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In these lectures

+ Contents (1)

— Insulators, semiconductors, conductors
— Semiconductor materials: resistivity and conductivity
— Crystal structure of solids

Reference textbooks

— D.A. Neamen, Semiconductor Physics and Devices, McGraw-Hill, 3rd
ed., 2003, p.1-16 (Crystal structure of solids)

— R.F.Pierret, Advanced Semiconductor Fundamentals, Prentice Hall,
2003, 2d ed.

— S.M.Sze, Semiconductor Devices - Physics and Technology, J.Wiley
& Sons, 2nd ed., 1985.
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In these lectures
+ Contents (2)

— Models for charge carriers: electrons and holes
— Pure (“intrinsic”’) semiconductors at equilibrium

* Reference textbooks

— D.A. Neamen, Semiconductor Physics and Devices, McGraw-Hill, 3rd
ed., 2003, p.83-96 (Density of states, Fermi-Dirac), p. 103-114 (Charge
carriers in semiconductors)

— R.F.Pierret, Advanced Semiconductor Fundamentals, Prentice Hall,
2003, 2d ed.

— S.M.Sze, Semiconductor Devices - Physics and Technology, J.Wiley
& Sons, 2nd ed., 1985.
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Insulators, semiconductors, conductors
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Fig.1 Typical range of conductivities for insulators, semiconductors, and conductors.

(from SZE, fig.1-1)
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Semiconductor materials

Resistivity p, conductivity ¢

Recall the definitions: = =
J=0oF
1:% AV =RI J_€> - >
Ax ~ —_—
R=p=>. 1=(Jei)s=Js S i
Ar ‘A B
= AV =p= LIS = plkx
Current M:l‘ﬂ -Llg|=olg|  Electric AV =V, -V, <0
Density J plaxl p Field E

Ax=x,-x,>0

—

Resistivity Conductivity \
Qcm S cm

E=-VV [& Electric
- - Potential V
Ohm’s law (for “ohmic materials”) dv
R is a constant (at fixed T) E,=- dx
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Naive microscopic interpretation

Classical interpretation of Ohm’s law (Drude Model):
— Some electrons move “almost freely” in conductors

— They are subject to some sort of “collision” on atoms (not clear
how!): “dissipative” effect on the electron energy...

— Simplified picture:
+ electrons are accelerated by the external field E
* on average, at time intervals 7 electrons collide and “stop”
« the kinetic energy gained due to E is dissipated as “heat”
* The net resulting motion is a “drift” with average velocity v

q. =q|

A% < >
average mobility p b T A !
drift velocity cm?/ (V's) / / t
E T + m
V:aT:—@T:—m ' =—uF = T:L Exercise:
m m q check dimensions
o om and units for
J=gnv=|gnuE =0E = p=— = t="— | resistivity, conductivity,
\q\” qn mobility
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Several problems...

The simplified picture is appealing and defines quantities (drift
velocity, mobility) that can be indirectly measured and used to
characterize materials, but:

— Why do different materials behave differently?

— Dependence on temperature in this model: completely wrong!

— Computing the “mean free path” 2 of electrons: surprise!  much larger than the
average distance d between atoms!

— NB: use “thermal velocity” rather than “drift velocity”...

A _ 3kT
- vrcollision > V= vdrifl or v= therm ~— :
m
t t
NB: different physical meaning! |
= We will introduce also the “Fermi velocity”, still larger
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Periodic table of the elements
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™

odic table of the el

of outer el

and crystal structures. (Table prepared at

Research Lalk

ies, Pittsburgh, Pa., by A. J. Cornish.)

(from ADL, Fig1-3)
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Periodic table and semiconductors

Table1 Portion of the Periodic Table Related to Semiconductors
Period Column II 111 v \4 VI
E B @ N
Boron Carbon Nitrogen
3 Mg Al = Si P S
Magnesium Aluminum Silicon Phosphorus Sulfur
4 Zn Ga - Ge As Se
Zinc Gallium Germanium Arsenic Selenium
o) Cd In Sn Sb Te
Cadmium Indium Tin Antimony Tellurium
6 Hg Pb
Mercury Lead

" The international system of units is presented in Appendix B.

(from SZE, Table1-1)

19/21-11-2012

L.Lanceri - Complementi di Fisica - Lectures 24-26

10 INFN

L.Lanceri - Complementi d

i Fisica

19/21-11-2012



Complementi di Fisica - Lectures 24-26 19/21-11-2012

Element and compound semiconductors

Practical considerations: most frequently used in
standard devices:
- (Ge)... Si, GaAs

Table2 Element and Compound Semiconductors

Element V-1V m-v II-vi IV-VI
Compounds Compounds Compounds Compounds
Si SiC T AlAs Cds PbS
A Ge AlSb CdSe PbTe
BN CdTe
GaAs ZnS
GaP ZnSe
GaSb ZnTe
InAs
InP
InSb
(from SZE, Table1-2)
19/21-11-2012 L.Lanceri - Complementi di Fisica - Lectures 24-26 11 INN
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Crystal lattice and unit cell

) ] © 0006 o
« Two-dimensional
periodic s s :
arrangement of ®©0e @0 e ®:
atoms ]
T@ ' KX ]
leoeeoe
o]
(a) (b)
o [
ole| /
] @ e b
rdrmomai] o

g

@© (d) ©

. Figure 11 Introduction to the unit cell method of describing atom arrangements within
(from PIER, Fig.1-1) crystals (2) Semple two-dimensional latice. (b) Unit cell corresponding to the part () latice.

