
Agile, why?
Agile Software Development and its Manifesto

1970s - Waterfall model
Managing the Development of Large Software Systems by

Winston W. Royce, IEEE 1970

1970 20101980 1990 2000

W. Royce “Managing
the Development of
Large Software
Systems“

System
requirements

Software
requirements

Analysis

Program design

Coding

Testing

Operations

1970s - Waterfall model
Managing the Development of Large Software Systems by

Winston W. Royce, IEEE 1970

1970 20101980 1990 2000

System
requirements

Software
requirements

Analysis

Program design

Coding

Testing

Operations

W. Royce “Managing
the Development of
Large Software
Systems“

1970s - Waterfall model
Managing the Development of Large Software Systems by

Winston W. Royce, IEEE 1970

“risky and invites failure”

“testing phase occurs at the end
of the development cycle”

“design changes…so disruptive
that…requirements…violated”

“one can expect up to 100% overrun
in schedule and/or costs”

Three Simple Phases

Analysis Design Implementation

Three Simple Phases

Analysis Design Implementation

Produce an analysis document, specifying
high level structure and goals.

Analysis
document

Three Simple Phases

Analysis Design Implementation

Translate the analysis document into a lower level
document specifying functions and algorithms.

Analysis
document

Design
document

Three Simple Phases

Analysis Design Implementation

Simple translation of the design
document into the more

detailed language of code.

Design
document

Code

Analysis
document

Strict, document-driven,
single-pass waterfall model

1970 20101980 1990 2000

DoD experiencing
significant failures

Jarzombek study on DoD
projects

W. Royce “Managing
the Development of
Large Software
Systems“ Department of Defense

DoD-Std-2167

Why were projects failing?
$37B worth of DOD projects using a waterfall

approach (Jarzombek)

34%

20%

46%

Never used
Extensive rework
Usable

Why were projects failing?
Actual use of waterfall requested features

(Jarzombek)

7%

13%

16%

19%

45%

Never
Rarely
Sometimes
Often
Always

Why were projects failing?

In 1987 Fred Brooks led a task-force for the DOD to find out
just what was going wrong.

“...the document-driven, specify-then-build approach ... lies at
the heart of so many ... software problems.”

The Problem
with

Requirements
March 1973

Charlie and Jane
Taylorism in software development

Time

C
os

t o
f C

ha
ng

e

Bohem (1981)

Cost of Change
How to reduce it?

Iterative and incremental
development

1930 19701940 1950 1960

W. Shewhart

“plan-do-study-
act” (PDSA) cycles at Bell
Labs

W. E. Deming

vigorously
promoting

PDSA

X-15

Project Mercury

Iterative and incremental
development

1970 20101980 1990 2000

IBM FSD
• Trident submarine

• Light Airborne

Multipurpose System

• Space shuttle software

Scrum FDD, Crystal, DSDM

Extreme Programming (XP)

Books and publications
promoting incremental and
iterative practices

Manifesto for Agile
Software Development

From TPS to Lean and Agile

TPS

Lean

Agile

Deming

Ohno

Poppendieck,
Poppendieck

Agile in the last 17 years

1990 20302000 2010 2020

Agile spreads in the software
development world

For Agile “it’s the best and the
worst of times”

Agile in large IT firms, e.g.,
Amazon, Spotify

Agile starts getting recognition
outside of software development

Agile Today

⬆ Ways to deliver instant, intimate, incremental, risk-free value
at scale

⬆ Spreading from IT Department to all parts, and all kinds, of
organizations

ꔅ Agile implemented as a superficial patch on traditional
management

ꔅ Huge amount of “fake Agile” going on

Characteristics of Agile

Adaptability

• Adaptability as a driver

• Two common misunderstandings

⬆Agility/Adaptability ⇒ ⬆Value

Agility ≠ Fast

Agility ≠ Cheap

Adaptive Vs Iterative

Empirical Vs Defined Process

Continuous Improvement
Deming Cycle

Time

C
os

t o
f C

ha
ng

e

Bohem (1981)

Beck (1999)

Cost of Change
Can be reduced by increasing quality

What is Agile?

Manifesto for Agile Software
Development

Manifesto for Agile Software
Development

We are uncovering better ways of developing

software by doing it and helping others do it.

Through this work we have come to value:

[…]

That is, while there is value in the items on

the right, we value the items on the left more.

We value…

We value…

We value…

We value…

We follow these principles:

Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software.

1.

We follow these principles:

Welcome changing requirements, even late in development.
Agile processes harness change for the customer's

competitive advantage.

2.

We follow these principles:

Deliver working software frequently, from a  
couple of weeks to a couple of months, with a preference to

the shorter timescale.

3.

We follow these principles:

Business people and developers must work  
together daily throughout the project.

4.

We follow these principles:

Build projects around motivated individuals.  
Give them the environment and support they need, and trust

them to get the job done.

5.

We follow these principles:

The most efficient and effective method of  
conveying information to and within a development team is

face-to-face conversation.

6.

We follow these principles:

Working software is the primary measure of progress.

7.

We follow these principles:

Agile processes promote sustainable development. The
sponsors, developers, and users should be able to maintain a

constant pace indefinitely.

8.

We follow these principles:

Continuous attention to technical excellence and good design
enhances agility.

9.

We follow these principles:

Simplicity – the art of maximizing the amount of work not done
– is essential.

10.

We follow these principles:

The best architectures, requirements, and designs emerge
from self-organizing teams.

11.

We follow these principles:

At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly.

12.

