Refactoring as a
Design Activity

Object-oriented Design, Design Principles and Patterns

We need to...

e ...Structure functionalities as the code scales up so
we can continue understand and maintain it

e ...find the right boundaries for objects so that they
play well with their neighbors

We want...

* ...0bjects to represent coherent units that make
sense In its larger environment

e ...to build flexible systems

Vlessages

The big idea is “‘messaging” [...] The key in making
great and growable systems is much more to design
how its modules communicate rather than what their

internal properties and behaviors should be.

Alan Kay - Email Message Sent to the Squeak Mailing List

Web of Objects

An object-oriented system is built by creating
objects and plugging them together so that they
can send messages to one another.

Values

* |mmutable instances that model fixed guantities
* No individual identities

* Example: Java strings

Objects

e Use mutable state to model their behavior over time

* [wo objects of the same type have separate
identities even if they have the same state

public class Sale {

private Display display;
private Catalog catalog;

public Sale(Display display, Catalog catalog) {

this.display
this.catalog

}

= display;
= catalog;

public void onBarcode(String barcode) {
if ("".equals(barcode)) {
display.displayEmptyBarcodeErrorMessage();

return;

}

String priceAsText = catalog.findPrice(barcode);
if (priceAsText != null) {

display.displayPrice(priceAsText);

} else {

display.displayProductNotFoundMessage (barcode);

}

Object

public class Dollar {

private final int amount;

public Dollar(int amount) {
this.amount = amount;

}

public int getAmount() {
return amount;

}

@Override
public boolean equals(Object o) {
if (o instanceof Dollar) {

Dollar that = (Dollar) o;
return amount == that.amount;
}
return false;
}
@Override

public int hashCode() ({
return amount;

}

Value

Tell, don't ask
(Law of Demeter)

* Calling object describe what it wants in terms of the
role that its neighbor plays

* Called object decides how to make that happen

* Avoid navigating to other objects to make things
happen

Train Wreck

((EditSaveCustomizer) master.getModelisable()
.getDockablePanel ()

.getCustomizer()
.getSaveltem().setEnabled(Boolean.FALSE.booleanValue());

This fragment was meant to say

master.allowSaving0fCustomizations();

But sometime ask...

* Occasionally we ask objects about their state when
searching or filtering

* We still want to maintain expressiveness and avoid
‘train wrecks'

Avold Information leaks...

public class Train {

private final List<Carriage> carriages [..]
private final int percentReserveBarrier = 70;

public void reserveSeats(ReservationRequest request) {
for (Carriage carriage : carriages) {
1f (carriage.getSeats().getPercentReserved() < percentReserveBarrier) {
request.reserveSeatsIn(carriage);
return;

¥
¥

request.cannotFindSeats();

¥

..using the right query

public class Train {

private final List<Carriage> carriages [..]
private final int percentReserveBarrier = 70;

public void reserveSeats(ReservationRequest request) {
for (Carriage carriage : carriages) {
1f (carriage.hasSeatsAvailableWithin(percentReserveBarrier)) {
request.reserveSeatsIn(carriage);
return;

¥
¥

request.cannotFindSeats();

¥

S.O.L.I.D. Principles

Single Responsibility Principle

Open-closed Principle

Liskov Substitution Principle

Interface Segregation Principle

Dependency Inversion Principle

https://drive.google.com/file/d/0ByOwmqah_nuGNHEtcU5OekdDMkk/view
https://drive.google.com/file/d/0BwhCYaYDn8EgN2M5MTkwM2EtNWFkZC00ZTI3LWFjZTUtNTFhZGZiYmUzODc1/view
https://drive.google.com/file/d/0BwhCYaYDn8EgNzAzZjA5ZmItNjU3NS00MzQ5LTkwYjMtMDJhNDU5ZTM0MTlh/view
https://drive.google.com/file/d/0BwhCYaYDn8EgOTViYjJhYzMtMzYxMC00MzFjLWJjMzYtOGJiMDc5N2JkYmJi/view
https://drive.google.com/file/d/0BwhCYaYDn8EgMjdlMWIzNGUtZTQ0NC00ZjQ5LTkwYzQtZjRhMDRlNTQ3ZGMz/view

Single
Responsibility
Principle

A class should have only
one reason to change.