(c) Reproduction of the original lattice. (d) Basis vectors. (¢) An alternative unit cell.
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| [ S

(from PIER, Fig.1-4)

Crystal lattice and unit cell

Three-dimensional periodic arrangement of atoms; an example

e e
Crystallography: T
classification a
of all possible l
configurations :
(14 Bravais cells, S)Smphebic (®) ls’;ﬁ;?ehccggfc correct
230 possible patterns)
] o
(c) bee (d) fee

Figure 1.2 Simple three-dimensional unit cells. (a) Simple cubic unit cell. (b) Pedantically
correct simple cubic unit cell including only the fractional portion (1/8) of each corner atom
actually within the cell cube. (c) Body-centered cubic unit cell. (d) Face-centered cubic unit cell

(After Pierret.l)
(from PIER, Fig.1-2)
14

19/21-11-2012 L.Lanceri - Complementi di Fisica - Lectures 24-26

L.Lanceri - Complementi di Fisica

19/21-11-2012



Complementi di Fisica - Lectures 24-26 19/21-11-2012

“Diamond lattice”: Si, Ge

Lattice constant: a = 5.43 A (Si)
a=5.64A (Ge)

Exercise:
What is the distance between
nearest neighbours in Si crystals?

“Zincblende lattice”: GaAs

Lattice constant: a = 5.63 A (GaAs)

®  (from SZE, fig.1-3)

Fig.3 (a) Diamond lattice. (b) Zincblende lattice.
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3. Bragg, “reciprocal lattice”, Brillouin

e
e < | ot

-
e

=
2 e 5
o FIGURE 2.8. Two-dimensional rectangular latices in (a) real and (b) teciprocal space.
2a
$ “real” space “reciprocal” space
(X, Y, Z) (kx’ ky’ kz)

Constructive interference (Bragg) if:
nA=2asin®  (A=2m/k)

One-dimensional lattice reflections:

0=r/2 = sinf=1 = n%:2a = k="F

-mfa 0 7w/a
—t p——t——— — k(")
One-dimensional “reciprocal lattice”: “first Brillouin zone” and “basis vector”
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» Miller indices (i j k)
— Intercepts of the plane on the
three cartesian axes, in units
of lattice constants 20
— Reciprocals, reduced to the
smallest integers having the

same ratio 3
2a
* Other conventions and q
“Wafer flats” %
— See “advanced” topics Fig.4 A (211)-crystal plane.
Exercise:

If a plane has intercepts
2a, 3a, 4a along the three
axes, find its Miller indices

Exercise:
Find the number of atoms |/ *
Per cm? in Si in the (100), 1190} (1o)

. . . * On planes of

MI||eI' IndlceS different
orientation in the
crystal:

Different number
of atoms and
atom spacing
Different crystal
properties
(mechanical,
electrical)

i

1 10), and (1 11 ) planes Fig.5 Miller indices of some important planes in a cubic crystal.
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Atoms bonding

+ Classification (recall from Chemistry courses?)

— lonic: “low affinity”: lose electrons, “high affinity”: absorb electrons;
negatively and positively charged ions attract each other

— Metallic: “sea” of loosely bound (almost free) outer electrons keep
together the positive ions left behind (found in good conductors)

— Covalent: energetically stable configuration with outer electrons
“shared” between neighbour atoms, when “shells” fully occupied
(very stable, found in semiconductors and insulators)

— Van der Waals: weak bonding between electric dipoles

F
.

1
\ 1
ST S
e %
i Ge
1

2]

£
e,
: ]
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Broken bonds: electrons and holes

Basic bond model of “intrinsic” (= “pure”) Silicon

. i T T 5T
- e > . foy 3
77\ _# CONDUCTION 2 SN Rher s |
¥ .

ELECTRON

a broken bond at position A, deficiency filled by one of the

resulting in a conduction electron neighboring electrons (in B),

and a “hole” resulting in a shift of the “hole”
from AtoB
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Energy band model

19/21-11-2012

Isolated atoms: energy levels

Hydrogen atom (Z=1) Silicon atom (Z=14)
Idealized representation of the Schematic representation of
first three allowed Bohr orbits how the 14 electrons fill the
and their quantized energy levels lowest available “shelli”

E —_ 13.6eV 4 electrons needed — 4§ 32

n = "2 to complete the 3p shell_pppgd 2p6

. ey
e N

8 Electrons

Six allowed levels
at same energy

/\\
A\
A Two allowed levels
®\\ at same energy
n=1 n=3 N S sp
—13.6eV Ey=-15lceV = oot %
/ 2 Electrons e
n=2
-34eV
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Isolated atoms: energy levels

Naive pictures! (available electron states as circular Bohr orbits)
QM: 3-d Schrodinger equation for electrons in the electrostatic field
- H atom (Z=1 electron): exact solutions (Bohr energies are OK!)

- (Z#1)-electron atoms: approximate solutions (shell method)

More information:
- J.Bernstein et al, Chapters 9, 10, 11
- D.J.Griffiths, Chapters 4, 5.1, 5.2

Six allowed levels
at same energy

/\\
A\
s Two allowed levels
®\ﬂ at same energy
n=1 n=:3 sp
—13.6eV Ey=-15leV =) g8
/ 2 Electrons N
n=2
-34eV
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From energy levels to energy bands

)

f

NTsolated (Cleeton
St 7 v - Eion 113 H ”
4 R e e Conduction Band
5 5
::::"'::S n=3 g } No states — ; Eg “Gap”
6N p-states total g I ;1:}' al\o.\\efl states M_os(ly Ev « ’
2 s-sates tota valence band) Eumes Valence Band
(4N electrons total) Crystalline Si 3
N-Atoms

Somehow (quantum mechanics !),
when many atoms get close together
their quantized energy levels split
and turn into many states grouped in

“energy bands”, see diagrams

4N empty E
g States :

Electron energy

S==—20N12/V.
filled states

Conduction only happens if electrons

1

have empty “states” available at
nearby energy !

