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In these lectures

e Contents

— Particles: probability density and flux; charge density and
current density

— Potential energy step: transmission and reflection coefficients

— Potential well or barrier: limiting cases (Dirac 9)

* Reference textbooks

— J.H.Davies, The physics of low-dimensional semiconductors,
Cambridge University Press, 1998, p.9-13 (“1.4 Charge and
current densities”)

— D.A. Neamen, Semiconductor Physics and Devices, McGraw-
Hill, 3" ed., 2003, p.38-42

— D. Griffith, ...
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“Flux” of particles ?

Particle flux: number of particles crossing a given surface per unit
surface and per unit time

Electrical current density: (particle flux) x (charge/particle)

Relationship with the wave function? Guess based on dimensions:

[| ‘P|2 dx dy dz] = [probability] a - dimensional

= [[¥]=[2"]=[cm”]=[A]] ¥=4e*

[F]=[em™s™] velocity : [v] = [LT" ] =[cms™]

N
[#1=[laFv]=Lem 5]
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“Flux” of particles ?

Relationship with the wave function? Guess based on dimensions:

[ [|A| } [cm s]

X F=vA" A

“flux of incident particles”
for a wave function with space part:

Y= Ae™
[F]= [Cm_zs ]] normalization (large but finite volume V) :
Jav= [ afav=1]

one particle
N N particles
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Fluxes and Currents

More refined treatment, based on the equation of continuity in
electromagnetism:

(flux of current through a closed surface) = - d/dt (charge inside)

$Jeiids =-—¢pdv

N \%4

V [ j = —@

ot

oJ 7

Zipo=-2 J(x)  J(x+dx)

ox ot

_>‘
In the simplest 1-d case —>
the “current density vector” > X
reduces to a “current” J: x  x+dx
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Summary of

Classical Physics

Maxwell's equations

I.. VoE = —:1 (Flux of E through a closed surface) = (Charge inside)/eo
0
B A d
I. VXE-=-— T (Line integral of E around a loop) = — gl(Flux of B through the loop)
I, v:-B= (Flux of B through a closed surface) = 0
2 J OEiegs
IV. ¢V X B = = + e (Integralof B around a loop) = (Current through the loop)/ ¢y
0

+;’—’ (Fluxof E through the loop)

Conservation of charge

Vij=— ‘;—’; (Flux of current through a closed surface) = — :} (Charge inside)
Force law
F =q4(E+ v X B)
Law of motion
d my A 4 5 s )y 3
@ =F whee p=———  (Newton’s law, with Einstein’s modification)
g V1 = v2/c?
Gravitation
myms
F=-G e

From: The Feynman Lectures on Physics, vol.ll
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Continuity and Schrodinger

The wave function is a solution of the Schrédinger equation
(1-d for simplicity):
2 2
ihi‘l’(x,t) = _h_8_2 W(x,1)+U(x,1)¥(x,1)
ot 2m ox
From the QM postulates on the wave function,
the charge density must be identified with:

p= q|‘P(x,t) ?

Since there is a charge density, there should be also
a current J (in general, 3-d: current density vector),
satisfying the continuity equation (1-d)

o, aoJ
P__%s where: J (x,1)=77?
ot ox
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Continuity and Schrodinger

From the Schrodinger equation to a continuity equation (1-d):

g O n . & . .
iV —YVY=-——-Y S¥Y+U¥YY ¥*x (S.eq.)
ot 2m  ox
Y —-Y =——Y ¥ +UYY ¥x(S.eq.)", Ureal
ot 2m  ox
0. B . o . Subtracting, regrouping:
ET lP:_Zi—m b d WT_TWT time evolution of |¥|2

I :_i[ gh [‘I’*i‘P—‘Pi‘P*]ﬂ = continuity equation
o' ox|Rim ox ox (1-d)
+

Charge density p(x,t) | [ Current J,(x,t)
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A few specific examples (easy to verify):

2. Plane waves  ¥(x,r)= A

p=qAl =q¥ J

X

ROAREN.
= -l )
W(x,1)= (B+er +Be ™ )ei”” K real
_ ik 2qhK

im

J

x

m

1. Stationary wave functions:  p=constant

_ qhk

T m

3. Superposition of plane waves travelling in opposite
directions W(x,1)= (A+e"’“ + A_e—ikx)eiwr

4. Decaying waves (real exponential for the space part)

(B:B.-B'B,)=—"—3(B.B)
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Probability (charge) current density

“Step” potential energy barrier
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Analysis method

» Separable solutions: time-independent Schrodinger
equation
— The energy eigenvalue must be the same everywhere; it may
correspond to
* a “bound” particle state
* a “free” particle state

