number of facts needed later.

Lemma 11.1. We have the following facts.

(1) For 1 < p < d∗ we have the Gagliardo–Nirenberg inequality:

∥u∥Lp+1(Rd) ≤ Cp∥∇u∥αL2(Rd)∥u∥
1−α
L2(Rd)

for
1

p+ 1
=

1

2
− α

d
. (11.2)

(2) The map u→ |u|p−1u is a locally Lipschitz from H1(Rd) to H−1(Rd).

Proof. For (1) see Theorem 4.2.

We turn (2). By (11.2) we know that u→ |u|p−1u maps H1(Rd) → Lp+1(Rd) → L
p+1
p (Rd).

Furthermore this map is locally Lipschitz:

∥|u|p−1u− |v|p−1v∥
L

p+1
p

≤ C∥(|u|p−1 + |v|p−1)(u− v)∥
L

p+1
p

≤ C ′(∥u∥p
Lp+1 + ∥v∥p

Lp+1)∥u− v∥Lp+1

where we have used, for w = v − u,

|u|p−1u− |v|p−1v =

∫ 1

0

d

dt

(
|u+ tw|p−1(u+ tw)

)
dt =∫ 1

0
|u+ tw|p−1dtw +

∫ 1

0
(u+ tw)

d

dt

(
(u1 + tw1)

2 + (u2 + tw2)
2
) p−1

2 dt =

∫ 1

0
|u+ tw|p−1dtw+

2∑
j=1

∫ 1

0
(u+ tw)

p− 1

2

(
(u1 + tw1)

2 + (u2 + tw2)
2
) p−3

2 2(uj + twj)dtwj
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which from |u+ tw| ≤ |u|+ |v| for t ∈ [0, 1] and∣∣∣∣(u+ tw)
p− 1

2

(
(u1 + tw1)

2 + (u2 + tw2)
2
) p−3

2 2(uj + twj)wj

∣∣∣∣ ≤ (p− 1)|u+ tw|p−1|w|

yields ∣∣|u|p−1u− |v|p−1v
∣∣ ≤ p(|u|+ |v|)p−1|u− v| ≤ p2p−1(|u|p−1 + |v|p−1)|u− v|,

where in the last step we used, for |u| ≥ |v|,

(|u|+ |v|)p−1 ≤ 2p−1|u|p−1 ≤ 2p−1(|u|p−1 + |v|p−1).

Next, we show that we have an embedding L
p+1
p (Rd) ↪→ H−1(Rd). Indeed, this is

equivalent to H1(Rd) ↪→ Lp+1(Rd) with in turn is a consequence of (11.2).

We introduce now the following quantities:

E(u) =
1

2

∫
Rd

|∇u|2dx+
λ

p+ 1

∫
Rd

|u|p+1dx

Q(u) =

∫
Rd

|u|2dx.
(11.3)

Here E(u) is the energy, and is well defined in H1(Rd) and Q(u) is the mass or charge.

Remark 11.2. Notice, passingly, that Q ∈ C∞(H1(Rd),R) while E ∈ C1(H1(Rd),R).

Definition 11.3 (Weak and strong solutions). On some interval (−S, T ) a function

u ∈ L∞
loc((−S, T ),H1(Rd)) ∩W 1,∞((−S, T ),H−1(Rd)) (11.4)

is a weak solution of (11.1) if u(0) = u0 in H−1(Rd) and if for any Ψ ∈ C∞
c ((−S, T )× Rd)

we have ∫ T

−S

(
⟨i△u(t′)− i|u(t′)|p−1u(t′),Ψ(t′)⟩+ ⟨u(t′), ∂tΨ(t′)⟩

)
dt′ = 0. (11.5)

u is a strong solution if furthermore

u ∈ C0((−S, T ),H1(Rd)) ∩ C1((−S, T ),H−1(Rd)). (11.6)

Definition 11.4 (Well posedness in H1(Rd)). We say that the problem (11.1) is locally
well posed if the following facts hold:

1. For any u0 ∈ H1(Rd) there exists and is unique a maximal strong solution u.

2. All weak solutions are strong solutions.
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3. Consider the lifespan (−S, T ) of a maximal solution u and suppose that T <∞. Then

lim
t↗T

∥u(t)∥H1 = +∞ (11.7)

with an analogous formula if S < +∞.

4. Suppose u0n → u0 in H1(Rd) and consider their corresponding maximal solutions

un ∈ C0((−Sn, Tn),H1(Rd)) ∩ C1((−Sn, Tn),H−1(Rd)).

Consider [−a, b] ⊂ (−S, T ). Then

limun = u in C0([−a, b],H1(Rd)) ∩ C1([−a, b]),H−1(Rd)). (11.8)

The problem is globally well posed if it is locally well posed and the lifespan of all solutions
is R.

Theorem 11.5 (Local well posedness in H1(Rd)). For 0 < p < d∗ the problem (11.1) is
locally well posed. Furthermore, the functions E(u(t)), Q(u(t)) are constant.

12 Proof of Theorem 11.5

We first prove the existence of some weak solutions.

12.1 Existence of some weak solutions

Proposition 12.1 (Local existence of weak solutions). For any u0 ∈ H1(Rd) there exists
a weak solution of (11.1) in (−T1(u0), T2(u0)), with Tj(u0) > 0. Furthermore, we have
Q(u(t)) = Q(u0) and E(u(t)) ≤ E(u0).

Proof. The proof consist of two main steps:

1. We consider a sequence of approximating ODE’s, we prove existence of a corresponding
of approximate solutions {un} and some bonds for the un. We show that, up to a
subsequence, the sequence {un} has a limit u.

2. The most delicate part of the proof consists in proving that the limit u is a weak
solution of (11.1)

Step 1: truncations of the NLS. For φ ∈ C∞
c (R, [0, 1]) a function with φ = 1

near 0 and with support contained in the ball BRd(0, r0), consider
2 the operators Qn =

2Notice that using everywhere the projections Pn = χ[0,n](
√
−△) would be a bad choice for this proof.

Difficulties would arise from the fact proved by C.Feffermann [6] that Pn for d ≥ 2 is bounded from Lp(Rd)
into itself only if p = 2. On the other hand it is elementary that the Qn are of the form ρ 1

n
∗ for a ρ ∈ S(Rd)

and so are uniformly bounded from Lp(Rd) into itself for all p and form a sequence converging strongly to
the identity operator.
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φ(
√
−△/n). The truncations Qn(|u|p−1u) are locally Lipschitz functions from H1(Rd) into

itself as they are compositions H1(Rd) |u|p−1u→ H−1(Rd) Qn→ H1(Rd)) of a locally Lipschitz
function, Lemma 11.1, and of bounded linear maps.
We consider the following truncations of the NLS{

iunt = −Pnr0△un + λQn(|Qnun|p−1Qnun) for (t, x) ∈ R× Rd
un(0) = Qnu0

(12.1)

By the theory of ODE’s, there exists a maximal solution un(t) ∈ C1(−T1(n), T2(n)),H1(Rd))
of (12.1) . Furthermore, if T2(n) <∞ then we must have blow up

lim
t↗T2(n)

∥un(t)∥H1 = +∞ if T2(n) <∞ (12.2)

with a similar blow up phenomenon if T1(n) <∞.
To get bounds on this sequence of functions we search for invariants of motion. First of all
we apply ⟨·, iun⟩ to (12.1) and get

1

2

d

dt
∥un(t)∥L2 = −⟨Pnr0△un, iun⟩+ λ⟨Qn(|Qnun|p−1Qnun), iun⟩. (12.3)

We show in a moment that both terms in the r.h.s. are equal to 0. This implies

∥un(t)∥L2 = ∥Qnu0∥L2 ≤ ∥u0∥L2 . (12.4)

To prove that the r.h.s. of (12.3) is 0, observe that the the 1st term is 0 because the bounded
operator iPnr0△ of L2(Rd) into itself is antisymmetric: (iPnr0△)∗ = −iPnr0△. For the 2nd
term we use

⟨Qn(|Qnun|p−1Qnun), iun⟩ = ⟨|Qnun|p−1Qnun, iQnun⟩ = λRe i

∫
Rd

|Qnun|p+1dx = 0.

This yields (12.4). Now we consider the energy functional associated to (12.1). Applying
⟨·, unt⟩ to (12.1)

0 = −⟨Pnr0△un, unt⟩+ λ⟨Qn(|Qnun|p−1Qnun), unt⟩ = −⟨△un, unt⟩+ λ⟨|Qnun|p−1Qnun,Qnunt⟩

=
d

dt
(
1

2
∥∇un∥2L2 +

λ

p+ 1

∫
Rd

|Qnun|p+1dx︸ ︷︷ ︸
En(un)

) =
d

dt
En(un).

where we used the fact, easy to check, that un = Pnr0un. Hence

En(un(t)) = En(Qnu0). (12.5)

(12.4) implies T1(n) = T2(n) = ∞. Indeed (12.2) does not hold because

∥un(t)∥H1 = ∥Pnr0un(t)∥H1 ≤ nr0∥un(t)∥L2 = nr0∥Qnu0∥L2 ≤ nr0∥u0∥L2 . (12.6)
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Let us now fix M such that ∥u0∥H1 < M and let us set

θn := sup{τ > 0 : ∥un(t)∥H1 < 2M for |t| < τ.} (12.7)

Then by Lemma 11.1
∥unt∥L∞((−θn,θn),H−1) < C(M).

Our main focus is now to prove that there exists a fixed T (M) > 0 s.t. θn ≥ T (M) for all
n.
First of all we prove that un ∈ C0, 1

2 ((−θn, θn), L2) with a fixed Hölder constant C(M). By
an interpolation similar to Lemma 4.1

∥un(t)− un(s)∥L2 . ∥un(t)− un(s)∥
1
2

H1∥un(t)− un(s)∥
1
2

H−1

≤
√
2∥un∥

1
2

L∞((−θn,θn),H1)
∥unt∥

1
2

L∞((−θn,θn),H−1)

√
|t− s|

≤ C(M)
√

|t− s| for t, s ∈ (−θn, θn)

(12.8)

Now we want to prove

∥un(t)∥2H1 ≤ ∥u0∥2H1 + C(M)tb for some fixed b > 0 and for t ∈ (−θn, θn). (12.9)

From En(un(t)) = En(Qnu0) and Q(un(t)) = Q(Qnu0) we get

∥un(t)∥2H1 +
2λ

p+ 1

∫
Rd

|Qnun|p+1dx = ∥Qnu0∥2H1 +
2λ

p+ 1

∫
Rn

|Q2
nu0|p+1dx.