4} dc;,re;bil?g I
isolated lomaREcTE i lattice
Si atoms spacing
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E=E, +E,, <0 forboundelectrons
E, <0, E;,>0

Isolated hydrogen atom,
only one electron:

Energy levels and energy bands diagrams

N Silicon atoms,

14 x N electrons:

allowed states grouped

in energy bands, filled
accordina to Pauli Princinle

allowed energy levels E,
X
n=co =0 —>
0 i 4+ Epa, 20N Fopries s I vacuum=0 | S
-3 = mostly, x N states
0 5 Balmer Series
f 8§ ? 193 empty
= -4 — shell 3 |, Band gap
Torls 24 E; = -188 = _54 ev mostl L1eV
&0
B Ey = -8 - _3g85 v filled 4 x N states
shell 2 ==
_ie] E; = -B8 _ _15 v filled 8 x N states
hell 1 F——————wee—em
B = -18 = _340 eV e
—12 4 fl"ed ' 2 X N StateS
136 — =1 B o= -8 = 136 eV Ey

19/21-11-2012
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EMPTY
CONDUCTION BAND
CONDUCTION BAND

s o e _L

Eg~9ev
Y 74
Z VALENCE BANE)/QT
FILLED 27,
/VALENCE BAND”,

(a) (b)

)

////////// <z //
CONDUCTION BA»V
/////¥//// //////

DISTANCE

insulators semiconductors

% KINETlC ENERGY OF ELECTRON 77
ELECTRON £
ENERGY f
|
E, HOLE
g ENERGY
- : 2
KINETIC ENERGY/OF HOLE //
// 2 ///V/Q e
/ /VALENCE BAND

Energy band representations

PARTIALLY FILLED'-J
CONDUCTION BAND

Eg ~lev

CONDUCTION BAND ]

VALENCE BAND‘—’

(c)
conductors

kinetic energy and
potential energy

for electrons and holes
(= for “carriers”):
Why? See next slide...

19/21-11-2012
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Energy band representations
W F

electron
// // SIS S LSl /
CONDUCTION BAN /
T 7 700000000 VY, /////// E
// KINETIC ENERGY OF ELECTRON 77 N hole
ELECTRON A Ec
ENERGY t

|
E, HOLE
9 ENERGY

| 3 ek

7 KINETIC ENE1F\'GY OF HOLE / /
/////////////,g R/ /

» >

khole

DISTANCE k
electron

Close to the band edges, the E:k diagram is approximately parabolic,
similar to that of a free particle, with effective mass m*...

. vkl . .
bottom of conduction band: E,-E.=—=% m, >0 k,=—k, m,=-m
7k’ 7'k,
top of valence band : E,-E,=—=% m, <0 E,-E,=—(E,-E,)~—=% m,>0
2m, m,
L.Lanceri - Complementi di Fisica - Lectures 24-26 27

Crystal momentum and effective mass

From the practical point of view: Free electron:
electrons and holes in a crystal R
as classical particles characterizedby p_ 7
“effective mass”, kinetic energy, and 2m,
“crystal momentum?”:

p=myy =hk

___ Electrons close to the bottom

/////{6»(66%6”6;&7 of the conduction band (E>E):
7/ 74////4%// 7

%%, KINETIC ENERGY OF ELECTRON 7
ELECTRON f Ec ﬁz

ENERGY — w

=myv="hk
HOLE p ¢ ¢
ENERGY

7 %
4 7
'NE/T{ f/g}/E;G/j,gj jg}_ﬁ_/_// _______ Holes close to the top

777 nienee s BAND/ o of the valence band:

—= DISTANCE

=2
__p Bty
Ee =5 p=m,y =hk,
2m,,
7 19/21-11-2012 L.Lanceri - Complementi di Fisica - Lectures 24-26 28
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Energy-momentum in three dimensions

,_ Sicrystals: GaAs crystals: |, More complications:

o CONKND O i AT — Different E-p relations in
different space
directions

— Usually only [111] and
[100] are shown

— Minimum E in
conduction band and
maximum E in valence

band may occur for
VBAND different crystal
e oo fiilE =952 00] morr_lenta I (“indirect”
CRYSTAL MOMENTUM p semlconductors)

(@ e — Practical
consequences, see later
(for instance:
optoelectronic devices)

)7m,

ENERGY (eV)
T

VALENCE
BAND

“indirect” “direct”
semiconductor semiconductor

19/21-11-2012 L.Lanceri - Complementi di Fisica - Lectures 24-26 29

Indirect and direct semiconductors - 1

2 E eciron 2 Enon Photon-induced transitions:

“direct” (2-body)
E electron - photon
Ak, E))
more probable, for the same AE

(k. E;) -
“indirect” (3-body)
electron - photon - phonon
s less probable, for the same AE
r/a
electron kglfcm’"
“indirect” “direct”
semiconductor semiconductor

Different optical properties!
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Indirect and direct semiconductors -2

W E  E Energy and crystal momentum
“jumps” for electrons

in Silicon (typical):
$0E) Ap =hAk =hk, — ik, =0+ hr/a
~3%x10% eV s cm’ (Si)

electron 4 electron

(ki-E))
AE=E,-E ~E,
~1.1eV (Si)
1
TT/a
/ Photons carry energy,
kelectron kelecmm but Sma" momentum
“indirzct” “diregt” photons: E ~1eV =
semiconductor semiconductor
= p=E/c=3x10" eV s cm’