public class Rectangle {

private double width;
private double height;
private Graphics graphics;

/) e

public double area() {
return width * height;

}

public void draw() {
// Do something with Graphics

}

Single
Responsibility
Principle

A class should have only
one reason to change.

public class Rectangle {

private double width;
private double height;
private Graphics graphics;

/) e

public double area() {
return width * height;

}

public void draw() {
// Do something with Graphics

}

|
S I | I g ‘e public class GeometricRectangle {

private double width;

R es p ons | b | ‘ |'|:y private double height;

public double area() {

return width * height;
| | | }
Principle }

public class Rectangle {

/ﬁ\ C:lEiESES E;r]C)LJ|Cj |ﬂ161\/69 C)f?l}/ private GeometricRectangle geometricRectangle;
rivate Graphics graphics;
one reason to change. i T

/).

public void draw() {
// Draw geometricRectangle using Graphics

}

public class Shape {
/) ...
}

public class Rectangle extends Shape {
/) ...

}

O p e n - C | O S(} d public class Circle extends Shape {

/).
}

| | |
P rI n (: | p ‘ e public class GraphicEditor ({

public void drawShape(Shape s) {
if (s instanceof Rectangle) {
drawRectangle((Rectangle) s);

Software entities should be else i (s instanceot Cixcle) |
open for extension, but }

}
C Osed fOr mOdIflcatlon publj/.i void drawRectangle(Rectangle rectangle) {
}

public void drawCircle(Circle c) {
/...

}

public class Shape {
/).
}

public class Rectangle extends Shape {
/).

}

O p e n - C | O S(} d public class Circle extends Shape {

/).
}

| | |
P rI n (: | p ‘ e public class GraphicEditor ({

public void drawShape(Shape s) {
if (s instanceof Rectangle) {
drawRectangle((Rectangle) s);

Software entities should be et i (s instanceot Cixcle) |
open for extension, but }

}
C Osed for mOdIflcatlon publj/.c/: void drawRectangle(Rectangle rectangle) {
}

public void drawCircle(Circle c) {
/) e
}

public abstract class Shape {
/) e
public abstract void draw();

}

public class Rectangle extends Shape {

/) ..

Open-closed

public void draw() ({

P " " ‘ // Draw the rectangle
rinciple }

}
Sofware entltles ShOUld be public class Circle extends Shape {
open for extension, but ;/
cpe . Override
closed for modification. public void draw() {

// Draw the circle

}
}

public class GraphicEditor {

public void drawShape(Shape s) {
s.draw();

}

public class Rectangle { public class Square extends Rectangle {

protected int width; @Override
protected int height; public void setWidth(int width) {
this.width = width;
public int getWidth() { this.height = width;
return width; }
} @Override
public void setWidth(int width) { public void setHeight(int height) {
this.width = width; this.width = height;
} this.height = height;
}
public int getHeight() { }

return height;

}

public void setHeight(int height) {
this.height = height;
} public class RectangleFactory {

public static Rectangle getRectangle() {

public int area() { return new Square();

return width * height; }

}

|_iskov Substitution Principle

It a method is using a Base class, then the reference to the Base class can be
replaced with a Derived class without affecting the functionality of the method.

public class Rectangle { public class Square extends Rectangle {

protected int width; @Override
protected int height; public void setWidth(int width) {
this.width = width;
public int getWidth() { this.height = width;
return width; }
} @Override
public void setWidth(int width) { public void' setHeight(int height) ({
this.width = width; this.width = height;
} this.height = height;
}
public int getHeight() { }

return height;

}

public void setHeight(int height) {
this.height = height;
} public class RectangleFactory {

public static Rectangle getRectangle() {

public int area() { return new Square();

return width * height; }

}

|_iskov Substitution Principle

It a method is using a Base class, then the reference to the Base class can be
replaced with a Derived class without affecting the functionality of the method.

public class LSPViolation {
public static void main() {

Rectangle r = RectangleFactory.getRectangle();

r.setWidth(5);

r.setHeight(10);

// User knows r is a rectangle

// He assumes that he can set both width and height as for the base class

System.out.println(r.area());
// Now he 1is surprised to see that area is 100 instead of 50.