— the energy eigenvalue E determines the type of solution in
each region (interval)

— Continuity of the wave function and its derivative, at the
boundaries between different intervals, determine the
coefficients of the different terms

+ transmission and reflection coefficients for a given
finite barrier or well can be defined for “free” particle
states
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Solution types

« If in some region the potential U(x) = U, is constant: possible
separable stationary solutions:

- ¥E>U; 0’ dy 2m(E -U,)
2m dx? n*
= y(x)=Ae™ +Be™, Aand B arbitrary complex constants, or

2
+Uw=Ey = wa+k2y/:0, k=

2

>0

y(x)=Csinkx+ Dcoskx (equivalent); k is real!

4 2 2m(E -U,
- If E<U, ——Zh —dl/;+U0q/=Ey/ = —dxvzl+q2y/=0, ¢== (h2 7°)<0
2m(U,— E 2m(U,— E
= ¢= (—1)7(;2 ):i(x, (xzzi(h“z )>0

= yY(x)=Ae™ +Be™™, Aand B arbitrary complex constants

in this case: ¢ imaginary, o« real;

equivalent notation : 5
dx
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Step potential energy, E > U,

A
_________________ Energy eigenvalue: E > U,

U,

> X

Iy (x)= Aleii‘*‘ Blfi'x k,=~2mE/R* real

I: y,(x)=Ae™ +B,e™  k,=2m(E-U,)/n* real

Coefficients: boundary conditions, particles comin

I: A =1 (arbitrary) B, ("reflected")

II: A, ("transmitted")

29/31-10-2012 L.Lanceri - Complementi di Fisica - Lectures 14, 15, 16 13

Step potential energy, E > U,

Wave function and its derivative: continuity at x =0
v, (0)=y,(0) = 1+B=A4,

il AVl kB = ikA,
d‘x x=0 dx x=0

The coefficients B,, A, can be determined in terms of k,, k,
and therefore are uniquely determined by the energy eigenvalue E

:M:BI(E) A, = 2k, :Az(E)
k +k, k +k,

Bl

These coefficients are expressing the relative “weights”
of the reflected and transmitted waves: as we have seen,
they can be used to find the corresponding “fluxes” or “currents”!
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Reflection and transmission, E > U,

Reflection coefficient: ratio of “reflected flux” to “incoming flux”
Reflection probability = fraction of particles “reflected back”

B’ |B
LBl ey
V1|A1| |A1|

Transmission coefficient: ratio of “transmitted flux” to “incoming flux”
Transmission probability = fraction of particles “transmitted on”

\/2|A2|2 Exercise:
= 5T e = T(E) <\ compute R(E), T(E)
V1|A1| for an electron
withE=20eV, U,=10eV

Unlike the classical case,
not all particles with E > U, “climb” over the step!
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Step potential energy, E< U,

vt 9
—> U,
Energy eigenvalue: E< U,

> X

I: y,(x)=Ae"" +Be ™ k, =+2mE/h* real
II: y,(x)=Ae™ +Be™  a,=~2m(U,-E)/I*

(g, =icr, imaginary, e, real)

Coefficients: boundary conditions, particles coming from the left

I: A =1 (arbitrary) B, ("reflected")
II: A,=0 (divergent!!!) B, ("transmitted"??)
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Step potential energy, E< U,

Wave function and its derivative: continuity at x =0
v,(0)=y,(0) = 1+ B, =B, setting A, =1

dy,| _dy,|
dx |x:0 dx x=0

= ik, —ikB,=-a,B,

Exercise:

compute R(E), T(E)
Solving for the coefficients B,, B, as before: / defined as before

o, + ikl 2 The “reflection” R seepAs to be total:
B =——— |Bl| =1 same weight as the in€oming wave,

o, — ik, with a phase shift

. 2
B. =— 2lk1 | B |2 =4 k] “Transmission” T is not zero:
2 o. —ik 2 o2+ k> thewave function “leaks”
2 2 I atx>0 17!
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Step potential energy, E< U,

Non-zero probability for the particle to be found at x > 0
(classically impossible!);
The corresponding probability density P(x) is:

P(x)=ly, (x)] =B, &, =2m(U, - E)/n*

Exercise 1:
Evaluate the typical “penetration depth” L = 1/(2¢)
For an electron with E =8 eV and a step U, = 10 eV

Exercise 2:

Evaluate the probability (with the above data) that
an electron is found at a distance > L from the
position of the step: p(x>1)= fp(x)dx -

L

However, the net flux for x > 0 is zero
(can be checked by computing the current density)
and eventually the particle must turn back !
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Limiting cases: Dirac o

