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In these lectures
• Contents

– Particles: probability density and flux; charge density and
current density

– Potential energy step: transmission and reflection coefficients
– Potential well or barrier: limiting cases (Dirac δ)

• Reference textbooks
– J.H.Davies, The physics of low-dimensional semiconductors,

Cambridge University Press, 1998, p.9-13 (“1.4 Charge and
current densities”)

– D.A. Neamen, Semiconductor Physics and Devices, McGraw-
Hill, 3rd ed., 2003, p.38-42

– D. Griffith, …
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“Flux” of particles ?
Particle flux: number of particles crossing a given surface per unit

surface and per unit time

Electrical current density: (particle flux) × (charge/particle)

Relationship with the wave function? Guess based on dimensions:

 

F[ ] = cm!2s!1[ ]

 

! 2dx dy dz[ ] = probability[ ] a - dimensional

" ! 2[ ] = L#3[ ] = cm#3[ ] = A 2[ ] ! = Aeikx

velocity : v[ ] = LT#1[ ] = cm s#1[ ]

F[ ] = A 2 v!" #$ = cm%2  s%1!" #$
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“Flux” of particles ?
Relationship with the wave function? Guess based on dimensions:

 

F[ ] = cm!2s!1[ ]

F[ ] = A 2 v!" #$ = cm%2  s%1!" #$
F = v A& A

 

x

“flux of incident particles”
for a wave function with space part:

 

! = Aeikx

normalization (large but finite volume V ) :

!
V"

2
dV = A

V"
2
dV =

1    one particle
N    N particles

# 
$ 
% 



Complementi di Fisica - Lectures 14, 15, 16 29/31-10-2012

L.Lanceri - Complementi di Fisica 3

29/31-10-2012 L.Lanceri - Complementi di Fisica - Lectures 14, 15, 16 5

Fluxes and Currents
More refined treatment, based on the equation of continuity in

electromagnetism:
(flux of current through a closed surface) = - d/dt (charge inside)

 

!
J • !n dS

S
"! = "

#
#t

$dV
V
"!

!
% •
!
J = "

#$
#t

#Jx
#x

+ ... = "
#$
#t

 

x

 

x

 

x + dx 

Jx x( )

 

Jx x + dx( )

In the simplest 1-d case
the “current density vector”
reduces to a “current” J:
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Summary of

From: The Feynman Lectures on Physics, vol.II
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Continuity and Schrödinger
The wave function is a solution of the Schrödinger equation
(1-d for simplicity):

  

 

i! !
!t

" x,t( ) = # !
2

2m
! 2

!x 2
" x,t( ) +U x,t( )" x, t( )

From the QM postulates on the wave function,
the charge density must be identified with:

Since there is a charge density, there should be also
a current J (in general, 3-d: current density vector),
satisfying the continuity equation (1-d) 

! " q# x, t( ) 2

 

!"
!t

= #!Jx
!x

where : Jx x, t( ) $ ???
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Continuity and Schrödinger
From the Schrödinger equation to a continuity equation (1-d):

  

 

i!!" #
#t

! = $ !
2

2m
!" # 2

#x 2
! +U!"!

$i!! #
#t

!" = $ !
2

2m
! # 2

#x 2
!" +U!!"

#
#t

!"! = $ !
2im

!" # 2

#x 2
!$! # 2

#x 2
!"

% 

& 
' 

( 

) 
* 

#
#t

q!"![ ] = $ #
#x

q!
2im

!" #
#x

!$! #
#x

!"% 
& 
' 

( 
) 
* 

+ 
, - 

. 
/ 0 

Charge density ρ(x,t) Current Jx(x,t)

⇒  continuity equation
             (1-d)

Ψ∗ × (S.eq.)