Hence using Hölder and Gagliardo–Nirenberg

∥un(t)∥2H1 ≤ ∥u0∥2H1 +
2|λ|
p+ 1

∫
Rd

∣∣ |Qnun(t)|p+1 − |Q2
nu0|p+1

∣∣ dx
≤ ∥u0∥2H1 + C

∫
Rd

(|Qnun(t)|p + |Q2
nu0|p)|Qnun(t)−Q2

nu0|dx

≤ ∥u0∥2H1 + C∥|Qnun(t)|p + |Q2
nu0|p∥

L
p+1
p
∥Qnun(t)−Q2

nu0∥Lp+1

≤ ∥u0∥2H1 + C1

(
∥Qnun(t)∥pLp+1 + ∥Q2

nu0∥
p
Lp+1

)
∥un(t)−Qnu0∥αḢ1∥un(t)−Qnu0∥1−αL2

Then by (12.8) with s = 0, the Sobolev Embedding Theorem and (12.7) we get (12.9).
Now for T (M) defined s.t. C(M)T (M)b = 2M2 (for the C(M) in (12.9)) from (12.9) we
get

∥un(t)∥L∞([−T (M),T (M)],H1) ≤
√
3M. (12.10)

Since
√
3M < 2M this obviously means that T (M) < θn since, if we had θn ≤ T (M) then,

by the fact that un ∈ C1(R,H1), the definition of θn in (12.7) would be contradicted.
Hence we have

∥un∥L∞([−T (M),T (M)],H1) < 2M (12.11)

and, by (12.1), also
∥unt∥L∞([−T (M),T (M)],H−1) < C(M). (12.12)

Our next claim is about the existence of a limit u of the sequence.
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Claim 12.2. There exists u with

∥u∥L∞([−T (M),T (M)],H1(Rd)) < 2M (12.13)

s.t. up to a subsequence un(t)⇀ u(t) in H1(Rd)) for all t ∈ [−T (M), T (M)].

Proof. {un}n is a bounded sequence in C1([−T (M), T (M)],H−1(Rd)) by (12.6), by T (M) ∈
(0, θn) and by (12.10). Up to a subsequence, un(t) ⇀ u(t) in H−1(Rd) for all t ∈ Q ∩
[−T (M), T (M)]. It is not restrictive to assume that the subsequence coincides with the
sequence. It is then easy to conclude, using equicontinuity, that in fact {un(t)}n is weakly
convergent in H−1(Rd) for all t ∈ [−T (M), T (M)]. By the lower semicontinuity of the
norm for the weak topology, the equicontinuity of the sequence {un}n implies that u ∈
C0([−T (M), T (M)],H−1(Rd)). Recall that un ∈ C0([−T (M), T (M)],H1) and that we have
(12.11), in fact the better estimate (12.10). So by weak compactness it is easy to conclude
that for all t ∈ [−T (M), T (M)] we have u(t) ∈ H1 with un(t) ⇀ u(t) in H1(Rd). Indeed,
if this was false there would be a t ∈ [−T (M), T (M)] and a subsequence unk

(t) ⇀ v in
H1(Rd) with v ̸= u(t). But this is impossible because we know that we must have v = u(t)
in H−1(Rd)
By the lower semicontinuity of the norm for the weak topology, u ∈ L∞([−T (M), T (M)],H1(Rd))
with (12.13) satisfied.

Step 2: u is a weak solution of (11.1). First of all, we need to show that u
solves an equation. So let us see what happens to the the sequence of nonlinear terms
Qn(|Qnun|p−1Qnun) of (12.1).

Claim 12.3. {|Qnun(t)|p−1Qnun(t)}n forms a bounded sequence in C0,a([−T (M), T (M)], L
p+1
p )

for some a > 0.

Proof. We have, using Gagliardo–Nirenberg (11.2) and (12.8),

∥|Qnun(t)|p−1Qnun(t)− |Qnun(s)|p−1Qnun(s)∥
L

p+1
p

. ∥(|Qnun(t)|p−1 + |Qnun(s)|p−1)(Qnun(t)−Qnun(s))∥
L

p+1
p

. (∥un(t)∥p−1
Lp+1 + ∥un(t)∥p−1

Lp+1)∥un(t)− un(s))∥Lp+1

≤ C1(M)∥un(t)− un(s)∥αH1(Rd)∥un(t)− un(s)∥1−αL2(Rd)
≤ C(M)|t− s|a,

for some a > 0.
By the Claim 12.3 and proceeding like for Claim 12.2 up to a subsequence we have

|Qnun(t)|p−1Qnun(t)⇀ f(t) in L
p+1
p (Rd,C) for all t ∈ [−T (M), T (M)] (12.14)

and
f ∈ C0,a([−T (M), T (M)], L

p+1
p ) ⊂ C0,a([−T (M), T (M)],H−1)
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On the other hand, for every w ∈ C∞
c (Rd,C) and any φ ∈ C∞

c ((−T (M), T (M)),R), we
have ∫ T (M)

−T (M)

[
−⟨iun, w⟩φ̇(t) + ⟨Pnr0△un +Qn(|Qnun|p−1Qnun), w⟩φ(t)

]
dt = 0.

Taking the limit, by the strong limits Pnr0w → w and Qnw → w we have∫ T (M)

−T (M)
[−⟨iu,w⟩φ̇(t) + ⟨△u+ f, w⟩φ(t)] dt = 0.

This implies the distributional equality in (−T (M), T (M))

iut = −△u+ f. (12.15)

This implies u ∈W 1,∞([−T (M), T (M)],H−1) which, in turn, implies that u ∈ C0([−T (M), T (M)],H−1)
and since un(0) = Qnu0

n→∞→ u0 and un(0)
n→∞
⇀ u(0) we have u(0) = u0. So we proved

that u ∈W 1,∞([−T (M), T (M)],H−1) and that{
iut = −△u+ f
u(0) = u0.

Now we need to show that f = λ|u|p−1u. However before proving this, we prove another
claim in Proposition 12.1.

Claim 12.4. We have
∥u(t)∥L2 = ∥u0∥L2 . (12.16)

Proof. We start by showing that for all t ∈ [−T (M), T (M)] we have Im[f(t)u(t)] = 0 a.e.
in Rd. It suffices to show , for any ball B ⊂ Rd, that

⟨f(t), iu(t)⟩L2(B) = 0.

We have (ignoring λ)

⟨f, iu⟩L2(B) = ⟨f − |Qnun|p−1Qnun, iu⟩L2(B) + ⟨|Qnun|p−1Qnun, i(1−Qn)u⟩L2(B)

+ ⟨|Qnun|p−1Qnun, iQn(u− un)⟩L2(B) + ⟨|Qnun|p−1Qnun, iQnun⟩L2(B) → a+ b+ c+ 0.

We have a = 0 since

⟨f − |Qnun|p−1Qnun), iu⟩L2(B) → 0 by f − |Qnun|p−1Qnun ⇀ 0 in L
p+1
p (Rd) ⊂ H−1(Rd).

We have b = 0 since

|⟨|Qnun|p−1Qnun, i(Qn − 1)u⟩L2(B)| ≤ ∥|Qnun|p−1Qnun∥
L

p+1
p (Rd)

∥(Qn − 1)u∥Lp+1(Rd)

≤ ∥Qnun∥pLp+1∥(Qn − 1)u∥Lp+1(Rd)

. ∥un∥pLp+1∥(Qn − 1)u∥Lp+1(Rd) ≤ C(M)∥(Qn − 1)u∥H1(Rd) → 0
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by the strong limit Qnu→ u in H1.
We now show that c = 0. First of all we have

|⟨|Qnun|p−1Qnun, iQn(u− un)⟩| ≤ C(M)∥Qn(u− un)∥Lp+1(B).

Next, we have Qn(u−un)⇀ 0 in H1(Rd). Since the map H1(Rd) v→v|B→ Lp+1(B) is compact
and

∥Qn(u− un)∥Lp+1(B) ≤ ∥Qn(u− un)∥Lp+1(Rd) ≤ C∥u− un∥H1(Rd) ≤ 4C C(M)

it follows that Qn(u− un) → 0 in Lp+1(B) and hence c = 0.
Hence we conclude that for all t ∈ [−T (M), T (M)] we have Im[f(t)u(t)] = 0 a.e. in Rd.
Now we prove the conservation of mass (12.16).
Apply ⟨·, iPRu(t)⟩ to the equation of u. We get

⟨ut,PRu⟩ = ⟨f(t), iPRu⟩.

Notice thatPRut = (PRu)t withPRu ∈W 1,∞((−T (M), T (M)),H1(Rd)). Then ∥PRu∥2L2 ∈
W 1,∞((−T (M), T (M)),R) with

d

dt
∥PRu∥2L2 = 2⟨ut,PRu⟩ = 2⟨f(t), iPRu⟩.

Hence

|∥PRu(t)∥2L2 − ∥PRu∥2L2 | ≤
∫ t

0
2|⟨(PR − 1)f(t′), iu(t′)⟩|dt′ R→+∞→ 0.

This completes the proof of the conservation of mass (12.16).
Now we turn to the proof of f = λ|u|p−1u.

First of all by (12.13) and by inequalities like (12.8) it follows that

u ∈ C0, 1
2 ([−T (M), T (M)], L2(Rd,C)). (12.17)

Recall from Clam 12.2 that un(t) ⇀ u(t) in H1(Rd)) for all t ∈ [−T (M), T (M)]. Now we
claim the following.

Claim 12.5. We have

un → u in L∞([−T (M), T (M)], L2(Rd)). (12.18)

Proof. We proceed by contradiction. If (12.18) is false there is a sequence tn s.t. ∥u(tn)−
un(tn)∥2L2 ≥ ε > 0. Then, up to a subsequence, we get tn → t. We claim that we have the
following limit, which contradicts ∥u(tn)− un(tn)∥2L2 ≥ ε > 0:

∥u(tn)− un(tn)∥2L2 = ∥u(tn)∥2L2 + ∥un(tn)∥2L2 − 2⟨un(t), u(t)⟩
− 2⟨un(tn)− un(t), u(t)⟩ − 2⟨un(tn), u(tn)− u(t)⟩ → 0 as n→ ∞.

(12.19)
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To see why the limit holds, notice that the first line on the r.h.s → 0. Indeed ∥u(t)∥L2 =
∥u0∥L2 , ∥un(t)∥L2 = ∥Qnu0∥L2

n→∞→ ∥u0∥L2 and by Claim 12.2 we have −2⟨un(t), u(t)⟩
n→∞→

−2∥u(t)∥2L2 .
Next we show that also the 2nd line of (12.19) → 0. First of all u(tn)− u(t) → 0 in L2(Rd)
by u ∈ C0([−T (M), T (M)], L2(Rd)), see (12.17). We also have

|⟨un(tn)− un(t), u(t)⟩| ≤ |tn − t|
1
2 ∥un∥L∞(−T (M),T (M)),H−1)∥u(t)∥H1 ≤ C(M)|tn − t|

1
2 → 0.

by (12.12). Therefore (12.19) and Claim 12.5 are proved.
By Gagliardo–Nirenberg, (11.2) and by (12.11), (12.13) and (12.18) we conclude

un → u in C0((−T (M), T (M)), Lp+1(Rd)). (12.20)

Since |Qnun(t)|p−1Qnun(t)⇀ f(t) in L
p+1
p (Rd) by (12.14) and |un(t)|p−1un(t) → |u(t)|p−1u(t)

in L
p+1
p (Rd) by (12.20), the following claim implies f = λ|u|p−1u.

Claim 12.6. We have

Qn(|Qnun|p−1Qnun)− |un|p−1un = Qn[|Qnun|p−1Qnun − |Qnu|p−1Qnu]

+Qn[|Qnu|p−1Qnu− |u|p−1u] + (Qn − 1)(|u|p−1u) → 0 in L
p+1
p (Rd).

(12.21)

Proof. The claim follows from the following remarks.

• We have

∥Qn(|Qnun|p−1Qnun − |Qnu|p−1Qnu)∥
L

p+1
p

≤ ∥|Qnun|p−1Qnun − |Qnu|p−1Qnu∥
L

p+1
p

. ∥(|Qnun|p−1 + |Qnu|p−1)(Qnun −Qnu)∥
L

p+1
p

. (∥un∥p−1
Lp+1 + ∥u∥p−1

Lp+1)∥un − u∥Lp+1 ≤ C(M)∥un − u∥Lp+1(Rd) → 0.