Dirac ¢ “function”; potential energy well
Bound particle solution
Free (scattering) solution
Reflection and transmission coefficients
Similar results for potential barrier

Dirac 6 “function”

+ “Generalized function” concept

— You can think of it as a “limit” case in a family of functions (for
instance gaussians)

* Integral = unity
» Decreasing width, increasing max. value

a—0 0 x#0
= 6 =
b oo ab=1 (X) {oo =0
» X j_jS(x)dx =1

— Extending the definition of integrals, one can show that:
f(x)8(x —a) = f(a)(x —a)
j:of(x)5(x —a)dx = f(a)
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Dirac o potential

* Represent wells or barriers in a simplified way:

a—0
Uy— e U(x)=a6(x)
aU,=«
> X > X
a—0
x Uy——o T , X
aly =~0 L U(x) =-08(x)

The product of U, (barrier “height”) and a (barrier “width”) represents
the “strenght” a of the interaction, determining transmission probabilitm
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o-potential well: bound states (E < 0)

Time-independent S.eq. I (x <0) T 11 (x >O) X
ndy E<Q----F---- :
—5 ey =Ey U(x)=-a8(x)
Separable solutions: look for wave functions y and energy eigenvalues E
dv 2mE
I(x<0): Ux)=0 = + =0
('x ) ('x) dx2 h2 l//

¥, (%) :>‘<)‘ +Be™ K’ :_2;:219 >0

Exclude divergent terms: A=D =0

II(x<0):
—Kx +Kx
v, (x)=Ce +b\
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o-potential well: bound states (E < 0)

To find allowed values for E
and B, C, K: continuity conditions.

(a) Wave function continuity.

limy,(x)=limy,(x)=B=C
x=0" x—0*

Be®™ x<0
=B Kl _ >
= y(x)=Be {Ber x>0 I(x<0)  1I(x>0)

(b) First derivative: discontinuous at x = 0, where the potential has a singularity.
The Schr.eq. constrains the difference of the limits of the first derivatives,

as it can be seen integrating on [- &, + £€] and taking the limit for €- 0

2 2
2hm :: flxvzldx - J.j o(x)y(x)dx=E J.j: y(x)dx
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o-potential well: bound states (E < 0)

Integrating we obtain:

h2 _d[//:|+£ +€
—=F| —oy(0)=E d
2ml dx e Oﬂ//( ) jgil//(X) g

In the limite — 0 0

n [ dyl® s
—7J—| —oy(0)=FE x)dx

L]~ O=E v

d d 2mo

dwj - W) =T W(O)

X Jx=0* dx x=0" h
_KB-KB=— 2:112(1 B
(dis)continuity constrains therefore K and E to only one possible value:
mo nK? _ mo’

K=— = E=- =——
hi 2m 2h
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o-potential well: bound states (E < 0)

The only missing parameter B is determined by the normalization condition:

I|l//(x)|2dx =1

+ 2
2 _r|B|2e’2dex B,
Y K

= B=f=\/r;lia

= Only one bound solution:

2
mo —ma‘x‘/hz mo
w(x) =" o £=-"2%
/] 2h
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o-potential well: free states (E > 0)

Time-independent S.eq. U(x) = —0!5()6)
1 dy SR N x
-— -ad =E >
2m dx® (x)l// v

I(x<0) l 11 (x>0)
Separable solutions: look for wave functions y and energy eigenvalues E

I: x<0  y,(x)=Ae™ +Be™ k= 2mE >0 real

) _ ik —ikx
Ir: x>0 Yy (x)=Fe™ + bﬁ Particles coming

G=0 From the left

(Dis)continuity at x =0

v,(0)=y,(0): A+B=F

d d 2 B=ta ﬁ:%‘

T S

dx ), dx ), h Fe 1
ik(F—A+B)=—2:’2“(A+B) 1-ip

29/31-10-2012
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Reflection and transmission

reflection coefficient

R= reflected flux v|B|2 B B’ B B= mTa
B incoming flux V|A|2 1+ /32 nk
1 1 R(E)

T 1 n' K (o) 1420 E](ma’)

transmission coefficient

T transmitted flux _ v|F |2 1
~ incoming flux V| A|2 1+ B
1 1

T(E) R+T=1

T1em /(1K) 1+ 2ma’/(20°E)
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o-potential barrier

identical solution method, but:
- no bound solution
- only E > 0, “scattering” solutions

- the reflection and transmission coefficients R(E) and
T(E) have the same expressions
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Lectures 13-15: summary

In these lectures we learned:

— How to represent the charge density (proportional to the
probability density) and the current density, in terms of the
wave function