Ψ × (S.eq.)∗ , U real

Subtracting, regrouping:
time evolution of |Ψ|2
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Probability (charge) current density
A few specific examples (easy to verify):
1. Stationary wave functions:

2. Plane waves

3. Superposition of plane waves travelling in opposite
directions

4. Decaying waves (real exponential for the space part)

 

! = constant Jx = 0

  

 

! x, t( ) = Aei kx"#t( )

$ = q A 2 = q! 2 Jx = q!k
m

A 2 = q A 2v

  

 

! x, t( ) = A+e
ikx + A"e

" ikx( )ei#t

Jx = q!k
m

A+
2 " A"

2( )

  

 

! x, t( ) = B+e
Kx + B"e

"Kx( )ei#t K real

Jx = q!K
im

B+
$B" " B"

$B+( ) = 2q!K
m

% B+B"( )

“Step” potential energy barrier
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Analysis method
• Separable solutions: time-independent Schrödinger

equation
– The energy eigenvalue must be the same everywhere; it may

correspond to
• a “bound” particle state
• a “free” particle state

– the energy eigenvalue E determines the type of solution in
each region (interval)

– Continuity of the wave function and its derivative, at the
boundaries between different intervals, determine the
coefficients of the different terms

• transmission and reflection coefficients for a given
finite barrier or well can be defined for “free” particle
states
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Solution types
• If in some region the potential U(x) = U0 is constant: possible

separable stationary solutions:
– If  E > U0:

– If  E < U0:

  

 

! !
2

2m
d2"
dx 2 +U0" = E" # d2"

dx 2 + k 2" = 0, k 2 =
2m E !U0( )
!2 > 0

# " x( ) = Aeikx + Be! ikx, A and B arbitrary complex constants, or

" x( ) = C sinkx + Dcoskx equivalent( );  k is real!

  

 

in this case :  q  imaginary,   !  real;

equivalent notation :    d
2"
dx 2 #! 2" = 0, ! 2 =

2m U0 # E( )
!2 > 0

  

 

! !
2

2m
d2"
dx 2 +U0" = E" # d2"

dx 2 + q2" = 0, q2 =
2m E !U0( )
!2 < 0

# q = !1( ) 2m U0 ! E( )
!2 = i$, $ 2 =

2m U0 ! E( )
!2 > 0

# " x( ) = Ae$x + Be!$x, A and B arbitrary complex constants
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Step potential energy, E > U0

  

 

I : !I x( ) = A1e
ik1x + B1e

" ik1x k1 = 2mE !2 real

II : !II x( ) = A2e
ik2x + B2e

"ik2x k2 = 2m E "U0( ) !2 real

 

I : A1 =1   (arbitrary)       B1   ("reflected")
II : A2  ("transmitted") B2 = 0

Coefficients: boundary conditions, particles coming from the left

x
 

U x( )

 

U0

Energy eigenvalue: E > U0

I II

 

x = 0
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Step potential energy, E > U0

 

!I 0( ) =!II 0( ) " 1+ B1 = A2
d!I

dx x= 0

= d!II

dx x= 0

" ik1 # ik1B1 = ik2A2

 

B1 = k1 ! k2
k1 + k2

= B1 E( ) A2 = 2k1
k1 + k2

= A2 E( )

Wave function and its derivative: continuity at x = 0

The coefficients B1, A2 can be determined in terms of k1, k2 
and therefore are uniquely determined by the energy eigenvalue E

These coefficients are expressing the relative “weights” 
of the reflected and transmitted waves: as we have seen, 
they can be used to find the corresponding “fluxes” or “currents”!
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Reflection and transmission, E > U0
Reflection coefficient: ratio of “reflected flux” to “incoming flux”
Reflection probability = fraction of particles “reflected back”

Unlike the classical case, 
not all particles with E > U0  “climb” over the step!

Transmission coefficient: ratio of “transmitted flux” to “incoming flux”
Transmission probability = fraction of particles “transmitted on”

 

R =
v1 B1

2

v1 A1
2 =

B1
2

A1
2 = ...= R E( )

 

T =
v2 A2

2

v1 A1
2 = ...= T E( ) Exercise:

compute R(E), T(E)
for an electron
with E = 20 eV, U0 = 10 eV
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Step potential energy, E < U0

x
 

U x( )

 

U0

Energy eigenvalue: E < U0 

I II

 

x = 0

  

 

I : !I x( ) = A1e
ik1x + B1e

" ik1x k1 = 2mE !2 real

II : !II x( ) = A2e
#2x + B2e

"#2x #2 = 2m U0 " E( ) !2

                                           q2 = i#2  imaginary,  #2 real( )
Coefficients: boundary conditions, particles coming from the left

 

I : A1 = 1   (arbitrary)        B1   ("reflected")
II : A2 = 0   (divergent!!!) B2   ("transmitted"??)