• We have by Qn − 1 → 0 in the strong sense of bounded operators in Lq(Rd) for any
q ∈ (1,∞)

∥Qn(|Qnu|p−1Qnu− |u|p−1u)∥
L

p+1
p

≤ ∥|Qnu|p−1Qnu− |u|p−1u∥
L

p+1
p

. ∥(|Qnu|p−1 + |u|p−1)(Qnu− u)∥
L

p+1
p

. (∥Qnu∥p−1
Lp+1 + ∥u∥p−1

Lp+1)∥(Qn − 1)u∥Lp+1 ≤ 2∥u∥p−1
Lp+1∥(Qn − 1)u∥Lp+1(Rd) → 0.

• |u|p−1u ∈ L
p+1
p (Rd) implies (Qn − 1)(|u|p−1u) → 0.
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Hence Claim 12.6 is proved.
To complete the proof of Proposition 12.1 it remains to be shown that E(u(t)) ≤ E(u0).

Recall that for

En(v) :=
1

2
∥∇v∥2L2 +

λ

p+ 1

∫
Rn

|Qnv|p+1dx

we have shown En(un) = En(Qnu0). Now we have

• ∥∇u∥2L2 ≤ lim inf ∥∇un∥2L2 .

• limQnu0 = u0 in H1(Rd).

• u−Qnun = (1−Qn)u+Qn(u− un) → 0 in Lp+1(Rd).

This implies E(u) ≤ lim inf En(un) = limEn(Qnu0) = E(u0). Hence the proof of Proposi-
tion 12.1 is completed.

12.2 Well posedness assuming uniqueness

First of all, assuming uniqueness we get well posedness. The 1st step is the proof of the
conservation of energy, which is a consequence of the time reversibility of the NLS.

Proposition 12.7. Suppose that we know that the solutions in Proposition 12.1 are unique.
Then E(u(t0)) = E(u0) for any t0 and (11.1) is well posed.

Proof. Also v(t, x) := u(t0 − t, x) is a solution of the equation. Since E(u0) = E(v(t0)) ≤
E(v(0)) = E(u(t0)) we get the opposite inequality to E(u(t0)) ≤ E(u0) and so we conclude
with the energy equality.
Now we show that the energy conservation implies that u is a strong solution. We know
already that in its lifespan (−S, T ) we have

u ∈ C0, 1
2 ((−S, T ), L2(Rd)) ∩ C0((−S, T ), Lp+1(Rd)).

In particular we know that t →
∫
Rd |u(t)|p+1dx is in C0((−S, T ),R). By E(u(t)) = E(u0)

and Q(u(t)) = Q(u0) we conclude that also t→ ∥u(t)∥H1 is in C0((−S, T ),R). It is easy to
see that

u ∈ C0((−S, T ), H1(Rd)) with H1(Rd) endowed with the weak topology. (12.22)

This is equivalent at proving ⟨u, ψ⟩ ∈ C0((−S, T ),R) for any ψ ∈ H1(Rd). This can be
seen by the weak limit un(t)⇀ u(t) in H1(Rd)) like in Claim 12.2 for t ∈ [a, b] with [a, b] ⊂
(−S, T ) an appropriate compact interval of any preassigned t0 ∈ (−S, T ). Then ⟨un(t), ψ⟩ →
⟨u(t), ψ⟩ for t ∈ [a, b] with [a, b] ⊂ (−S, T ). Furthermore, bounds like (12.12) imply that
the sequence {⟨un(t), ψ⟩} is equicontinuous. This implies that ⟨u, ψ⟩ ∈ C0([a, b],R) for any
ψ ∈ H1(Rd) and proves (12.22).
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(12.22) and ∥u(t)∥H1 ∈ C0((−S, T ),R) imply u ∈ C0((−S, T ),H1(Rd)) with H1(Rd) en-
dowed with the strong topology. Since u solves (11.1) it follows that (11.6) is true, that is
that we have also u ∈ C1((−S, T ),H−1(Rd)) .
Now we prove that if T <∞ then

lim
t↗T

∥∇u(t)∥L2(Rd) = +∞

Indeed, if there is a sequence tj ↗ T s.t. ∥u(tj)∥H1(Rd) ≤ M < ∞, then one can extend
u(t) beyond tj + T (M) > T and get a contradiction.

Now we show continuity in terms of the initial data. Let u
(n)
0 → u0 in H1. Fix [−t1, t2] ⊂

(−S, T ) and set
M := 2 sup{∥u(t)∥H1(Rd) : t ∈ [−t1, t2]}

We have ∥u(n)0 ∥H1 ≤M for n≫ 1. We have u(n) bounded in

C0([−T (M), T (M)],H1) ∩ C1([−T (M), T (M)],H−1).

Then there is a v in the above space with u(n)(t)⇀ v(t) for all in t ∈ [−T (M), T (M)]. By
argument similar to those in Sec. 12.1 we have that v is a weak solution of (11.1) with v(0) =
u0. Hence by the uniqueness hypothesis we have v = u and [−T (M), T (M)] ⊂ (−S, T ).
Proceeding as for (12.18) we get u(n) → u in C0([−T (M), T (M)], L2) and proceeding like
in (12.20) we have u(n) → u in C0([−T (M), T (M)], Lp+1). Furthermore since

∥u(n)(t)∥2H1 = 2E(u
(n)
0 ) + ∥u(n)0 ∥2L2 −

2λ

p+ 1

∫
Rd

|u(n)(t)|p+1dx,

we conclude that ∥u(n)(t)∥H1 → ∥u(t)∥H1 in C0([−T (M), T (M)],R). This can be used,
proceeding like in Claim 12.5,to get that u(n) → u in C0([−T (M), T (M)],H1). We can
repeat the argument (replacing 0 with initial times t0) and cover [−t1, t2].

12.3 Uniqueness

To prove uniqueness we need preliminarily to have the following.

Lemma 12.8. Let u(t) be a weak solution of (11.1). Then

u(t) = eit△u0 − iλ

∫ t

0
ei(t−s)△|u(s)|p−1u(s)ds. (12.23)

Proof. Notice that u(t) is a weak solution of the linear equation (10.2) with f = λ|u|p−1u.
If we apply Theorem 10.4 for s = −1 we conclude that formula

u(t) = e−it△u0 − i

∫ t

0
e−i(t−t′)△f(t′)dt′ (10.9)

is true. This yields (12.23).
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Proposition 12.9. The solutions of (12.23) are unique.

Proof. Let u and v be two solutions with same initial value. We have

u(t)− v(t) = iλ

∫ t

0
ei(t−t

′)△(|u(t′)|p−1u(t′)− |v(t′)|p−1v(t′))dt′. (12.24)

Then we apply Strichartz estimate to the admissible pair (q, p+ 1)

∥u− v∥Lq([0,t],Lp+1) ≤ C∥(|u|p−1 + |v|p−1)(u− v)∥
Lq′ ([0,t],L

p+1
p )

≤ C∥|u|+ |v|∥p−1
L∞([0,t],Lp+1)

∥u− v∥Lq′ ([0,t],Lp+1) ≤ C∥u− v∥Lq′ ([0,t],Lp+1).

Now if Ct
1
q′−

1
q < 1 (that is true for small times) and if all t > 0 we have ∥u−v∥Lq([0,t],Lp+1) >

0, then

∥u− v∥Lq′ ([0,t],Lp+1) ≤ Ct
1
q′−

1
q ∥u− v∥Lq([0,t],Lp+1) < ∥u− v∥Lq([0,t],Lp+1).

This is absurd. It follows that for some t > 0 we have ∥u − v∥Lq([0,t],Lp+1) = 0. From here
we get uniqueness.

We end this section with some easy remarks.

Corollary 12.10. If λ > 0 the solutions are globally defined.

Proof. Indeed we know by (11.7) and by the conservation of mass, that if a solution has
maximal interval of existence (−S, T ) with T <∞, we must have

lim
t↗T

∥∇u(t)∥L2 = +∞ (12.25)

But for λ > 0 we have ∥∇u(t)∥L2 ≤ 2E(u(t)) = 2E(u0).

Corollary 12.11. If λ < 0 and 1 < p < 1 + 4
d the solutions are globally defined.

Proof. We have

2E(u(t)) ≥ ∥∇u(t)∥2L2(Rd) −
2|λ|
p+ 1

Cp+1
p ∥∇u(t)∥α(p+1)

L2(Rd)
∥u0∥(1−α)(p+1)

L2(Rd)
for

1

p+ 1
=

1

2
− α

d
.

Notice that

α(p+ 1) =
d

2
(p+ 1)− d < 2 ⇐⇒ (p+ 1)− 2 <

4

d
⇐⇒ p < 1 +

4

d
.

But then, if (12.25) happens, we have

2E(u0) = lim
t↗T

2E(u(t)) ≥ lim
t↗T

∥∇u(t)∥2L2(Rd)

(
1− 2|λ|

p+ 1
Cp+1
p ∥∇u(t)∥α(p+1)−2

L2(Rd)
∥u0∥(1−α)(p+1)

L2(Rd)

)
= lim

t↗T
∥∇u(t)∥2L2(Rd) = +∞,
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which is absurd.
In the case λ > 0, it is known that for p ≥ 1 + 4

d , then for any solution there exist
elements u± ∈ H1(Rd) s.t.

lim
t±∞

∥u(t)− e−it△u±∥H1 = 0. (12.26)

This is called completeness of the Wave Operators. For p ≤ 1 + 2
d this is false, that is the

asymptotic behavior of the nonlinear equation is much harder to understand. In the range
λ > 0 and p ∈

(
1 + 2

d , 1 +
4
d

)
the existence of u± ∈ H1(Rd) s.t. (12.26) happens is an open

problem. Instead, it is well known that if u0 ∈ H1(Rd) satisfies the additional condition
that |x|u0 ∈ L2(Rd), then it is true that there exist u± ∈ H1(Rd) s.t. (12.26) happens.
The most interesting equations are those where λ < 0. We can take λ = −1. In this case
there are solitary waves, that is solutions of the form

u(t, x) = e
i
2
v·x− i

4
|v|2t+itω+iγϕω(x− vt−D)

where
−∆ϕω + ωϕω − |ϕω|p−1ϕω = 0.

In 1–d there are explicit formulas

ϕ(x) =
(p−1

2 + 1)
4

p−1

cosh
2

p−1 (p−1
2 x)

ϕω(x) = ω
1

p−1ϕ(
√
ωx). (12.27)

For d ≥ 2 there are many types of solitons. For example, the ones in (12.27) are ground
states, and they are the only ones in d = 1. But in d ≥ 2 there are also excited states. In
general there are no multisolitons. However, the equation

iut = −∂2xu− |u|2u for (t, x) ∈ [0,∞)× R (12.28)

has multi–solitons, and is the famous cubic focusing NLS. It is remarkable because it is an
integrable system. Specifically, there is a sort of nonlinear version of the Furier Transform,
called Scattering Transform, that allows to diagonalize the equation (12.28). It is possible
to construct very complex patterns of multi–soliton solutions, exploiting the scattering
transform.