Phonons carry momentum, Phonons:p=3x10"eV s cm” =
but small energy =E=pv,. =002eV

phase
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A “real life”
example (Ge)

Theoretical computation of the
“band structure of Ge”,
in good agreement with
experimental data (not shown)

From:
C.Kittel,
Introduction to Solid State Physics

Figure 14 Calculated band structure of germanium, after C. Y. Fong. The general features are in
200d agreement with experiment. The four valence bands are shown in gray. The fine structure of
the valence band edge is caused by spin-orbit splitting. The energy gap is indirect; the conduction

d edge is at the point (27r/a)(344). The constant energy surfaces around this point are ellipsoidal.
19/21-11-2012 L.Lanceri - Complementi di Fisica - Lectures 24-26 32
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Intrinsic semiconductors
at equilibrium

We need to know:
charge carriers concentration
(n electrons/cm?3, p holes/cm?3)

L

Outline of ingredients and final results

Thermal equilibrium

* Thermal equilibrium = ?
— Between two bodies or systems in “thermal equilibrium” there
can be no net transfer of any sort (law of detailed balancing).

* Thermal equilibrium: static, endless, useless... why do
we care?
— Systems near thermal equilibrium tend to come to equilibrium
in predictable ways
— The predictable behavior of systems not quite in equilibrium
allows us to design and construct useful devices!

* From the statistical point of view:
— Thermal equilibrium represents the distribution of maximum
probability, achieved when the detailed balancing between the
possible processes is reached.

19/21-11-2012 L.Lanceri - Complementi di Fisica - Lectures 24-26 34
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Finding the maximum probability

* First part: specify all possible “states” (solutions to the S.
equation) and a set of appropriate boundary conditions

— Possible eigenstates of the system (in our case E-k plot!)
— Total internal energy of the system

— Rules about filling states (in our case the Pauli principle)
— Rules about conservation of particles

» Second part: procedure to find the most likely distribution of
particles among the states, that does not violate any of the rules

— Finding a maximum (prob.) subject to constraints (“rules”):
Lagrange’s method of undetermined multipliers

— Or, alternatively, apply thermodynamics (min. free energy)

+ Let’s start with the “density of states” (step 1)

19/21-11-2012 L.Lanceri - Complementi di Fisica - Lectures 24-26 35

Step 1: density of states

L.Lanceri - Complementi di Fisica 18



Complementi di Fisica - Lectures 24-26 19/21-11-2012

Density of states ...

» Density of states g(E)
— g(E) = number of allowed states for electrons in the energy range
(E, E+dE ), per unit volume of the crystal
— For a general solution (any E ) we should use the full machinery of
band theory... (possible, but complicated!)
— but we are mainly interested in the band edges, normally populated
by carriers: much simpler!  Shortcut:
» Equivalent problem: density of states for electrons in a 3-d box,
provided we finally modify the solution, taking into account the
“effective mass” m* and the band structure

N = e o o Pis

E,
/5

“Equivalent” problem:

» /
\/\/\/\/\[\/\I electrons in a box

19/21-11-2012 L.Lanceri - Complementi di Fisica - Lectures 24-26 37

Electrons in a box

- O<x<a
* Infinitely deep 3-d potential 0<y<bh
well: O<z<c
Time-independent Schrodinger
equation /)
2, 2 2 y
81/2/+81/2/+8u2/+k2w:0 A
dx*  dy z /
272 b
k=+2mE/n* or: E= hzk
m

X

Separation of variables — For each of the three functions:

_ 1 Oy, ,
w(x.y.2) = (x)y, (V. (2) o = = constant = —k;
WX x

2.

substituting and dividing by :  y=y,y,y,

ki =0 0<x<a

1y, 19y, 1y,
— W;+— y;‘+— 1’;L+k2:() x?
v, ox°  y, dy" Wy, 0z o
(similar for the other two)
19/21-11-2012 L.Lanceri - Complementi di Fisica - Lectures 24-26 38
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Energy eigenstates and eigenvalues
Each solution is associated with a 3-d k-space vector:
. . . nm nm n.m
v, (x,,2) = Asin(k,x) s1n(kyy) sin(k,z) k=2 k= yT’ k, ==
a c
'k’
E= K =kX+kl +k’ n.nn =+1,£2,+3, ..
2m y Z X y 2z
2 k, One solution per “cell”:
density per unit volume
of k-space:
? 1 abc
LN
= abc
ky ky
S
ky k
(a) 3 (®) _
19/21-11-2012 L.Lanceri - Complementi di Fisica - Lectures 24-26 39
E intervals in k-space
272 ke,
g="k K =kl+k +k:
2m . k, E
dEzd—Edkzﬁdk k+dk, E+dE
dk m

k'(

Counting the density of states in the interval (E, E + dE) or (k, k + dk)
can be done in two steps:

- computing the spherical shell volume of k-space (see figure)

- multiplying it by the density of states in k-space (see previous slide)
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L.Lanceri - Complementi di Fisica 20



Complementi di Fisica - Lectures 24-26

Counting the solutions in E intervals

Only the 1st octant in k-space
corresponds to independent
solutions

Each state can be occupied
by two electrons with opposite spin
(Pauli principle)

k,

allowed energy states |_ 1 %2 % abc _ abc
unit volume in k - space | 8 ARNY A

energy states with k-space volume//
gy’ = %47‘[ k*dk between two sphe ,/
k<k'<k+dk v

v/

(2 2mE o N2m 1 dE
" n 2+E i

Density of states

tat ith E
(energy states wi JE WE)dE = abe mA2mE o(E)= NE) _ mN2mE

E<E <E+dE

A o 1% ’h
’ Crystal volume V = abc ‘
L.Lanceri - Complementi di Fisica - Lectures 24-26 41

... density of states ...