— To find the separable solutions of the Schrodinger equation,
(the allowed energy eigenvalues and the corresponding
eigenfunctions) for a potential energy varying in steps with
intervals in which it can be considered constant

— In particular, we treated in detail the simplest cases:
+ Single potential step
« d-function wells and barriers
(Computing in particular transmission and reflection cofficients)
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Lectures 14-16: exercises

Compute the current densities in the special cases listed at p.8

Compute the transmission and reflection coefficients R(E), T(E)
for an electron with kinetic energy E = 20 eV, crossing a potential
energy step U, =10 eV

Evaluate the typical “penetration depth” L = 1/(2a) for an electron
with E=8eVand astep U,=10eV

Evaluate the probability (with the above data) that an electron is
found at a distance > L from the position of the step

Compute the reflection and transmission coefficients for an
electron with energy E = 10 eV crossing a barrier approximated
with U(x) = o §(x), where o = 20 eV A
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Back-up slides

Finite potential barrier

“bound” particle
“free” particle

Reflection and transmission
coefficients

Tunnel effect

(NB: this section is given for reference only)
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« E>U,: wavelength always
real;
— But: there is usually
reflection in addition to
transmission!

* E < U,: wavelength becomes
imaginary (analog to
classical: “evanescent
waves”);

— the wave function falls off
exponentially in the barrier

with reduced amplitude

— There is a “transmitted” wave

Finite potential barrier - introduction

29/31-10-2012
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Finite barrier:

(a) solutions
U(x)

U,

I —da
Similar to finite well, but we use
slightly different notations:
to describe both “bound” and T
“free” solutions with the same )
equations, here g may be real or ‘

1

1
R
imaginary depending on the sign | i

a i

Incident wave

of E-V,
I: y, =™ +Be™
II: y,=Ae"+B,e™

ur: y, =Ae™

k=~2mE/n*
q=~(E-U,)2m/n’

k=~2mE/ 1’

29/31-10-2012 L.Lanceri - Complem

enti di Fisica - Lectures 14, 15, 16
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Reflection and transmission

Continuity conditions:
x=—a: e +Be" =Ae "+ B,e"
ike™ + (—ik)Be™ = iqA,e™ " —igB,e""
x=a: Ae"“+Be =A™
iqA,e ™ —igBe " = ikAe™
4 equations for 4 unknowns: A,, B,, B,, A;; we are interested mainly in

reflection and transmission probabilities, represented by |B,|? and |A,|?,
where B, and A; are given by (see details in back-up slides):

~ i(q2 —~ kz) sin(2qa) o
' 2kqcos(2qa) - i(k2 + qz) sin(2qa)

A = 2kq o2k
3 12 2\ -
2kgcos(2qa)— z(k +q )s1n(2qa)
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“free” solution for E > U,

* By inspection of the equations for R and T, their features for E >
U,:
— B, and A; are complex numbers (“probability amplitudes”)
— B, is not zero, even for E> U,
- B, >0 for Uy,—> 0
- 1B,1<1
~ |B,]2+|A;P=R+T=1
— R=|B, |2 and T=|A; |2 can be interpreted respectively as probabilities
for reflection and transmission of the particle by the potential barrier
(see coefficients defined previously for the step potential)
* A similar method is used in more complicated 3-d problems found
in the physics of semiconductors !

— For instance, scattering of an electron by an impurity or defect in a
crystal lattice...
— computation of “scattering amplitudes” and “probabilities” !
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“tunneling” solution for E < U,

When E<U,:
— Classically, the particle can only bounce back (perfect reflection)
— Here: non-zero transmission probability
— Convenient to show explicitely that q becomes purely imaginary

q’= ?(E -U,))<0 = expressitas ¢=in purely imaginary
222y E)>0 .
h A = 4ikne ™ o 2ika
D o2ikn(l+ )+ (K2 =) (1-e ™)
—2nNa 2na
e +e
2ga) > ———— 16k°n’
cos(2ga) 2 <<l = T=[A) zifk 772 ~e '
l-(e2na _e—Zna) (k + T] )
sin(2qa) - =————
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“tunneling” solution for E < U,

Exponentially decreasing “tunneling” (transmission) probability,
depending on the interaction strength, product of
7 (barrier “height”) and a (barrier “width”):

16](27'[2 e n = barrier “height”
e 4na

(k2+n2)2 N

et <<l = T:|A3|2 ~

a = barrier “width”

7T

Qualitatively similar
behavior for arbitrary
barrier shape, with more
complicated coefficients in
the exponential, obtained
by integrating over many
“thin square barriers”

Na
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