 

?
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Step potential energy, E < U0

 

!I 0( ) =!II 0( ) " 1+ B1 = B2 setting A1 = 1
d!I

dx x= 0

= d!II

dx x= 0

" ik1 # ik1B1 = #$2B2

 

B1 = !"2 + ik1
"2 ! ik1

B1
2 =1

B2 = ! 2ik1
"2 ! ik1

B2
2 = 4 k1

2

"2
2 + k1

2

Wave function and its derivative: continuity at x = 0

Solving for the coefficients B1, B2 as before:

The “reflection” R seems to be total:
same weight as the incoming wave,
with a phase shift

“Transmission” T is not zero: 
the wave function “leaks”
at x > 0   !?!

Exercise:
compute R(E), T(E)
defined as before

29/31-10-2012 L.Lanceri - Complementi di Fisica - Lectures 14, 15, 16 18

Step potential energy, E < U0
Non-zero probability for the particle to be found at x > 0 
(classically impossible!); 
The corresponding probability density P(x) is: 

However, the net flux for x > 0 is zero 
(can be checked by computing the current density)
and eventually the particle must turn back !

  

 

P x( ) = !II x( ) 2 = B2
2e"2#2x #2 = 2m U0 " E( ) !2

Exercise 1:
Evaluate the typical “penetration depth” L = 1/(2α)
For an electron with E = 8 eV and a step U0 = 10 eV

Exercise 2:
Evaluate the probability (with the above data) that
an electron is found at a distance > L from the
position of the step:

 

p x ! L( ) = P x( )
L

+"

# dx = ...



Complementi di Fisica - Lectures 14, 15, 16 29/31-10-2012

L.Lanceri - Complementi di Fisica 10

Limiting cases: Dirac δ

Dirac δ “function”: potential energy well
Bound particle solution

Free (scattering) solution
Reflection and transmission coefficients

Similar results for potential barrier
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Dirac δ “function”
• “Generalized function” concept

– You can think of it as a “limit” case in a family of functions (for
instance gaussians)

• Integral = unity
• Decreasing width, increasing max. value

– Extending the definition of integrals, one can show that:

 

x

 

a

 

b

 

a! 0
b!"

 

ab =1

 

! x( ) =
0 x " 0
# x = 0
$ 
% 
& 

! x( )
'#

+#( dx =1

 

f x( )! x " a( ) = f a( )! x " a( )
f x( )! x " a( )

"#

+#$ dx = f a( )



Complementi di Fisica - Lectures 14, 15, 16 29/31-10-2012

L.Lanceri - Complementi di Fisica 11

29/31-10-2012 L.Lanceri - Complementi di Fisica - Lectures 14, 15, 16 21

Dirac δ potential
• Represent wells or barriers in a simplified way:

 

x

 

a
 

a! 0
U0 !"

 

aU0 = !

 

U0

 

U x( )

 

x

 

U x( ) = !" x( )

 

x

 

a

a! 0
U0 ! "#

 

aU0 = !"

 

U0
 

U x( )

 

x

 

U x( ) = !"# x( )

The product of U0 (barrier “height”) and a (barrier “width”) represents 
the “strenght” α of the interaction, determining transmission probability etc
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δ-potential well: bound states (E < 0)

 

x

 

U x( ) = !"# x( )
E < 0

Time-independent S.eq.

  

 

! !
2

2m
d2"
dx 2

!#$ x( )" = E"

Separable solutions: look for wave functions ψ and energy eigenvalues E
 

I x < 0( )

 

II x > 0( )

  

 

I x < 0( ) : U x( ) = 0 ! d2"
dx 2

+ 2mE
!2

" = 0

"I x( ) = Ae#$x + Be+$x $2 = # 2mE
!2

> 0

 

II x < 0( ) :
!I x( ) = Ce"#x + De+#x

Exclude divergent terms: A = D = 0 
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δ-potential well: bound states (E < 0)

 

x

(a) Wave function continuity.

 

I x < 0( )

 

II x > 0( )

 

lim
x!0"

#I x( ) = lim
x!0+

#II x( ) $ B = C

$# x( ) = Be"% x =
Be%x x & 0
Be"%x x ' 0

( 
) 
* 

To find allowed values for E
and B, C, K: continuity conditions.