Density of states, simplified model (box with infinitely deep walls)

m~2mE
SE)= "

But: bands? Interaction with the crystal periodic potential? No
problem:

— the “average effective mass” m* and the “crystal wave number” k
describe the interactions with the crystal

— for E closeto E :

nk m,\2m, (E - E)
E_EC 57: = gC(E)= ”2h3 EZEC
— Similarly for holes: \/
k2 m \2m (E, —E)
EV—EEZm: = [sv(E)=—""—55 E<E,
L.Lanceri - Complementi di Fisica - Lectures 24-26 42
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... with “average” effective masses

» The effective masses appearing in the density of states for
some useful semiconductors (Si, Ge, GaAs) are averaged
over crystal directions

Table 4.1 Density of States Effective Masses for Ge, Si,

and GaAs
Effective Mass Ge Si GaAs
mlm, T=4K 0.553 1.062 0.067
T =300K 2 1.182 0.06557
m3imy T=4K 0.357 0.590 0.532
T =300K s 0.81 0.524

— only GaAs is approximately isotropic
— See R.F.Pierret, section 4.1.2, p.94, for details on Si and Ge
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Step 2: probability distribution
function (Fermi-Dirac)

L.Lanceri - Complementi di Fisica
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F.-D. probability distribution function

* From thermodynamics:

— The most likely “macroscopic” state is the one corresponding to
the largest number W of equivalent “microscopic” states,
compatible with a given total number N of electrons and a fixed
total energy E;

at thermal equilibrium:
| N;/ S;=7?7?7? (at energy E;)

E
— W= “thermodynamical probability”; “entropy” = In (W)
6| o SRR N; electrons
S, available states at energy E;
S e ey A T (partially) filled by N, electrons
é —-— — — — \S/l u according to Pauli principle
oI el St i el ety W=HW'=H(SiJ=H M
Fpoerort shipiagie i g it i g i P\ i (Si_Ni)!N"!
E,+ —eo— —eo— —— —— ZN‘-ZN:COIISt.
Probability distribution function z EN. =E. . =const
i T0T — ‘

v 19/21-11-2012
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Maximization procedure to find N,/S;

» Take the logarithm InW, use Stirling’s approximation, and set the
differential to zero (S; are constant, N; variable: see back-up
slides for details) to find N,/S; that maximizes W or InW

Introducing the undetermined Lagrange multipliers o and f to
express the constraints on total N and E (constant) one finds:

1 1 For closely
N Ey=—— spaced levels,
1+ea+ﬁE[ f( ) 1+ea+ﬁE E,- SE

* o and B: from thermo-dynamical arguments = for fermions,
Fermi distribution:

kg =8.617 x 105 eVIK

— 1 o=— EF f(E) — ( 1 5 T = absolute temperature
E-Ep)/kyT
k,T kyT P .
Er “chemical potential
or “Fermi level”
L.Lanceri - Complementi di Fisica - Lectures 24-26 46
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Alternative method - 1

E, energy levels

1

S, "degeneracy" (# available states for each level)

1

N, occupation number (# occupied states) N, <,

1

N,/S. (E,) probability distribution function (pdf)

F=U-TS free energy
U= ZNl.Ei total energy

S=ky;InW entropy

N
W = HS—’ number of microstates
S NS =N,

19/21-11-2012 L.Lanceri - Complementi di Fisica - Lectures 24-26 47

Alternative method - 2

equilibrium condition: conservation of particle number:
oF
SF=)——6N,=0 YN, =0
T ON, ,~
at equilibrium, exchange of electrons between levels k and / :
oF oF
—ON,+—0N,=0 ON,+6N,=0
oN, oN,
F F
S VEkl: 8_ = 8_ = 1 "chemical potential"
oON, ON,

At equilibrium, the chemical potential (defined as the rate of change
of the free energy F for a change 8N of the number of particles)
is the same for all the energy levels, constant across the system

19/21-11-2012 L.Lanceri - Complementi di Fisica - Lectures 24-26 48
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Alternative method - 3
S

N (s, N)

=ZNjEj —kBTZj[lnSj! ~InN,! ~In(S, —Nj.)!]

F=U-TS= ZNE lenH

InN!=NInN-N Stirling's approximation (large N)

F=YNE, - kBTz[Sj InS, -~ N,InN, (S, - N, )In(S, - Nj)]
J J
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Alternative method - 4

Chemical potential:
oF
=—=E —k,T —N.InN, —(S,—N,)In(S,—N,) |=
:u“ aNl i[ i i ( i l) ( i t):'
S
=E —k,T[-InN, - 1+In(S, - N,)+1]=E, —kBTln[F’—lj
Relation with the occupancy of the available states:
E — : E - 4
- ‘uzln i—1 = exp i =i—l
k,T N, k,T N,

1 1

Fermi-Dirac probability distribution function (pdf):

B

N, E —u
E)=—"t=|1+
f(E) S, { eXp(kT [
1+exp| —
k., T

B
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B 3 1 “Fermi energy”:
- E-u j u(T=0K)=E

L.Lanceri - Complementi di Fisica
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Fermi-Dirac pdf
For fermions, kg = 8.617 x 105 eV/K
obeying the Pauli principle:
1 T = absolute temperature
f(E)= (
I+e

(what about bosons? See next slide)

E-Ep)/kgT 1 “chemical potential”

“Fermi level” E. = u(T=0K)

T I T

1.0

08
f(E) 06

04—

E — Eg (eV)

¥ 19/21-11-2012 L.Lanceri - Complementi di Fisica - Lectures 24-26 51

Fermions, bosons and classical limit

* Fermions: Fermi-Dirac distribution (at most one fermion per
state):
1

fFD(E)=m

+ Bosons: Bose-Einstein distribution (any number of bosons per
state)

1 This sign makes

fBE (E) = m / a LARGE difference!

