INntroduction to DD



Productivity trap

We have to go “taster”
We rush and make a mess

The code grows and time
necessary to add new
features grows too

We go even slower

Units of work remaining

100

90

80

70

60

50

40

30

20

10

Predicted

Time



Code Rots

Over time it becomes
* Rigid

* Fragile

* Inseparable

 Opaque



Why??

* We ruin it
* We do not fix it because we are afraid of breaking it

* Fear prevents us to clean it and we leave It rotting



Cost of Change

Bohem (1981)

Beck (1999)

e

—

Cost of Change

How to reduce it?



1DD

* Drives development to get to clean code that works
* |tis a way of managing fear during programming

This is a hard problem and | can't see the end from
the beginning.

* |t is an awareness of the gap between decision and
feedback, and technigues to control the gap



Write a lest

public class AddIntegersTest {
@Test
public void twoPlusThree() {
Adder a = new Adder();
assertEquals(5, a.add(2,3));

¥
¥




Now it Compiles

public class AddIntegersTest {
@Test
public void twoPlusThree() {
Adder a = new Adder();
assertEquals(5, a.add(2,3));

¥
¥

public class Adder {
public int add(int a, int b) { return 0; }

¥



Red Bar!

public class AddIntegersTest {
@Test
public void twoPlusThree() {
Adder a = new Adder();
assertEquals(5, a.add(2,3));

¥
¥

public class Adder {
public int add(int a, int b) { return 0; }

¥

Expected 5, was 0



Do the simplest thing

public class AddIntegersTest {
@Test
public void twoPlusThree() {
Adder a = new Adder();
assertEquals(5, a.add(2,3));

¥
¥

public class Adder {
public int add(int a, int b) { return 5; }

¥




Remove duplication

public class AddIntegersTest {
@Test
public void twoPlusThree() {
Adder a = new Adder();
assertEquals(5, a.add(2,3));

¥
¥

public class Adder {
public int add(int a, int b) { return a+b; }

¥




TDD Cycle

1. Write a test
2. See it fall Expected 5, was 0

3. Make It pass

4. Refactoring (remove duplication)



TDD Cycle is

e Tight

e Fast

 (Guided by tests

* Refactoring oriented



The Three Laws of TDD

1. You may not write production code until you have
written a failing unit test.

2. You may not write more of a unit test than is
sufficient to fail, and not compiling is failing.

3. You may not write more production code than Is

suf

icient to pass the currently tailing test.



Unit Tests

 Programs that test the functionalities of a unit
o Should be

» Fast

v

Independent

v

Repeatable

v

Self-validating

v

Timely



A Test is NOT a Unit Test If...

e ..t talks to a database
e ..It communicates across the network
e ...Ittouches the file system

* ...you have to do things to your environment to run
it (e.g., change configuration files)

Tests that do this are integration tests.



Refactoring

Safely improve the design of existing code



Refactoring

Safely



Refactoring

Safely

Take baby steps, keep test bar green



Refactoring

improve the design



Refactoring

improve the design

Does not add functionalities



Refactoring

of existing code



Refactoring

of existing code

't Is not rewriting from scratch



Refactoring

* We need unit tests to do it safely
e \We need to do It on tests too

* Keeps code from rotting



Simple Design

. Runs all the tests

. Has no duplicated logic (minimize duplication)

. States every intention important to the
programmers (maximize clarity)

. Has the fewest possible classes and methods (in
this order)



public class Cylinder {

private final double radius;
private final double height;

public Cylinder (double radius, double height) {
this.radius = radius;
this.height = height;

}

public double volume() {
return Math.PI * Math.pow(radius, 2) * height;

}

public double surface() {
return 2 * Math.PI * Math.pow(radius, 2) + 2 * Math.PI * radius * height;

}

Minimize duplication

Duplication of knowledge



public class Cylinder {

private final double radius;
private final double height;

public Cylinder (double radius, double height) {
this.radius = radius;
this.height = height;

}

public double volume() {
return Math.PI * Math.pow(radius, 2) * height;

}

public double surface() {
return 2 * Math.PI * Math.pow(radius, 2) + 2 * Math.PI * radius * height;

}

Minimize duplication

Duplication of knowledge



public class Cylinder ({

private final double radius;
private final double height;

public Cylinder (double radius, double height) {
this.radius = radius;
this.height = height;