(b) First derivative: discontinuous at x = 0, where the potential has a singularity. 
The Schr.eq. constrains the difference of the limits of the first derivatives, 
as it can be seen integrating on [- ε, + ε] and taking the limit for ε→ 0

 

! x( )

  

 

! !
2

2m
d2"
dx 2!#

+#$ dx !% & x( )" x( )
!#

+#$ dx = E " x( )
!#

+#$ dx

 

d!
dx

" 
# 
$ 
x= 0+

 

d!
dx

" 
# 
$ 
x= 0%
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δ-potential well: bound states (E < 0)

 

x

 

! x( )

  

 

! !
2

2m
d"
dx

# 
$ % 

& 
' ( 
!)

+)

!*" 0( ) = E " x( )
!)

+)+ dx

 

d!
dx

" 
# 
$ 
x= 0+

 

d!
dx

" 
# 
$ 
x= 0%

Integrating we obtain:

In the limit ε → 0

  

 

! !
2

2m
d"
dx

# 
$ % 

& 
' ( 
!)

+)

!*" 0( ) = E " x( )
!)

+)+ dx

d"
dx

, 
- 
. 
x= 0+

! d"
dx

, 
- 
. 
x= 0!

= ! 2m*
!2

" 0( )

!/B !/B = ! 2m*
!2

B  

!

 

!"
 

0

 

x < 0 : d!
dx

= "Be+"x

x > 0 : d!
dx

= #"Be#"x

(dis)continuity constrains therefore K and E to only one possible value:

  

 

! = m"
!2

# E = $ !
2!2

2m
= $m"

2

2!2
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δ-potential well: bound states (E < 0)

 

x 

! x( )

  

 

! x( ) 2dx =1
"#

+#

$

2 B 2e"2%xdx =
B 2

%
=1

0

+#

$

& B = % = m'
!

The only missing parameter B is determined by the normalization condition:

⇒ Only one bound solution:

  

 

! x( ) = m"
!

e#m" x ! 2 E = #m"
2

2!2

  

 

B = m!
!
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δ-potential well: free states (E > 0)

 

x

 

U x( ) = !"# x( )
E > 0

 

I x < 0( )

 

II x > 0( )

Time-independent S.eq.

  

 

! !
2

2m
d2"
dx 2

!#$ x( )" = E"

Separable solutions: look for wave functions ψ and energy eigenvalues E

  

 

I : x < 0 !I x( ) = Aeikx + Be" ikx k = 2mE
!

> 0 real

II : x > 0 !II x( ) = Feikx + Ge" ikx

 

G = 0
Particles coming
From the left

(Dis)continuity at x = 0

 

! I 0( ) =! II 0( ) : A + B = F
d! II

dx
"
#$ 0+

%
d! I

dx
"
#$ 0%

= %
2m&
!2

! 0( )

ik F % A + B( ) = %
2m&
!2

A + B( )   

 

B = !"
" + i

A " = m#
!2k

F = 1
1! i"

A
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Reflection and transmission

  

 

R ! reflected flux
incoming flux

=
v B 2

v A 2 = " 2

1+ " 2 = ...

= 1
1+ !4k 2 m2# 2( ) = 1

1+ 2!2E m# 2( ) = R E( )

reflection coefficient

transmission coefficient

 

R + T =1
  

 

T ! transmitted flux
incoming flux

=
v F 2

v A 2 = 1
1+ " 2 = ...

= 1
1+ m2# 2 !4k 2( ) = 1

1+ 2m# 2 2!2E( ) = T E( )

  

 

! " m#
!2k
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δ-potential barrier

 

x
 

U x( ) = !" x( )

identical solution method, but:

- no bound solution

- only E > 0, “scattering” solutions

- the reflection and transmission coefficients R(E) and
T(E) have the same expressions

E > 0
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Lectures 13-15: summary
• In these lectures we learned:

– How to represent the charge density (proportional to the
probability density) and the current density, in  terms of the
wave function

– To find the separable solutions of the Schrödinger equation,
(the allowed energy eigenvalues and the corresponding
eigenfunctions) for a potential energy varying in steps with
intervals in which it can be considered constant

– In particular, we treated in detail the simplest cases:
• Single potential step
• δ-function wells and barriers

(Computing in particular transmission and reflection cofficients)
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Lectures 14-16: exercises
1. Compute the current densities in the special cases listed at p.8

2. Compute the transmission and reflection coefficients R(E), T(E)
for an electron with kinetic energy E = 20 eV, crossing a potential
energy step U0 = 10 eV