» Classical: Maxwell-Boltzmann (good limit of quantum statistics
when: few particles / high temperature, small filling probability
per state) 1

—(E-p)/kgT
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Fermions, bosons and classical limit

Comparison of the 3 pdfs:
4 1

fo(E)=
FD _
3 1
fo(E)=
BE _
3 Bose-Einstein ( ) e(E )/ kT -1
[
; _ (BT
\ Sus (E ) =e
1 - . . \
e HET DI \ Classical limit
0 E—pu  inunits of k,T
-2 -1 0 1 2 o . .
¢ — p in units of 7 L= "chemical potential
¥ 19/21-11-2012 L.Lanceri - Complementi di Fisica - Lectures 24-26 53

Fermions, bosons and classical limit

Analysis performed in statistical quantum mechanics
(if you are interested, see a primer in the back-up slides):

~

Fermi
level
-t

IkT

kT

tLL el [Tel 3410

ol LTelel ol [T 18]

3986680787000 [[[1]
Booo [ [[[T[TTTT]IT1]

IkT

Fermions Bosons Fermions Bosons Fermions Bosons
T=0K T=0 T>>0
Degenerate quantum regime Classical regime

BLLTTTTTTTTITTTTTT

$880088898 [ [[[[[]]
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Fermi pdf: Boltzmann approximation

* Fermi pdf : 1 1
)=
: 0.8 " I+e
0.6
F(E)= 1+e(E—EF)/kT 0.4 :'
0.2 - : x—E_EF
. . . : R . kT
- 4 =2 2 a6

+ approximate expressions for energies far enough from Eg:

E—E,>3%T= F(E)=e " [y>3]= ! ze‘*'J
{ 1+e*
e 1
E-E, <-3kT = F(E) =1—¢ Er0)/k <-3 |= ~
: (®) e e

19/21-11-2012 L.Lanceri - Complementi di Fisica - Lectures 24-26

Number of carriers at band edges
(Boltzmann approximation)

— We have now “understood” all the ingredients needed to
obtain carrier concentrations in intrinsic and extrinsic
semiconductors at equilibrium

+ allowed and forbidden energy bands
 density of available states
* Fermi probability density function
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Intrinsic carrier concentrations n, p

e (E)= m,~[2m, (E _EL.)

“Effective density of states”

N lh? in the conduction band
N — —E-E)kT S
. F(E)= e ) 2 kT \"
N DN Ne=2| —5—
S h
5 CONBDAL:\ICDTION +
|t nEnp = — P n= Nce—(Ec—EF)/kT
50 e —(Ep—Ey )/kT
Eyv A p=n; ___,pE].VVe P
VALENCE
7/BAND, v
n(E)AND p(E) N 3/2
2rtm kT
Ny =2 ;
’ / h
,' I—F(E)E o ErEVAT
“Effective density of states”
’ m, ’Zm; (E,-E) in the valence band
8y (E )— o Exercise Integrate g(E)F(E) to obtain n a

19/21-11-2012
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nd p

Intrinsic electron concentration n

+ Explicit computation for electrons:

n= | g (EYF(E)dE =

g.(E) state density

F(E) ~ e*(E*EF)/"T

Fermif. for E—E, >3kT

Ec
N2 o .
2m’ . change variables:
—4r ”2’n J‘ (E_Ec)l/ze (E~EVKT g — , g ,
h Ee E'=E-E_ dE’ =dE
=47 2’?;" J. E’l/ze*(E'+EC*EF)/deE’ — X = dE, = kTdx
h 0
2m’ )" E.—E
_ n y2 BT B [T 2 gy
=4n e (kT) exp( T )J.O x"e dx
[ 2mm kT ” oof _Ec=Es N
B h? P kT I e dx = —
0 2
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Intrinsic hole concentration p

* Explicit computation for holes: [, () state density

1-F(E) for E—E, <-3kT

P=:£gv (E)(I_F(E))dE= I_F(E)ze—(EF—E)/kT

* 3/2 Ey .
an 2m, J- (E, - E)I/Z o (E-e)ir g |change variables:
= y =
no)os E'=E,-E dE =-dE
m y2 E
m ,
san| T | [ BV Ep 2 x=—  dE’=KTdx
h 0 kT
om )" E.—-E
32 - = —x
=4z th (kT') exp(— FkT . ) _[0 xPe ™ dx =

{30) (5"
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oEs

JU xVe ™ dx =

A

Intrinsic carrier densites

e . Intrinsic
For an intrinsic _ _ '

~ N ~~(EE)k|  semiconductor: n=p="n;| carier
PENye density

2mm' kT Y

0= Noe Fe BT

h2
=2.8x10"cm™ (Si), 4.7x107 cm™ (GaAs)