If we consider the L2–critical focusing NLS

iut = −△u− |u|
4
du in R× Rd,

from the discussion in Corollary 12.10, if Cd is the optimal constant for the Gagliardo
Nirenberg inequality

∥u0∥
2+ 4

d

L2+ 4
d (Rd)

≤ C
2+ 4

d
d ∥∇u0∥2L2(Rd)∥u0∥

4
d

L2(Rd)
,
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where we have computed

(1− α)

(
2 +

4

d

)
= 2 +

4

d
− d

2

(
2 +

4

d

)
+ d = 2 +

4

d
− d− 2 + d =

4

d

it can be proved that for ϕ(x) the ground state satisfying

−∆ϕ+ ϕ− |ϕ|
4
dϕ = 0

then we have

Cd =

 2 + 4
d

2∥ϕ∥
4
d

L2

 1

2+ 4
d

.

Now notice that if ∥u0∥L2 < ∥ϕ∥L2 we have

2E(u(t)) ≥ ∥∇u(t)∥2L2(Rd)

1− 2

2 + 4
d

2 + 4
d

2∥ϕ∥
4
d

L2

∥u0∥
4
d

L2(Rd)

 = ∥∇u(t)∥2L2(Rd)

1−

(
∥u0∥L2(Rd)

∥ϕ∥L2(Rd)

) 4
d


and we have global existence as in Corollary 12.11.

13 Fujita’s blow up theorem for semilinear heat equations

We will consider now a particular formulation of Fujita’s classical blow up result. We
consider the heat equation{

ut = △u+ |u|p−1u with (t, x) ∈ (0, T )× Rd
u(0, x) = u0(x) where u0 ∈ C0(Rd,R).

Here we recall that, like in (1.5),

C0(Rd,R) := {g ∈ C0(Rd,R) : lim
x→∞

g(x) = 0}.

We formulate this problem in the following integral form:

u(t) = et△f +

∫ t

0
e(t−s)△|u(s)|p−1u(s)ds. (13.1)

It turns out that there exists a unique maximal solution of (13.13) with maximal lifespan
Tf in C0([0, Tf , C0(Rd)).
We will prove the following result.

Theorem 13.1. Let u0 ∈ C0(Rd) with u0 ≥ 0 and u0 ̸= 0 and suppose 1 < p ≤ 1 + 2
d .

Consider the solution of

u(t) = et△u0 +

∫ t

0
e(t−s)△up(s)ds (13.2)

in C0([0, Tu0), C0(Rd)). Then Tu0 <∞.
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Remark 13.2. The original paper by Fujita [7] deals with the case 1 < p < 1+ 2
d . The proof

we give is due to Weissler [15].

Somewhat related to Fujita’s Theorem are theorems for dispersive equations, like the
following, which is only a prototype of much more general results, and which we state only
(for the proof see [12, p. 92]).

Theorem 13.3. Let u1 ∈ C2
c (R3,R) with u1 ≥ 0 and u1 ̸≡ 0 and consider{

(∂2t −△)u− |u|p = 0
(u(0), ∂tu(0)) = (0, u1).

Then, if 1 < p < 1+
√
2 the solution blows up in finite time, in the sense that there exists a

unique maximal solution u ∈ C2([0, Tu1)×R3,R) with Tu1 <∞ where u ̸∈ L∞([0, Tu1)×R3).

13.1 Preliminaries on abstract dissipative semilinear equations

Definition 13.4 (Contraction semigroup). Let X be a Banach space. A family (S(t))t≥0 ∈
L(X) is a contraction semigroup if the following happens.

(1) ∥S(t)∥ ≤ 1 for all t ≥ 0.

(2) S(0) = I.

(3) S(t)S(s) = S(t+ s) for all t, s ≥ 0.

(4) For any x ∈ X we have S(t)x ∈ C0([0,∞), X).

Example 13.5. S(t) := et△ is a contraction semigroup in C0(Rd,R) (thought as a subspace

of L∞(Rd,R) ). Indeed recall that for Kt(x) := (4πt)−
d
2 e−

|x|2
4t we have et△f = Kt ∗ f

for all f ∈ C0(Rd,R). Then ∥S(t)∥ ≤ ∥S(t)1∥∞ = 1. We have S(0) = I. We have also
S(t+ s)f = S(t)S(s)f for any f ∈ Cc(Rd,R), from

F(Kt+s ∗ f) = e−t|ξ|
2
e−s|ξ|

2
f̂ = (2π)−

d
2F

F∗(e−t|ξ|
2
)︸ ︷︷ ︸

(2t)−
d
2 e−

|x|2
4t

∗(Ks ∗ f)


= F (Kt ∗ (Ks ∗ f)) =⇒ Kt+s ∗ f = Kt ∗ (Ks ∗ f),

and this extends to f ∈ C0(Rd,R) by density. Finally, by Theorem 1.9 we have the continuity
in t = 0 of S(t)f , and hence by (3) the continuity for all t.
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Lemma 13.6. Let S(t) be a contraction semigroup, F : X → X a locally Lipschitz map,
let x ∈ X and let u, v ∈ C0([0, t0], X) for t0 ∈ R+ solve

w(t) = S(t)x+

∫ t

0
S(t− s)F (w(s))ds. (13.3)

Then u = v.

Let M = max0≤t≤t0{∥u(t)∥, ∥v(t)∥}. Then

∥u(t)− v(t)∥ ≤
∫ t

0
∥F (u(s))− F (v(s))∥ds ≤ L(M)

∫ t

0
∥u(s)− v(s)∥ds

and apply Gronwall’s inequality.

Proposition 13.7. Let x ∈ X with ∥x∥ ≤ M . Then there is a unique solution u ∈
C0([0, TM ], X) of (13.3) with

TM :=
1

2L(2M + ∥F (0)∥) + 2
. (13.4)

Proof. Set K = 2M + ∥F (0)∥ and

E = {u ∈ C0([0, TM ], X) : ∥u(t)∥ ≤ K for all t ∈ [0, TM ]}

with the distance of L∞([0, TM ], X). E is a complete metric space. Next consider the map
u ∈ E → Φu

Φu(t) = S(t)x+

∫ t

0
S(t− s)F (u(s))ds for all t ∈ [0, TM ].

By TM = 1
2(L(K)+1) for all t ∈ [0, TM ] we have

∥F (u(t))∥ ≤ ∥F (0)∥+ ∥F (u(t))− F (0)∥ ≤ ∥F (0)∥+KL(K)

= ∥F (0)∥+ (2M + ∥F (0)∥)L(K) ≤ 2(M + ∥F (0)∥)(L(K) + 1) =
M + ∥F (0)∥

TM

(13.5)

and
∥S(t)x∥ ≤ ∥x∥ ≤M. (13.6)

So from (13.5)–(13.6) for t ∈ [0, TM ] we have

∥Φu(t)∥ ≤M + t
M + ∥F (0)∥

TM
≤ 2M + ∥F (0)∥ = K

and so Φu ∈ E.
For u, v ∈ E we have

∥Φu(t)− Φv(t)∥ ≤
∫ t

0
∥F (u(s))− F (v(s))∥ds ≤ TML(K)∥u− v∥L∞([0,TM ],X).

76



So by TML(K) < 2−1

∥Φu − Φv∥L∞([0,TM ],X) ≤ 2−1∥u− v∥L∞([0,TM ],X)

Hence u→ Φu is a contraction in E and so it has exactly one fixed point.

Notice that if F (0) = 0 if and lim
M→0+

L(M) = 0, something which happens in many

important cases, we can improve the above result and get a TM s.t. lim
M→0+

TM = ∞, as we

will see now.

Proposition 13.8. Let x ∈ X with ∥x∥ ≤ M . Assume F (0) = 0 Then there is a unique
solution u ∈ C0([0, TM ], X) of (13.3) with

TM :=
1

2L(2M)
. (13.7)

Proof. The argument is the same. Here we set K = 2M and define E as above by

E = {u ∈ C0([0, TM ], X) : ∥u(t)∥ ≤ 2M for all t ∈ [0, TM ]}

Consider the map u ∈ E → Φu defined as above by

Φu(t) = S(t)x+

∫ t

0
S(t− s)F (u(s))ds for all t ∈ [0, TM ].

By TM = 1
2L(2M) for all t ∈ [0, TM ] we have

∥F (u(t))∥ ≤ 2ML(2M) =
M

TM
(13.8)

and
∥T (t)x∥ ≤ ∥x∥ ≤M. (13.9)

So from (13.5)–(13.6) for t ∈ [0, TM ] we have

∥Φu(t)∥ ≤M + t
M

TM
≤ 2M

and so Φu ∈ E.
For u, v ∈ E we have

∥Φu(t)− Φv(t)∥ ≤
∫ t

0
∥F (u(s))− F (v(s))∥ds ≤ TML(2M)∥u− v∥L∞([0,TM ],X).

So by TML(2M) = 2−1

∥Φu − Φv∥L∞([0,TM ],X) ≤ 2−1∥u− v∥L∞([0,TM ],X)

Hence u→ Φu is a contraction in E and so it has exactly one fixed point.
We now turn to an abstract form of the maximum principle.
Recall that in an ordered Banach space the ordering is characterized by a convex closed

cone C s.t.
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1. C + C ⊆ C,

2. λC ⊆ C for all λ ≥ 0 and

3. C ∩ (−C) = {0}.

Then given x, y ∈ X we write y ≥ x if (y − x) ∈ C.

Lemma 13.9. Suppose that in X there is a relation of order and that F (u) ≥ 0 if u ≥ 0.
Suppose furthermore that S(t) is positivity preserving, that is x ≥ 0 ⇒ S(t)x ≥ 0 for all t.
Then if x ≥ 0 the solution u ∈ C0([0, TM ], X) of Prop. 13.7 is u(t) ≥ 0 for all t.

Proof. We just rephrase the fixed point argument of Prop. 13.7 in a different set up. Indeed,
if we redefine the set E writing

E = {u ∈ C0([0, TM ], X) : ∥u(t)∥ ≤ K and u(t) ≥ 0 for all t ∈ [0, TM ]},

then E is a complete metric space. Furthermore the map u→ Φu with

Φu(t) = S(t)f +

∫ t

0
S(t− s)F (u(s))ds for all t ∈ [0, TM ].

is such that u(t) ≥ 0 for all t ∈ [0, TM ] implies Φu(t) ≥ 0 for all t ∈ [0, TM ]. Then the proof
of Proposition 13.7 works out in the same way as before under this slightly more restrictive
definition of E.

Lemma 13.10. Assume the hypotheses of Lemma 13.9 and furthermore that F (v) ≥
F (u) ≥ 0 if v ≥ u ≥ 0. Let x < y. Let u(t), v(t) ∈ C0([0, T∗), X) be solutions with
u(0) = x and v(0) = y. Then u(t) ≤ v(t) in [0, T∗).

Proof. If M = max{∥x∥, ∥y∥}, then using the setup of Prop. 13.7 we consider the set

E = {f ∈ C0([0, TM ], X) : f(t) ≥ 0 and ∥f(t)∥ ≤ K for all t ∈ [0, TM ]}

and the maps f ∈ E → Φx(f) and f ∈ E → Φy(f)

Φw(f)(t) = S(t)w +

∫ t

0
S(t− s)F (f(s))ds for all t ∈ [0, TM ].

Let v(t) be the solution with initial datum y. Then we have Φx(v) < Φy(v) = v. This can

be iterated and if 0 < Φjx(v) < Φj−1
x (v), then 0 < Φj+1

x (v) < Φjx(v). But we know that

Φjx(v)
j→∞→ u, with u the solution with initial datum x. Hence u ≤ v.