|_iskov Substitution Principle

It a method is using a Base class, then the reference to the Base class can be
replaced with a Derived class without affecting the functionality of the method.

public interface Worker {
void work();
void eat();

}

‘ .t f public class Human implements Worker {
| I e r aC e @Override

public void work() {
// ...working

SegregatiOﬂ f}iﬁﬁiiiiiiid
Principle }

Clients should not be forced ﬁiﬁ‘i;l?‘?ff,;;iiié’mim
to depend upon intertace }
members that they don't P T eating during break

}
use. /

public class Manager {
private Worker worker;

public void setWorker (Worker worker) {
this.worker = worker;

}

public void manage() {
worker.work();

}

public interface Worker {
void work();
void eat();

}

‘ .t f public class Human implements Worker {
| I e r aC e @Override

public void work() {
// ...working

SegregatiOﬂ f}iiiiiiiiiid
Principle }

Clients should not be forced ﬁizﬁ;r;?‘?ff,;ﬁiié’mim
to depend upon intertace }
members that they don't P T eating during break

}
use. /

public class Manager {
private Worker worker;

public void setWorker (Worker worker) {
this.worker = worker;

}

public void manage() {
worker.work();

}

public interface Worker {

void work();

}

public interface Eater {

Interface s

public class Human implements Worker, Eater {

Segregation s

// ...working

" " }
P r I I I ‘ I ‘ e @Override
public void eat() {
// ...eating during break
}

}

Clients ShOU|d nOt be forced public class SuperHuman implements Worker, Eater {
to depend upon intertace ¢override

public void work() ({

members that they donlt \ // ...working much more
LJESEB. @Override

public void eat() {
// ...eating during break
}
}

public class Robot implements Worker {

@Override
public void work() {
// ...working

}

public class Human {

public void work() {

Dependency } // ...working

}

Inversion Seblic class Hanager

private Human worker;

| rl n C I p ‘ e public void setWorker (Human worker) ({

this.worker = worker;

: }
High level classes should
public void manage() {
not depend on low level worker .work () ;
}

classes. }

public class Robot {

public void work() {
// ...working longer

}

public class Human {

public void work() {

Dependency } // ...working

}

Inversion Seblic class Hanager

private Human worker;

| rl n C I p ‘ e public void setWorker (Human worker) ({

this.worker = worker;

: }
High level classes should
public void manage() {
not depend on low level worker .work () ;
}

classes. }

public class Robot {

public void work() {
// ...working longer

}

public interface Worker {

void work();

}

De pe n d e n Cy public class Human implements Worker {

public void work() {

‘nverS|On } // ...working

}

| | |
P rl n C I p ‘ e public class Robot implements Worker ({

public void work() {

, // ...working much more
High level classes should)
not depend on low level)
Classes public class Manager {

private Worker worker;

public void setWorker (Worker worker) {
this.worker = worker;

}

public void manage() {
worker.work();

}

public interface Worker {

void work();

}

De pe n d e n Cy public class Human implements Worker {

public void work() ({

‘nverS|On } // ...working

}

| | |
P rl n C | p ‘ e public class Robot implements Worker ({

public void work() {

, // ...working much more
High level classes should)
not depend on low level)
Classes public class Manager {

private Worker worker;

public void setWorker (Worker worker) {
this.worker = worker;

}

public void manage() {
worker.work();

}

Design Patterns

b

Design Patterns

Elements of Reusable

* Important and recurring Object-Oriented.Softw:
design in object-oriented Erich Gammadll
systems Sy

John Viis

* Record experience about how
to address problems

* More than one catalog of
patterns

>
./
~
D
Al
et
Z
)
-
<
M
W
m
~<
O
~
™
®
m
w
w
o
N/
Z
Z
m
N
™~
®)
<
—
O
=
N
=
Z
)
w
m
2
m
w

Refactoring to Patterns

A
vv

\—\'.\' F()

g (9
~ f“ \“‘ : 3
- | \ Y ~J

/

(4

e){] _:‘\‘(\.

* Refactoring to, towards and
away from patterns R EFACTORING

* Remove duplication, simplify, TO PATTERNS
communicate intentions

e Deodorize smells

Forewords by Ralph _Johnson and Martin Fowler
Afterword by John Brant and Don Roberts