3. Evaluate the typical “penetration depth” L = 1/(2α) for an electron
with E = 8 eV and a step U0 = 10 eV

4. Evaluate the probability (with the above data) that an electron is
found at a distance > L from the position of the step

5. Compute the reflection and transmission coefficients for an
electron with energy E = 10 eV crossing a barrier approximated
with U(x) = α δ(x), where α = 20 eV Å
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Back-up slides

Finite potential barrier

“bound” particle
“free” particle

Reflection and transmission
coefficients

Tunnel effect

(NB: this section is given for reference only)
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Finite potential barrier - introduction
• E > U0 : wavelength always

real;
– But: there is usually

reflection in addition to
transmission!

• E < U0: wavelength becomes
imaginary (analog to
classical: “evanescent
waves”);
– the wave function falls off

exponentially in the barrier
– There is a “transmitted” wave

with reduced amplitude
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Finite barrier: (a) solutions

 

U x( )

 

U0

aa!I II III
Similar to finite well, but we use
slightly different notations:
to describe both “bound” and
“free” solutions with the same
equations, here q may be real or
imaginary depending on the sign
of E-V0

  

 

I : !I = eikx + B1e
" ikx k = 2mE !2

II : !II = A2e
iqx + B2e

"iqx q = E "U0( )2m !2

III : !III = A3e
ikx k = 2mE !2

 

x
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Reflection and transmission

 

x = !a : e! ika + B1e
ika = A2e

! iqa + B2e
iqa

ike!ika + !ik( )B1eika = iqA2e
!iqa ! iqB2e

iqa

x = a : A2e
iqa + B2e

! iqa = A3e
ika

iqA2e
iqa ! iqB2e

! iqa = ikA3e
ika

4 equations for 4 unknowns: A2, B2, B1, A3; we are interested mainly in
reflection and transmission probabilities, represented by |B1|2 and |A3|2, 
where B1 and A3 are given by (see details in back-up slides):

Continuity conditions:

 

B1 =
i q2 ! k 2( )sin 2qa( )

2kqcos 2qa( ) ! i k 2 + q2( )sin 2qa( )
e!2ika

A3 = 2kq
2kqcos 2qa( ) ! i k 2 + q2( )sin 2qa( )

e!2ika
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“free” solution for E > U0

• By inspection of the equations for R and T , their features for E >
U0 :
– B1 and A3  are complex numbers (“probability amplitudes”)
– B1 is not zero, even for E > U0
– B1 → 0   for  U0 → 0
– |B1 | ≤ 1
– |B1 |2 + |A3 |2 = R + T = 1
– R=|B1 |2 and T=|A3 |2 can be interpreted respectively as probabilities

for reflection and transmission of the particle by the potential barrier
(see coefficients defined previously for the step potential)

• A similar method is used in more complicated 3-d problems found
in the physics of semiconductors !
– For instance, scattering of an electron by an impurity or defect in a

crystal lattice…
– computation of “scattering amplitudes” and “probabilities” !
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“tunneling” solution for E < U0

• When E < U0 :
– Classically, the particle can only bounce back (perfect reflection)
– Here: non-zero transmission probability
– Convenient to show explicitely that q becomes purely imaginary

  

 

q2 = 2m
!2 E !U0( ) < 0 " express it as    q = i# purely imaginary

#2 = 2m
!2 U0 ! E( ) > 0

cos 2qa( ) $ e!2#a + e2#a

2

sin 2qa( ) $
i e2#a ! e!2#a( )

2

 

A3 = 4ik! e"2!a

2ik! 1+ e"4!a( ) + k 2 "!2( ) 1" e"4!a( ) e
"2ika

e"4!a <<1 # T = A3
2 $ 16k 2!2

k 2 + !2( )2
e"4!a
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“tunneling” solution for E < U0

 

e!4"a <<1 # T = A3
2 $ 16k 2"2

k 2 + "2( )2
e!4"a

Exponentially decreasing “tunneling” (transmission) probability,
depending on the interaction strength, product of
η (barrier “height”) and a (barrier “width”):

Qualitatively similar
behavior for arbitrary
barrier shape, with more
complicated coefficients in
the exponential, obtained
by integrating over many
“thin square barriers”

 η = barrier “height”

a = barrier “width”

a!

2T