So we have proved u(t) ≤ v(t) in [0, TM ]. Let now

T1 := sup{T ∈ [0, T∗) such that u(t) ≤ v(t) in [0, T ]}.
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If T1 = T∗ the theorem is finished. If T1 < T∗ we have by continuity u(T1) ≤ v(T1). But
then there exists a 0 < T < T∗ − T1 with s.t. ũ(t) := u(t+ T1) and resp. ṽ(t) := v(t+ T1)
solve in [0, T ] the equation with initial data x̃ ≤ ỹ with x̃ := u(T1) and resp. ỹ := v(T1).
But for T small enough we have ũ(t) ≤ ṽ(t) in [0, T ] by the 1st part of the proof. But
this implies than u(t) ≤ v(t) in [0, T1 + T ]. This is absurd by the definition of T1, and so
T1 = T∗.

We will consider now the function T : X → (0,∞] where for any x ∈ X the interval
[0, T (x)) is the maximal (positive) interval of existence of the unique solution of (13.3).

Theorem 13.11. We have, for u(t) the corresponding solution in C([0, T (x)), X),

2L(∥F (0)∥+ 2∥u(t)∥) ≥ 1

T (x)− t
− 2 (13.10)

for all t ∈ [0, T (x)). We have the alternatives

(1) T (x) = +∞;

(2) if T (x) < +∞ then lim
t↗T (x)

∥u(t)∥ = +∞.

Proof. First of all it is obvious that if T (x) < +∞ then by (13.10)

lim
t↗T (x)

L(∥F (0)∥+ 2∥u(t)∥) = +∞ ⇒ lim
t↗T (x)

∥u(t)∥ = +∞

where the implication follows from the fact that M → L(M) is an increasing function.
Let x ∈ X. Set T (x) = sup{T > 0 : ∃u ∈ C0([0, T ), X) solution of (13.3) }. We are left

with the proof of (13.10), which is clearly true if T (x) = ∞. Now suppose that T (x) < ∞
and that (13.10) is false. This means that there exists a t ∈ [0, T (x)) with

1

TM
− 2 = 2L(∥F (0)∥+ 2∥u(t)∥) < 1

T (x)− t
− 2 ⇒ T (x)− t < TM

for M = ∥u(t)∥, where we recall TM := 1
2L(2M+∥F (0)∥)+2 in (13.4). Consider now v ∈

C0([0, TM ], X) the solution of

v(s) = S(s)u(t) +

∫ s

0
S(s− s′)F (v(s′))ds′ for all s ∈ [0, TM ].

which exists by the previous Proposition 13.7. Then define

w(s) :=

{
u(s) for s ∈ [0, t]

v(s− t) for s ∈ [t, TM ].
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We claim that w ∈ C0([0, TM ], X) is a solution of (13.3). In [0, t] this is obvious since in
w = u in [0, t] and u ∈ C0([0, t], X) is a solution of (13.3). Let now s ∈ (t, TM ]. We have

w(s) = v(s− t) = S(s− t)u(t) +

∫ s−t

0
S(s− t− s′)F (v(s′))ds′

= S(s− t)

[
S(t)x+

∫ t

0
S(t− s′)F (u(s′))ds′

]
+

∫ s−t

0
S(s− t− s′)F (v(s′))ds′

= S(s)x+

∫ t

0
S(s− s′)F (u(s′)︸ ︷︷ ︸

w(s′)

)ds′ +

∫ s

t
S(s− s′)F (v(s′ − t)︸ ︷︷ ︸

w(s′)

)ds′

= S(s)x+

∫ s

0
S(s− s′)F (w(s′))ds.

Remark 13.12. Notice that if F (0) = 0, then we can prove the improved estimate

2L(∥F (0)∥+ 2∥u(t)∥) ≥ 1

T (x)− t
. (13.11)

The proof is exactly the same of Theorem 13.11 using the altered definitions of TM , TM =
(2L(2M))−1.

Proposition 13.13. (1) T : X → (0,∞] is lower semicontinuous;

(2) if xn → x in X and if t < T (x) we have un → u in C0([0, t], X) with un the solution
of (13.3) with initial datum xn.

Proof. Let u ∈ C0([0, T (x)), X) be the solution of (13.3) and consider t < T (x). Set
M = 2∥u∥L∞([0,t],X) and let

τn = sup{t ∈ [0, T (xn)) : ∥un∥L∞([0,t],X) ≤ K} where K = 2M + ∥F (0)∥.

For n ≫ 1 we have ∥xn∥ < M . Then un ∈ C0([0, TM ], X) with ∥un∥L∞([0,TM ],X) ≤ K by
Prop. 13.7. This implies τn ≥ TM . For 0 ≤ t ≤ min{t, τn} we have

u(t)− un(t) = S(t)(x− xn) +

∫ t

0
S(s− t)(F (u(s))− F (un(s)))ds

and so

∥u(t)− un(t)∥ ≤ ∥x− xn∥+ L(K)

∫ t

0
∥u(s)− un(s)∥ds⇒

∥u(t)− un(t)∥ ≤ eL(K)t∥x− xn∥ ⇒ ∥u(t)− un(t)∥ ≤ eL(K)t∥x− xn∥. (13.12)

So ∥un(t)∥ ≤ ∥u(t)∥ + eL(K)t∥x − xn∥ ≤ M/2 + eL(K)t∥x − xn∥ ≤ M for n ≫ 1 and
0 ≤ t ≤ min{t, τn}. This and continuity imply τn > min{t, τn} and so τn > t. Then we have
T (xn) > t. This implies the lower semi–continuity in claim (1). Furthermore by (13.12) we
have also un → u in C0([0, t], X).
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13.2 Proof of Fujita’s Theorem

We know that S(t) := et△ is a contraction semigroup in C0(Rd,R). Notice that in C0(Rd,R)
there is a natural partial order, and that this is preserved by et△. In fact, if f ∈ C0(Rd,R) is
f(x) ≥ 0 for all x ∈ Rd, and is not identically 0, then et△f > 0 everywhere (et△ is positivity
enhancing).

By the abstract theory presented above, we can prove the following maximum principle
property.

Lemma 13.14. Let u ∈ C([0, T ), C0(Rd,R)) be the unique maximal solution of

u(t) = et△f +

∫ t

0
e(t−s)△|u(s)|p−1u(s)ds (13.13)

and let f ≥ 0. Then u(t, x) ≥ 0 for all (t, x) ∈ [0, T )× Rn.

We prove now the following version of Fujita’s Theorem (compared to Theorem 13.1,
we add the hypothesis u0 ∈ L1(Rd)).

Theorem 13.15. Let u0 ∈ L1(Rd) ∩ C0(Rd) with u0 ≥ 0 and suppose 1 < p ≤ 1 + 2
d .

Suppose that u(t) ∈ C0([0, Tu0), C0(Rd)) is a positive solution of

u(t) = et△u0 +

∫ t

0
e(t−s)△up(s)ds. (13.14)

Then Tu0 <∞.

Proof. We claim, and for the moment assume, the following inequality due to Weissler:

t
1

p−1 et△u0(x) ≤ C for a fixed C = C(p) > 0, for any x ∈ Rd, t ∈ [0, Tu0) and any u0 ≥ 0.
(13.15)

Here, crucially, C depends only on p.
Suppose we have Tu0 = ∞ and assume (13.15).
By dominated convergence we have for any x ∈ Rd

lim
t↗∞

(4π)
d
2 t

d
2 et△u0(x) = lim

t↗∞

∫
Rd

e−
|x−y|2

4t u0(y)dy =

∫
Rn

u0(y)dy = ∥u0∥L1(Rn). (13.16)

In the particular case p < 1+ 2
d , equivalent to

1
p−1 −

d
2 > 0, we see immediately that (13.16)

is incompatible with (13.15) since

lim
t↗∞

t
1

p−1 et△u0(x) = lim
t↗∞

t
1

p−1
− d

2 t
d
2 et△u0(x) = lim

t↗∞
t

1
p−1

− d
2 (4π)−

d
2 ∥u0∥L1(Rn) = +∞.

In the case p = 1+ 2
d this argument does not provide a contradiction for all u0 (although

this argument shows that if ∥u0∥L1(Rd) > (4π)
d
2C for C = C(1 + 2

d) then there is blow up).
We complete the argument below, but first we prove claim (13.15).
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Proof of (13.15) We turn now to the proof of (13.15). We have u(t) ≥ et△u0(x) and

u(t) ≥
∫ t

0
e(t−s)△up(s)ds ≥

∫ t

0
e(t−s)△(es△u0)

pds

≥
∫ t

0
(e(t−s)△es△u0)

pds =

∫ t

0
(et△u0)

pds = t(et△u0)
p,

(13.17)

where we used, for dµ(y) := (4πτ)−
d
2 e−

|x−y|2
4τ dy which gives a probability measure in Rd,

eτ△(f)p(x) = (4πτ)−
d
2

∫
Rd

e−
|x−y|2

4τ fp(y)dy =

∫
Rd

fp(y)dµ(y)

≥
(∫

Rd

f(y)dµ(y)

)p
=

(
(4πτ)−

d
2

∫
Rd

e−
|x−y|2

4τ f(y)dy

)p
=
(
eτ△(f)(x)

)p
,

which follows from Jensen’s inequality φ(
∫
fdµ) ≤

∫
φ ◦ fdµ for a convex function φ and a

probability measure µ.
By a substitution inside (13.17) and by repeating the same argument we get

u(t) ≥
∫ t

0
e(t−s)△sp(es△u0)

p2ds ≥
∫ t

0
sp(et△u0)

p2ds =
tp+1

p+ 1
(et△u0)

p2 .

This is the case k = 2 of the following inequality which for any k ∈ N with k ≥ 2 we will
obtain by induction:

u(t) ≥ t1+p+...+p
k−1

(et△u0)
pk

(1 + p)pk−2(1 + p+ p2)pk−3 ...(1 + p+ ...+ pk−1)
=

t
pk−1
p−1 (et△u0)

pk∏k
ℓ=2

(
pℓ−1
p−1

)pk−ℓ . (13.18)

Indeed, assuming (13.18) for k and repeating (13.17) we have

u(t) ≥
∫ t

0
e(t−s)△up(s)ds ≥

∫ t

0

s
pk−1
p−1

p∏k
ℓ=2

(
pℓ−1
p−1

)pk+1−ℓ e
(t−s)△(es△u0)

pk+1
ds

≥
∫ t

0

s
pk−1
p−1

p∏k
ℓ=2

(
pℓ−1
p−1

)pk+1−ℓ ds(e
t△u0)

pk+1
=

t
pk−1
p−1

p+1∏k
ℓ=2

(
pℓ−1
p−1

)pk+1−ℓ (
pk−1
p−1 p+ 1

)(et△u0)pk+1

=
t
pk+1−1

p−1∏k
ℓ=2

(
pℓ−1
p−1

)pk+1−ℓ
pk+1−1
p−1

(et△u0)
pk+1

=
t
pk+1−1

p−1∏k+1
ℓ=2

(
pℓ−1
p−1

)pk+1−ℓ (e
t△u0)

pk+1
.

So (13.18) holds also for k + 1 and hence for any k ∈ N with k ≥ 2. Then

t
pk−1

(p−1)pk et△u0 ≤ (u(t))
1

pk

k∏
ℓ=2

(
pℓ − 1

p− 1

) 1

pℓ

⇒ t
1

p−1 et△u0 ≤
∞∏
ℓ=2

(
pℓ − 1

p− 1

) 1

pℓ

= e

∑∞
ℓ=2 p

−ℓ log

(
pℓ−1
p−1

)
= e

∑∞
ℓ=2 p

−ℓ log(
∑ℓ−1

j=1 p
j) ≤ e

∑∞
ℓ=2 p

−ℓ log(ℓpℓ) < +∞.
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This proves (13.15).