}
public double volume() {

return baseSurface() * height;
}

public double surface() {
return 2 * baseSurface() + 2 * Math.PI * radius * height;

}
private double baseSurface() {

return Math.PI * Math.pow(radius, 2);
}

Minimize duplication

Extract method



public class Cylinder ({

private final double radius;
private final double height;

public Cylinder (double radius, double height) {
this.radius = radius;
this.height = height;

}
public double volume() {

return baseSurface() * height;
}

public double surface() {
return 2 * baseSurface() + 2 * Math.PI * radius * height;

}
private double baseSurface() {

return Math.PI * Math.pow(radius, 2);
}

Minimize duplication

Extract method



@Test

public void productNotFound() throws Exception {
Display display = new Display();
Sale sale = new Sale(display);

sale.onBarcode("99999");

assertEquals("Product not found for 99999", display.getText());

public class Sale {
private Display display;
public Sale(Display display) {
this.display = display;
}
public void onBarcode(String barcode) {

display.setText("Product not found for 99999");
}

Minimize Duplication

Duplication of hard coded data.



@Test

public void productNotFound() throws Exception {
Display display = new Display();
Sale sale = new Sale(display);

sale.onBarcode("99999");

assertEquals("Product not found for 99999", display.getText());

public class Sale {
private Display display;
public Sale(Display display) {
this.display = display;
}
public void onBarcode(String barcode) {

display.setText("Product not found for 99999");
}

Minimize Duplication

Duplication of hard coded data.



@Test

public void productNotFound() throws Exception {
Display display = new Display();
Sale sale = new Sale(display);

sale.onBarcode("99999");

assertEquals("Product not found for 99999", display.getText());

public class Sale {
private Display display;

public Sale(Display display) {
this.display = display;
}

public void onBarcode(String barcode) {
display.setText("Product not found for " +
barcode) ;

Minimize Duplication

Replaced literal value with variable.



@Test

public void productNotFound() throws Exception {
Display display = new Display();
Sale sale = new Sale(display);

sale.onBarcode("99999");

assertEquals("Product not found for 99999", display.getText());

public class Sale {
private Display display;

public Sale(Display display) {
this.display = display;
}

public void onBarcode(String barcode) {
display.setText("Product not found for " +
barcode);

Minimize Duplication

Replaced literal value with variable.



private void displayPrice(String barcode) {
String priceAsText = pricesByBarcode.get(barcode);
display.setText (priceAsText);

Maximize clarity

Method does more than what suggested by its name.



private void displayPrice(String barcode) {
~Ap String priceAsText = pricesByBarcode.get(barcode);
display.setText (priceAsText);

Maximize clarity

Method does more than what suggested by its name.



private void displayPrice(String barcode) {
~Ap String priceAsText = pricesByBarcode.get(barcode);
display.setText(priceAsText) ; g

ind Disply

Maximize clarity

Method does more than what suggested by its name.



private void findPriceAndDisplayAsText(String barcode) {
String priceAsText = pricesByBarcode.get(barcode);
display.setText (priceAsText);

Maximize clarity

Conjunction tells us that method has more than one
responsibility.



private String findPrice(String barcode) {
return pricesByBarcode.get (barcode);

}

private void displayPrice(String priceAsText) {
display.setText (priceAsText);

}

Maximize clarity

Two methods with one responsibility each.



Code Smells

Long Methoa Extract method,...
Dead Code Delete
Primitive Obsession Replace Data Value with Object, ...
Switch Statements Polymorphism,...
Shotgun Surgery Move Method and Move Field,...

Feature Envy Move Method, ...



Code Smells

* https://refactoring.com/catalog/

* https://sourcemaking.com/refactoring/smells


https://refactoring.com/catalog/
https://sourcemaking.com/refactoring/smells

1DD

Reduces debug time
Creates low level design documents
Leads to decoupled code

Eliminates the fear of change



Palr Programming

Two people working together,
at the same compulter,

solving the same problem.



Palr Programming

ST
- PPN ) i

'.- s SR A # v amer At MVt b v. ‘
L




Palr Programming

How to get used to swap”

* Use atimer and swap every 10 minutes, take a
break every hour or so

* [ry ping-pong programming

* Try the Pomodoro technique swapping after each
pomodoro