Proof of the case p = 1 + 2
d We return to the proof of Theorem 13.15 when p = 1 + 2

d .
If instead of looking at solutions in C0(Rd) we look at solutions in X := C0(Rd) ∩ L1(Rd)
then our u ∈ C0([0, Tu0), C0(Rd)) is also u ∈ C0([0, Tu0), X). Indeed, if the lifespan in X
was shorter, then for some t0 < Tu0 we would have

lim
t↗t0

∥u(t)∥L1(Rd) = ∞ while sup
0≤t≤t0

∥u(t)∥L∞(Rd) <∞.

But this is impossible because from (13.14) for t < t0 we get

∥u(t)∥L1(Rd) ≤ ∥u0∥L1(Rd) +

∫ t

0
∥u(s)∥p−1

L∞(Rd)
∥u(s)∥L1(Rd)ds

implies by the Gronwall inequality

∥u(t)∥L1(Rd) ≤ ∥u0∥L1(Rd)e
t0(sup0≤t≤t0

∥u(t)∥
L∞(Rd))

p−1

<∞

and so

+∞ = lim
t↗t0

∥u(t)∥L1(Rd) ≤ ∥u0∥L1(Rd)e
t0(sup0≤t≤t0

∥u(t)∥
L∞(Rd))

p−1

< +∞,

which is absurd.
Hence we conclude that t0 = Tu0 and we have u ∈ C0([0, Tu0), L

1(Rd)), and so u(t) ∈ L1(Rd)
for all t ∈ [0, Tu0). Since any such t can be taken as an initial value at time t for our solution,
it follows that

τ
d
2 (eτ△u(t))(x) ≤ C for a fixed C > 0 , any x ∈ Rd and 0 < τ < Tu0 − t

and for all t ∈ [0, Tu0). In particular if Tu0 = ∞, by the argument in (13.16), we have

∥u(t)∥L1(Rd) ≤ (4π)
d
2C for all t ≥ 0. (13.19)

Initially we assume that u0 ≥ kKα, for Kα(x) := (4πα)−
d
2 e−

|x|2
4α . Notice that Kα = eα△δ0.

Then we have (a bit formally, but can be checked)

u(t) ≥ et△u0 ≥ ket△Kα = ket△eα△δ0 = ke(α+t)△δ0 = kKα+t.
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Now we have

∥u(t)∥L1(Rd) ≥ ∥
∫ t

0
e(t−s)△up(s)ds∥L1(Rd) =

∫
Rd

dx

∫ t

0
e(t−s)△up(s)(x)ds

=

∫ t

0
ds

∫
Rd

dxe(t−s)△up(s)(x) =

∫ t

0
∥e(t−s)△up(s)∥L1(Rd)ds (by commuting the order of integration)

≥
∫ t

0
∥e(t−s)△(es△u0)

p∥L1(Rd)ds

=

∫ t

0
ds

∫
Rd

dx

∫
Rn

dyKt−s(x− y)(es△u0)
p(y) =

∫ t

0
ds

∫
Rd

dy(es△u0)
p(y)

∫
Rd

dxKt−s(x− y)︸ ︷︷ ︸
1

=

∫ t

0
∥(es△u0)p∥L1(Rd)ds ≥ kp

∫ t

0
∥(es△Kα)

pds∥L1(Rd) = kp
∫ t

0
∥Kp

α+s∥L1(Rd)ds.

Now notice that

Kp
β(x) = (4πβ)−

d
2
pe

− p|x|2
4β = (4πβ)−

d
2
(p−1)p−

d
2 (4πβ/p)−

d
2 e

− p|x|2
4β = (4πβ)−

d
2
(p−1)p−

d
2Kp

β
p

(x)

= (4πβ)−1p−
d
2Kp

β
p

(x) by p = 1 + 2/d.

This implies that, if by contradiction we suppose Tu0 = +∞, then we have

∥u(t)∥L1(Rd) ≥ p−
d
2 kp

∫ t

0
(4π(α+ s))−1∥Kα+s

p
∥L1(Rd)ds

= p−
d
2 kp(4π)−1

∫ t

0
(α+ s)−1ds→ +∞ as t↗ ∞.

This contradicts (13.19).
Suppose now we don’t have u0 ≥ kKα. Let us set v(t) = u(t+ ε) for some ε > 0. Then v(t)
is a solution of (13.14) with initial value u(ε). We have u(ε) ≥ eε△u0

v(0) = u(ε) ≥ eε△u0 = (4πε)−
d
2

∫
Rd

e−
|x−y|2

4ε f(y)dy = (4πε)−
d
2 e−

|x|2
2ε

∫
Rd

e
|x+y|2

4ε e−
|y|2
2ε f(y)dy

≥ (4πε)−
d
2 e−

|x|2
2ε

∫
Rd

e−
|y|2
2ε f(y)dy = kK ε

2

where we used the parallelogram formula

|x+ y|2 + |x− y|2 = 2|x|2 + 2|y|2.

But then v(t) blows up in finite time, and so u(t) does too. This completes the proof of
Theorem 13.15 also in the case p = 1 + 2

d .

So far we have proved the blow up when 1 < p ≤ 1 + 2
d for positive initial data with

u0 ∈ C0
0 (Rd)∩L1(Rd). But in fact the result holds for u0 ∈ C0

0 (Rd) because of the maximum
principle.
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Lemma 13.16. Suppose that 0 ≤ v0 ≤ u0 are in C
0
0 (Rd) and let u(t), v(t) ∈ C0([0, T ], C0

0 (Rd))
be corresponding solutions of (13.14). Then u(t) ≥ v(t).

This follows by Lemma 13.10 and means that if u0 ∈ C0
0 (Rd) but u0 ̸∈ L1(Rd), the

solution u blows up, because we can find a 0 ≤ v0 ≤ u0 with v0 ∈ C0
0 (Rd) ∩ L1(Rd) and

v0 non zero whose corresponding v(t) blows up. Then by the maximum principle also u(t)
blows up.

This completes the proof of Theorem 13.1.

Remark 13.17. The coefficient p = 1 + 2
d is critical. In fact, for any p > 1 + 2

p there exists

ϵp > 0 s.t. if u0 ∈ X := C0
0 (Rd)∩L1(Rd) satisfies ∥u0∥X < ϵp, then equation (13.14) admits

a global solution in C0
b ([0,∞), C0

0 (Rd) ∩ L1(Rd)).

A Appendix. On the Bochner integral

For this part see [3]. Let X be a Banach space.

Definition A.1 (Strong measurability). Let I be an interval. A function f : I → X is
strongly measurable if there exists a set E of measure 0 and a sequence (fn(t)) in Cc(I,X)
s.t. fn(t) → f(t) for any t ∈ I\E.

Remark A.2. Notice that when dimX < ∞ a function is measurable (in the sense that
f−1(B) is measurable for any Borel set B) if an only if it is strongly measurable in the
above sense. Indeed if f is strongly measurable in the above sense then as a point wise limit
of measurable functions f is measurable, see Theorem 1.14 p. 14 Rudin [11]. Viceversa
if f is measurable, then f is strongly measurable in the above sense, see the Corollary to
Lusin’s Theorem in Rudin [11] p. 54.

Example A.3. Consider {xj}nj=1 in X and {Aj}nj=1 measurable sets in I with |Aj | <∞ and
with Aj ∩Ak = ∅ for j ̸= k. Then we claim that the simple function

f(t) :=

n∑
j=1

xjχAj (t) : I → X (A.1)

is measurable. Indeed, see Rudin [11] p. 54, there are sequences {φj,k}k∈N in C0
c (I,R) with

φj,k(t)
k→∞→ χAj (t) a.e. and hence

C0
c (I,R) ∋ fk(t) :=

n∑
j=1

xjφj,k(t)
k→∞→ f(t) a.e. in I.

Proposition A.4. If (fn) is a sequence of strongly measurable functions from I to X
convergent a.e. to a f : I → X, then f is strongly measurable.
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Proof. There is an E with |E| = 0 s.t. fn(t)
n→∞→ f(t) for any t ∈ I\E. Consider for any

n a sequence Cc(I,X) ∋ fn,k
k→∞→ fn a.e. We will suppose first that |I| < ∞. By applying

Egorov Theorem to {∥fn,k−fn∥}k∈N there is En ⊂ I with |En| ≤ 2−n s.t. ∥fn,k−fn∥
k→∞→ 0

uniformly in I\En Let k(n) be s.t. ∥fn,k(n) − fn∥ < 1/n in I\En and set gn = fn,k(n). Set
F := E

∪
(
∩
m

∪
n>mEn). Then |F | = 0. Indeed for any m

|F | ≤ |E|+
∞∑
n=m

|En| ≤ |E|+
∞∑
n=m

2−n
m→∞→ 0.

Let t ∈ I\F . Since t ̸∈ E we have fn(t)
n→∞→ f(t). Furthermore, for n large enough we have

t ∈ I\En. Indeed

t ̸∈
∩
m

∪
n>m

En ⇒ ∃ m s.t. t ̸∈
∪
n>m

En ⇒ t ̸∈ En ∀ n > m.

Then ∥gn(t)− fn(t)∥ < 1/n and gn(t)
n→∞→ f(t). So f(t) is measurable in the case |I| <∞.

Now we consider the case |I| = ∞. We express I = ∪nIn for an increasing sequence of

intervals with |In| < ∞. Consider for any n a sequence Cc(In, X) ∋ fn,k
k→∞→ f a.e. in In.

Then by Egorov Theorem to ∥fn,k − fn∥ there is En ⊂ In with |En| ≤ 2−n s.t. fn,k
k→∞→ fn

uniformly in In\En Let k(n) be s.t. ∥fn,k(n)−fn∥ < 1/n in In\En and set gn = fn,k(n). Then
defining F like above, the remainder of the proof works exactly like for the case |I| <∞.

Example A.5. Consider a sequence {xj}j∈N in X and a sequence {Aj}j∈N of measurable
sets in I with |Aj | <∞ and with Aj ∩Ak = ∅ for j ̸= k. Then we claim

f(t) :=
∞∑
j=1

xjχAj (t) (A.2)

is measurable. Indeed if we set fn(t) :=
n∑
j=1

xjχAj (t), then we have lim
n→∞

fn(t) = f(t)

for any t, since if t ̸∈ ∪∞
j=1Aj both sides are 0, and if t ∈ An0 then for n ≥ n0 we have

fn(t) = xn0 = f(t). Hence by Proposition A.4 the function f is measurable.
When the sum in (A.2) is finite then the function f is called simple.

Example A.6. Consider a sequence {xj}j∈N in X and a sequence {Aj}j∈N of measurable
sets in I where again Aj ∩Ak = ∅ for j ̸= k but we allow |Aj | = ∞. Then

f(t) :=

∞∑
j=1

xjχAj (t) (A.3)

is measurable. To see this consider fn(t) = χ[−n,n](t)f(t). Then

fn(t) =
∞∑
j=1

xjχAj∩[−n,n](t)
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and by Example A.5 we know that each fn(t) is strongly measurable. Since fn(t) → f(t)
for any t ∈ I we conclude by Proposition A.4 that f is strongly measurable.

Another natural definition of measurability is the following one.

Definition A.7 (Weak measurability). Let I be an interval. A function f : I → X is weakly
measurable if for any x′ ∈ X ′ the function t→ ⟨x′, f(t)⟩X′X is a measurable function I → R.

Obviously, strongly measurable implies weakly measurable. Let us explore the vicev-
ersa.

Definition A.8. Let I be an interval. A function f : I → X is almost separably valuable
if there exists a 0 measure set N ⊂ I s.t. f(I\N) is separable.

The following lemma shows that strongly measurable functions are almost separably
valuable.

Lemma A.9. If f : I → X is strongly measurable with (fn(t)) a sequence in Cc(I,X) s.t.
fn(t) → f(t) for any t ∈ I\E for a 0 measure set E ⊂ I then f(I\E) is separable and there
exists a separable Banach subspace Y ⊆ X with f(I\E) ⊆ Y .

Proof. First of all fn(I ∩ Q) is a countable dense set in fn(I). So fn(I) is separable. In a
separable metric space any subspace is separable. So fn(I\E) is separable. The closed vector
space Y generated by ∪nfn(I\E) is separable. Indeed let C ⊆ ∪nfn(I\E) be a countable
set dense in ∪nfn(I\E). Let SpanQ(C) be the vector space on Q generated by C. Then
SpanQ(C) is dense in Y . For C = {x1, x2, ...} we have SpanQ(C) = ∪∞

n=1SpanQ({x1, ..., xn}).
This proves that SpanQ(C) is countable and that Y is separable.

Example A.10. Let X be a Hilbert space with an orthonormal basis {et}t∈R. Then the map
f : R → X given by f(t) = et is not strongly measurable. This follows from the fact that it
is not almost separably valuable.
On the other hand if x ∈ X then t→ ⟨f(t), x⟩ is different from 0 only on a countable subset
of R, and as such it is measurable. Hence f is weakly measurable.
Notice however that if C ⊂ [0, 1] is the standard Cantor set (which has 0 measure and has
same cardinality of R) and if {ẽt}t∈C is another basis of X, then the map

g(t) =

{
ẽt for t ∈ C and

0 otherwise

is weakly measurable (like f and for the same reasons) and is almost separably valuable.
Pettis Theorem, which we prove below, implies that g : R → X is strongly measurable.

The following lemma will be used for Pettis Theorem.

Lemma A.11. Let X be a separable Banach space and let S′ be the unit ball of the dual
X ′. Then X ′ is separable for the weak topology σ(X ′, X), see Brezis [2] p.62, that is there
exists a sequence {x′n} in S′ s.t. for any x′ ∈ S′ there exists a subsequence {x′nk

} s.t. for
any x ∈ X we have lim

k→∞
⟨x′nk

, x⟩X′X = ⟨x′, x⟩X′X .
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Proof. Let {xn} be dense in X. For any n consider

Fn : S′ → Rn defined by Fn(x
′) := (⟨x′, x1⟩X′X , ..., ⟨x′, xn⟩X′X).

Since Rn is separable, and so is Fn(S
′), there exists a sequence {x′n,k}k s.t. {Fn(x′n,k)}k is

dense in Fn(S
′). Obviously {x′n,k}n,k can be put into a sequence. For any x′ ∈ S′ for any n

there is a kn s.t. |⟨x′ − x′n,kn , xi⟩X′X | < 1/n for all i ≤ n. This implies that for any fixed i

we have lim
n→∞

⟨x′n,kn , xi⟩X′X = ⟨x′, xi⟩X′X . By density this holds for any x ∈ X.

Proposition A.12 (Pettis’s Theorem). Consider f : I → X. Then f is strongly measurable
if and only if it is weakly measurable and almost separable valuable.

Proof. The necessity has been already proved, so we focus on the sufficiency only. By
modifying f we can assume that f(I) is separable. By replacing X by a smaller space, we
can assume that X is separable.
Fix now x ∈ X. Then we claim that t→ ∥f(t)− x∥ is measurable. Indeed for any a > 0

{t ∈ I : ∥f(t)− x∥ ≤ a} = ∩x′∈S′{t ∈ I : |⟨x′, f(t)− x⟩X′X | ≤ a}.}

Using the fact that S′ is separable in the weak topology σ(X ′, X) and the notation in
Lemma A.11, we have

{t ∈ I : ∥f(t)− x∥ ≤ a} = ∩n∈N{t ∈ I : |⟨x′n, f(t)− x⟩X′X | ≤ a}.

Since the set in the r.h.s. is measurable, we conclude that t→ ∥f(t)−x∥ is measurable and
so our claim is correct.
Consider now n ≥ 1. Since f(I) is separable there is a sequence of balls {B(xj ,

1
n)}j≥0

whose union contains f(I). Set now{
ω
(n)
0 := {t : f(t) ∈ B(x0,

1
n)} ,

ω
(n)
j := {t : f(t) ∈ B(xj ,

1
n)}\ ∪k<j ω

(n)
k

and

fn(t) :=

∞∑
j=0

xjχω(n)
j

(t).

Notice that ∪j≥0ω
(n)
j = I and they are pairwise disjoint and measurable. By Example A.6

we know that fn : I → X is strongly measurable. Furthermore, for any t ∈ I there is a j

s.t. t ∈ ω
(n)
j and this implies

1

n
> ∥f(t)− xj∥ = ∥f(t)− fn(t)∥.

In other words, ∥f(t)− fn(t)∥ ≤ 1/n for any t ∈ I. Then fn(t) → f(t) for any t, and so by
Proposition A.4 the function f : I → X is strongly measurable.
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Example A.13. Consider the map f : (0, 1) → L∞(0, 1) defined by t
f→ χ(0,t). This map is

not almost separable valued. Indeed t ̸= s implies ∥f(t) − f(s)∥∞ = 1. If f was almost
separable valued then there would exist a 0 measure subset E in (0, 1) and a countable set
N = {tn}n in (0, 1)\E such that for any t ∈ (0, 1)\(E ∪N ) there would exist a subsequence

nk with f(tnk
)
k→∞→ f(t) in L∞(0, 1). But this is impossible since ∥f(t)− f(tnk

)∥∞ = 1.
On the other hand f : (0, 1) → L2(0, 1) defined in the same way, is strongly measurable.
First of, since L2(0, 1) is separable, it is almost separable valued. Next for any given any
w ∈ L2(0, 1) we have

⟨f(t), w⟩L2(0,1) =

∫ t

0
w(x)dx

which is a continuous, and hence measurable, function. So f is also weakly measurable and
hence it is strongly measurable by Pettis Theorem.

Recall that in Remark A.2 we mentioned another possible notion of measurability, that
is that f : I → X could be defined as measurable if f−1(A) is a measurable set for any open
subset A ⊆ X. We have the following fact.

Proposition A.14. Consider f : I → X. Then f is strongly measurable ⇔ it almost
separably valuable and f−1(A) is a measurable set for any open subset A ⊆ X.

Proof. The ”⇐” follows from the fact that for any a open subset of R and for any x′ ∈ X
the set A = {x ∈ X : ⟨x, x′⟩X,X′ ∈ a} is open and for g(t) := ⟨f(t), x′⟩X,X′ we have
f−1(A) = g−1(a). So the latter being measurable it follows that g is measurable and
hence f is weakly measurable. Hence by Pettis Theorem we conclude that f is strongly
measurable.
We now assume that f is strongly measurable. We know from Lemma A.9 that f is almost
separably valuable. Let U be an open subset of X. Let (fn)n be a sequence in C0

c (I,X) with
fn(t)

n→∞→ f(t) a.e. outside a 0 measure set E ⊂ I. Let Ur = {x ∈ X : dist(x,U c) > r}.
Then

f−1(U)\E = (∪m≥1 ∪n≥1 ∩k≥nf−1
k (U 1

m
))\E. (A.4)

To check this, notice that if t belongs to the left hand side , then f(t) ∈ U 1
m0

for some

m0 and, since fn(t)
n→∞→ f(t), for n large we have fk(t) ∈ U 1

m1

if k ≥ n for m1 > m0

preassigned. Viceversa if t belongs to the right hand side, then there exist n and m s.t.

fk(t) ∈ U 1
m

for all k ≥ n. Then by fk(t)
k→∞→ f(t) it follows that f(t) ∈ U 1

m
with the latter

a subset of U . This proves (A.4). Since the r.h.s. is a measurable set, this completes the
proof.

Definition A.15 (Bochner integrability). A strongly measurable function f : I → X is
Bochner–integrable if there exists a sequence (fn(t)) in Cc(I,X) s.t.

lim
n→∞

∫
I
∥fn(t)− f(t)∥Xdt = 0. (A.5)
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Notice that ∥fn(t)− f(t)∥X is measurable.

Example A.16. Consider the situation of Example A.13 of a Hilbert space X with an or-
thonormal basis {et}t∈R and the map f : R → X, which we saw is not strongly measurable
and hence is not Bochner–integrable. Notice that f is Riemann integrable in any compact
interval [a, b] with

∫ b
a f(t)dt = 0.

To see this recall that the Riemann integral is, if it exists, the limit∫ b

a
f(t)dt = lim

|△|→0

∑
Ij∈△

f(tj)|Ij | with tj ∈ Ij arbitrary

where △ varies among all possible decompositions of [a, b] and |△| = maxI∈△ |I|. We have

∥
∑
Ij∈△

etj |Ij |∥2 =
∑
j,k

⟨etj , etk⟩|Ij ||Ik| ≤ 2
∑
j

|Ij ||△| = 2|△|(b− a)
|△|→0→ 0.

Proposition A.17. Let f : I → X be Bochner–integrable. Then there exists an x ∈ X s.t.
if (fn(t)) is a sequence in Cc(I,X) satisfying (A.5) then we have

lim
n→∞

xn = x where xn :=

∫
I
fn(t)dt. (A.6)

Proof. First of all we check that xn is Cauchy. This follows immediately from (A.5) and
from

∥xn − xm∥X = ∥
∫
I
(fn(t)− fm(t))dt∥X ≤

∫
I
∥fn(t)− fm(t))∥Xdt

≤
∫
I
∥fn(t)− f(t))∥Xdt+

∫
I
∥f(t)− fm(t))∥Xdt.

Let us set x = limxn. Let (gn(t)) be another sequence in Cc(I,X) satisfying (A.5). Then
lim
∫
I gn = x by

∥
∫
I
gn(t)dt− x∥X = ∥

∫
I
(gn(t)− fn(t))dt+

∫
I
fn(t)dt− x∥X

≤
∫
I
∥gn(t)− fn(t)∥Xdt+ ∥

∫
I
fn(t)dt− x∥Xdt

≤
∫
I
∥gn(t)− f(t)∥Xdt+

∫
I
∥fn(t)− f(t)∥Xdt+ ∥

∫
I
fn(t)dt− x∥Xdt.

Definition A.18. Let f : I → X be Bochner–integrable and let x ∈ X be the corresponding
element obtained from Proposition A.17. The we set

∫
I f(t)dt = x.

Theorem A.19 (Bochner’s Theorem). Let f : I → X be strongly measurable. Then f is
Bochner–integrable if and only if ∥f∥ is Lebesgue integrable. Furthermore, we have

∥
∫
I
f(t)dt∥ ≤

∫
I
∥f(t)∥dt. (A.7)
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Proof. Let f be Bochner–integrable. Then there is a sequence (fn(t)) in Cc(I,X) satisfying
(A.5). We have ∥f∥ ≤ ∥fn∥ + ∥f − fn∥. Since both functions in the r.h.s. are Lebesgue
integrable and ∥f∥ is measurable it follows that∥f∥ is Lebesgue integrable.

Conversely let ∥f∥ be Lebesgue integrable. Then there exist a sequence (gn(t)) in
Cc(I,R) and g ∈ L1(I) s.t.

∫
I |gn(t)−∥f(t)∥|dt→ 0 and |gn(t)| ≤ g(t). In fact it is possible

to choose such a sequence so that ∥gn − gm∥L1(I) < 2−n for any n and any m ≥ n (just by
extracting an appropriate subsequence from a starting gn

3). Then if we set

SN (t) :=
N∑
n=1

|gn(t)− gn+1(t)| (A.8)

we have ∥SN∥L1(I) ≤ 1. Since {SN (t)}N∈N is increasing, the limit S(t) := limn→+∞ Sn(t)
remains defined, is finite a.e. and ∥S∥L1(I) ≤ 1. Then |gn(t)| ≤ |g1(t)| + S(t) =: g(t)
everywhere, where g ∈ L1(I). Notice that lim

n→∞
gn(t) is convergent almost everywhere (it

convergent in all points where limn→+∞ Sn(t) is convergent). By dominated convergence it
follows that this limit holds also in L1(I) and hence it is equal to ∥f∥.
Let (fn(t)) in Cc(I,X) s.t. fn(t) → f(t) a.e. (this sequence exists by the strong measura-
bility of f(t)). Set

un(t) :=
|gn(t)|

∥fn(t)∥+ 1
n

fn(t).

Notice that (un(t)) is in Cc(I,X). We have

∥un(t)∥ ≤ |gn(t)| ∥fn(t)∥
∥fn(t)∥+ 1

n

≤ |gn(t)| ≤ g(t).

We have (where the 2nd equality holds because because lim
n→∞

gn(t) = ∥f(t)∥ and lim
n→∞

∥fn(t)∥ =

∥f(t)∥ a.e.)

lim
n→∞

un(t) = lim
n→∞

|gn(t)|
∥fn(t)∥+ 1

n

fn(t) = lim
n→∞

fn(t) = f(t) a.e..

Then we have

lim
n→∞

∥un(t)− f(t)∥ = 0 a.e. with ∥un(t)− f(t)∥ ≤ g(t) + ∥f(t)∥ ∈ L1(I).

By dominated convergence we conclude

lim
n→∞

∫
I
∥un(t)− f(t)∥dt = 0.

3Suppose we start with a given {gn}. Then for any 2−n there exists Nn s.t. n1, n2 > Nn implies
∥gn1 − gn2∥L1(I) < 2−n. Let now {φ(n)} be a strictly increasing sequence in N s.t. φ(n) > Nn for any n.

Then ∥gφ(n) − gφ(m)∥L1(I) < 2−n for any pair m > n. Rename gφ(n) as gn.
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This implies that f is Bochner–integrable. Finally, we have

∥
∫
I
f(t)dt∥ = lim

n→∞
∥
∫
I
un(t)dt∥ ≤ lim

n→∞

∫
I
∥un(t)∥dt =

∫
I
∥f(t)∥dt.

Corollary A.20 (Dominated Convergence). Consider a sequence (fn(t)) of Bochner–integrable
functions I → X, g : I → R Lebesgue integrable and let f : I → X. Suppose that

∥fn(t)∥ ≤ g(t) for all n

lim
n→∞

fn(t) = f(t) for almost all t.

Then f is Bochner–integrable with
∫
I f(t) = limn

∫
I fn(t).

Proof. By Dominated Convergence in L1(I,R) we have
∫
I ∥f(t)∥ = limn

∫
I ∥fn(t)∥. By

Proposition A.4, as a pointwise limit a.e. of a sequence of strongly measurable functions, f
is strongly measurable. By Bochner’s Theorem f is Bochner–integrable. By the triangular
inequality

lim sup
n

∥
∫
I
(f(t)− fn(t))∥ ≤ lim

n

∫
I
∥f(t)− fn(t)∥ = 0

where the last inequality follows from ∥f(t) − fn(t)∥ ≤ ∥f(t)∥ + g(t) and the standard
Dominated Convergence.

Definition A.21. Let p ∈ [1,∞]. We denote by Lp(I,X) the set of equivalence classes
of strongly measurable functions f : I → X s.t. ∥f(t)∥ ∈ Lp(I,R). We set ∥f∥Lp(I,X) :=
∥∥f∥∥Lp(I,R).

Proposition A.22. (Lp(I,X), ∥ ∥Lp) is a Banach space.

Proof. The proof is similar to the case X = R , see [2].
(Case p = ∞). Let (fn) be Cauchy sequence in L∞(I,X). For any k ≥ 1 there is a Nk s.t.

∥fn − fm∥L∞(I,X) ≤
1

k
for all n,m ≥ Nk.

So there exists an Ek ⊂ I with |Ek| = 0 s.t.

∥fn(t)− fm(t)∥X ≤ 1

k
for all n,m ≥ Nk and for all for t ∈ I\Ek.

Set E := ∪kEk. Then for any t ∈ I\E the sequence (fn(t)) is convergent. So a function
f(t) remains defined with

∥fn(t)− f(t)∥X ≤ 1

k
for all n ≥ Nk and for all for t ∈ I\E. (A.9)
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By Proposition A.4 the function f is strongly measurable. By (A.9) we have f ∈ L∞(I,X)
and

∥fn − f∥L∞(I,X) ≤
1

k
for all n ≥ Nk

and so fn → f in L∞(I,X).

(Case p < ∞). Let (fn) be Cauchy sequence in Lp(I,X) and let (fnk
) be a subsequence

with
∥fnk

− fnk+1
∥Lp(I,X) ≤ 2−k.

Set now

gl(t) =
l∑

k=1

∥fnk
(t)− fnk+1

(t)∥X

Then
∥gl∥Lp(I,R) ≤ 1.

By monotone convergence we have that (gl(t))l converges a.e. to a g ∈ Lp(I,R). Further-
more, for 2 ≤ k < l

∥fnk
(t)− fnl

(t)∥X =
l−1∑
j=k

∥fnj (t)− fnj+1(t)∥X ≤ g(t)− gk−1(t).

Then a.e. the sequence (fnk
(t)) is Cauchy in X for a.e. t and so it converges for a.e. t to

some f(t). By Proposition A.4 the function f is strongly measurable. Furthermore,

∥f(t)− fnk
(t)∥X ≤ g(t).

It follows that f − fnk
∈ Lp(I,X), and so also f ∈ Lp(I,X). Finally we claim ∥f −

fnk
∥Lp(I,X) → 0. First of all we have ∥f(t)− fnk

(t)∥X → 0 for a.e. t and

∥f(t)− fnk
(t)∥pX ≤ gp(x)

by dominated convergence we obtain that ∥f − fnk
∥X → 0 in Lp(I,R). Hence fnk

→ f in
Lp(I,X).

Proposition A.23. C∞
c (I,X) is a dense subspace of Lp(I,X) for p <∞.

Proof. We split the proof in two parts. We first show that C0
c (I,X) is a dense subspace of

Lp(I,X) for p < ∞. For p = 1 this follows from the definition of integrable functions in
Definition A.15. For 1 < p < ∞ going through the proof of Bochner’s Theorem A.19, the
functions un considered in that proof can be taken to belong to C0

c (I,X) and converge to
f in Lp(I,X).

The second part of the proof consists in showing that C∞
c (I,X) is a dense subspace of

C0
c (I,X) inside Lp(I,X) for p < ∞. Let f ∈ C0

c (I,X). We consider ρ ∈ C∞
c (R, [0, 1]) s.t.∫

ρ(x)dx = 1. Set ρϵ(x) := ϵ−1ρ(x/ϵ). Then for ϵ > 0 small enough ρϵ ∗ f ∈ C∞
c (I,X). We
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extend both f and ρϵ ∗ f on R setting them 0 in R\I. In this way ρϵ ∗ f ∈ C∞
c (R, X) and

f ∈ C0
c (R, X) and it is enough to show that ρϵ ∗ f

ϵ→0+→ f in Lp(R, X)..
We have

ρϵ ∗ f(t)− f(t) =

∫
R
(f(t− ϵs)− f(s))ρ(s)dy

so that, by Minkowski inequality and for ∆(s) := ∥f(· − s)− f(·)∥Lp , we have

∥ρϵ ∗ f(t)− f(t)∥Lp ≤
∫

|ρ(s)|∆(ϵ s)ds.

Now we have lims→0∆(s) = 0 and ∆(s) ≤ 2∥f∥Lp . So, by dominated convergence we get

lim
ϵ↘0

∥ρϵ ∗ f − f∥Lp = lim
ϵ↘0

∫
|ρ(s)|∆(ϵ s)ds = 0.

So
lim
ϵ↘0

ρϵ ∗ f = f in Lp(R, X). (A.10)

Definition A.24. We denote by D′(I,X) the space L(D(I,R), X).

Proposition A.25. Let p ∈ [1,∞) and f ∈ Lp(R, X). Set

Thf(t) = h−1

∫ t+h

t
f(s)ds for t ∈ R and h ̸= 0.

Then Thf ∈ Lp(R, X) ∩ L∞(R, X) ∩ C0(R, X) and Thf
h→0→ f in Lp(R, X) and for almost

every t.

Corollary A.26. Let f ∈ L1
loc(I,X) be such that f = 0 in D′(I,X). Then f = 0 a.e.

Proof. First of all we have
∫
J fdt = 0 for any J ⊂ I compact. Indeed, let (φn) ∈ D(I) with

0 ≤ φn ≤ 1 and φn → χJ a.e. Then∫
J
fdt = lim

n→+∞

∫
J
φnfdt = 0

where we applied Dominated Convergence for the last equality.
Set now f(t) = f(t) in J and f(t) = 0 outside J . Then Thf = 0 for all h > 0. Then f(t) = 0
for a.e. t. So f(t) = 0 for a.e. t ∈ J . This implies f(t) = 0 for a.e. t ∈ R.

Corollary A.27. Let g ∈ L1
loc(I,X), t0 ∈ I, and f ∈ C(I,X) given by f(t) =

∫ t
t0
g(s)ds.

Then:

(1) f ′ = g in D′(I,X);
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(2) f is differentiable a.e. with f ′ = g a.e.

Proof. It is not restrictive to consider the case I = R and g ∈ L1(R, X). We have

Thg(t) = h−1

∫ t+h

t
g(s)ds =

f(t+ h)− f(t)

h
.

By Proposition A.25 Thg
h→0→ g for almost every t. This yields (2).

For φ ∈ D(R) we have

⟨f ′, φ⟩ = −
∫
R
f(t)φ′(t)dt.

Furthermore

lim
h→0

φ(t+ h)− φ(t)

h
= φ′(t) in L∞(R).

So

⟨f ′, φ⟩ = − lim
h→0

∫
R
f(t)

φ(t+ h)− φ(t)

h
dt = − lim

h→0

∫
R
φ(t)

f(t− h)− f(t)

h
dt

= − lim
h→0

∫
R
φ(t)T−hg(t)dt = ⟨g, φ⟩.

Definition A.28. Let p ∈ [1,∞]. We denote by W 1,p(I,X) the space formed by the
f ∈ Lp(I,X) s.t. f ′ ∈ D(I,X) is also f ′ ∈ Lp(I,X) and we set ∥f∥W 1,p = ∥f∥Lp + ∥f ′∥Lp .
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