N¢ : “Effective density”
of states
in the conduction band

B 3/2
2rm kT AN
_ P
Ny : “Effective density” Ny 22[ B2 ] e @ T~300K
of states
in the valence band =1.04x10"cm™ (Si), 7.0x10"% cm™ (GaAs)

N¢, Ny : also called “quantum concentrations” in statistical mechanics
physical meaning: in the Boltzmann approx. (“non-degenerate” semiconductors)
n << N¢, p << Ny : low occupancy of states, behaviour similar to classical gas
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“effective densities” or “quantum concentrations”

N, Ny : physical meaning: density corresponding to the transition
from the classical to the quantum behaviour of a gas

particles 1 v average distance between particles
concentration 11 =—% ;
. P "W A\
de Broglie E=X —_" _
2m  2mA’
S 1 , 3
equipartition E=—mv ==k, T r>>A
2 2
“thermal” de Broglie wavelength
h2 3 h V\/\/W\/\/\f
22k T = A=
2mA 2" \3mk, T BN

Classical gas condition

~

3/2

r>>A & L>>—h Sk, T
n'* " \[Bmk,T h’
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“gquantum
=7, concentration”

= n<<[

Intrinsic Fermi level

n=N_.e Fe )i PR Intrinsic
i ::r:n?cl:mn;lrjlgzrc n=p=n;| carrier
p=Nye " ’ density
n=p
E.+E kT . | N, E.+E 3kT | m
ﬁEl:EF:u_F_l Vo= ZC V+ 1 p
2 2 N, 2 4 \m,
E.+E
>|E,=—*¢ 5 v Intrinsic Fermi level:

in the limit of equal effective mass for electrons and holes,
approximately in the middle of the forbidden energy gap
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Mass action law

_ —(Eq—E; )/kT insi

nzNee il For an intrinsic |,, — » — Intrinsic
~ N (E-—Ey)/i|  semiconductor: P i| carmer

p=Nye density

L

“mass action law”: at thermal equilibrium:

np=n’ :NCNVe_Eg/kT n =yN.N,e o/ 24T

Typical values at room temperature (T = 300 K, kT = 0.0259 eV):

Ncem?] | Ny[em? | m,*/m, |m,*/m, |E_[eV] |n;[cm?

Si 2.8x10"° | 1.04x10"° 1.08 0.56 1.1 1.5x1010
GaAs 4.7x10'7 | 7.0x10"8 0.067 0.48 0.66 1.8x106

, Ge 1.04x10"° | 6.0x10'8 0.55 0.55 1.43 2.4x101"3
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Intrinsic carrier densities

+ Temperature dependence o 1000 500 zclon ‘°.°<|§o 2o
— increase with temperature B 1 e o =
- smaller with larger E, |o‘7i \
+ Caveats: Ee
— Pure Si: very low conductivity: o5
c~106(Qcm)'at T=300K 7 s ——Rpom

— However, in practice dominated by
defects (Kowalski method: typically
10""/cm?)
o= 105(Q cm)"’

— Doping is needed in practice, to
control conductivity!

[

{

INTRINSIC CARRIER DENSITY nj (em™3

10'2 :*

A s\ _ijmpeJrature
ook IR
A

101} T~
[ \ (45“0'0
1010}

GaAs|

/

108E

Exercise Estimate orders of magnitude for F
the conductivity of Si (pure and with realistic defects) KCZ@

05 10 1.5 20 25 30 33—=0 45

1000/T (K™
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Lectures 24-26 - summary

* Using results from quantum mechanics in 1-d (periodic potential,
infinite potential well) and in 3-d (hydrogen and hydrogen-like atoms,
angular momentum and spin) we moved from single particle
(electron) to many (weakly or non-interacting) particles (electrons),
filling one-particle states (“orbitals”) according to the Pauli exclusion
principle for identical fermions.

*  We qualitatively described the “band model” for conductors,
insulators and semiconductors, linking it to the results obtained in
the 1-d simple Kronig-Penney model (periodic potential), (E:k)
dispersion relations and effective mass for electrons and holes

*  We considered equilibrium statistics and obtained both the density
of states and the Fermi-Dirac probability distribution functions,
essential ingredients to predict equilibrium carrier concentrations.

* We finally computed the charge-carrier concentrations in intrinsic
(pure) semiconductors at thermal equilibrium, evaluated the Fermi
level, and formulated the “mass action law”
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Lecture 24-26 - exercises

* Exercise 1: Consider a simplified model of a conductor with
non-interacting conduction electrons in a 3-d infinite well. Find the
Fermi energy and the average inter-electron spacing. Apply the
results to the case of aluminum (A=27), assuming: density p =
2.7x103 kg/m3, and three free atoms per electron (hint: see
Bernstein, par.10-5 and example 10-5).

* Exercise 2: Explain the reason for introducing the effective
mass in the density of states as obtained from the “infinite well”
box model.
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Back-up slides

Quantum statistics primer

Entropy
Thermal contact and thermal equilibrium
Temperature and Boltzmann factor
Diffusive contact and diffusive equilibrium
Chemical potential and Gibbs factor
Fermi-Dirac and Bose-Einstein statistics
distribution functions and classical limit
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Entropy

Quantum states are either accessible or not accessible to a system
All accessible states are equally probable (fundamental assumption)

S=k,o
g : number of accessible quantum states

o=logg

Entropy S measures the number of accessible states

Example: system of 3

elementary magnets, each  Lfee magnets up: [FYEIE
with magnetic moment +m  Two magnetsup: [ Tifals  Tulals  Lilals]
(up) or -m (down). o
ne magnet up:

If the total magnetic moment B P filals hlzls hilaTs
is M = 2m, there are g = 3 None up: Iilala-
accessible states

E 19/21-11-2012 L.Lanceri - Complementi di Fisica - Lectures 24-26 69

Two insulated systems:

Thermal contact and equilibrium
U, U, U=U+U,

U, U,
Ny N,
3, 85
N,,N, nparticles N=N,+N,

Insulation
‘u; + U= U, + U, g(N.U)= Zgl(NnUn)gz(Nz’U—Ul)

U,
The two systems in thermal contact:
they exchange energy, not particles

Two closed
systems not
in contact

energies

The systems are in
thermal contact

Thermal conductor allows
exchange of energy

Insulation

Energy is exchanged maximizing entropy ( < g ) to reach equilibrium

o, o,
dg= [ﬂiL 8,dU, + gl[a{ilz dU, =0, dU, +dU, =0
<:>l Jdg :1[ og ] {QIOggj _ 310gg] o (90',] _ Jdo,
8\, ), &\, ), u, ), \au, ), au, ). ~\au, ),

L.Lanceri - Complementi di Fisica - Lectures 24-26
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Temperature

Thermal equilibrium condition:

no net energy transfer,
maximum entropy

U,,N, U,.N, 1 _(d30,) [95,) _1
o, o, Tl_ 8U1 N_ 8U2N_7:2
corresponding to equal “absolute (Kelvin) temperature” T:
v=k T, L=k 20| o[ B B o)
T W, ), oo, b \9U, ) au, ),
N 1_ S
T 8U

¥ 19/21-11-2012

wﬂ"—‘

Definition of absolute (Kelvin) temperature T

Temperature regulates the energy transfer !

&

L.Lanceri - Complementi di Fisica - Lectures 24-26

Boltzmann factor

Small system, with only two states, in

thermal contact with a large system called
reservoir ; total energy U,

U,—¢ energy

g(U,—¢) states

System Reservoir
state1 O U, g(U,)
state2 € Uy—¢ g(U,—¢)
energy energy  accessible

states
The ratio of probabilities for the two states of the small system

depends on the corresponding multiplicities g for the reservoir
P(e

| 3(U, - )_exp[O' B Xp(_g]
PO)| g(Uy) exp[o l k,T
U

19/21-11-2012

~—

“Boltzmann factor”

) ~o(Uy)- »{j{,’] =o(U)- 15
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Partition function, etc.

&® ®
ey G = o, Energy Uy — ¢, Generalization to
ga(Up — &) states ga(Uy — &) states systems with any
number of states
3 8 (s), with energies £
State 1 State 2 u
Energy ¢, Energy e,

@ (b)

Ratio of probabilities for two of the states of the system :

P(g) exp[-g/k,T] Basic ingredients for

Ple) —e k. T all computations
(&) expl=&:/k,T] (average macroscopic
Probability of a given state s of the system; | duantities, etc.)
exp(—¢,/k,T
P(e)= M Z= Zexp(—s ;/ksT) | “Partition function”
j
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Diffusive contact and equilibrium
S “Helmoltz free energy”
F=U-TS=U-10

—
is minimum for systems in
= thermal contact with a
| System 3, reservoir, with constant
volume

System 8,

s i Balance of conflicting
: requirements (minimum U,
maximum “disorder” S)

Reenvonia t‘.\Energy exchange =" ‘ e
F=F+F,=U+U,-1(0,+0,) N=N,+N, =constant

“diffusive equilibrium” (zero net particle transfer) if F is a minimum
with respect to variations dN, =—dN,

I o[ 25) g [(25) _(25) T o | (25 _(2F
dn, ). dn, ). an, ) \dn, ). an, ) \an,
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dF =

VY
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Chemical potential

“chemical potential”:

definition Two systems 1, 2:
oF diffusive equilibrium =
,U(T,N,V) E[_J q :ul .uz

dN ).y thermal equilibrium  7,=7,
Chemical potential: u>u = dN =-dN,<0
guides the flow of particles Particles: net flow from 1 to 2
Temperature: 7,>7, = dU=-dU,<0
guides the flow of energy

Energy: net flow from 1 to 2

U=, =W, +U, “internal” (thermal origin) + “external”
*  (gravitational, electrostatic, magnetic, etc.)
contributions

WU.N.V)=- do| _ 95 Relation with entropy
o dN ), dN ),, (can be derived)
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Gibbs factor

® ® System in

Particles N, — N, Particles N, — N, thermal and

38 3 P P
Energy U, — ¢, @ Energy U, — &, [ State 2 dlftfrl‘lSIVe conta.lct
WwiIth a reservoir

8Ny =N, Uy —¢y) . 8(No — Noy Uy — &3)
Particles N, Particles N,
Energy ¢, Energy e,

Ratio of probabilities for two of the states of the system
(generalization of the Boltzmann factor: it can be shown that...):

P(Nl’gl) _ expl:(Nltu_gl)/kBT:I
P(N,.&,) exp[(N,u—¢,)/k,T |
Probability of a given state s of the system:

_exp[(Nu—e,)/k,T ]

P(N, e, )= Z zs%exp[(Nu—gS<N))/k3T]

“Gibbs factor”

“Gibbs sum”
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Reservoir Reservoir

Vacant

“System” = single orbital, vacant or
occupied by a single fermion

Reservoir = all other orbitals

Fermi-Dirac distribution function

0 fermions 1 fermion
0 energy BN & energy
N, fermions N, — 1 fermions
U, energy s Uy — ¢ energy
g(Ny, Up) 8Ny — 1, Uy —¢)
o(Ny, Uy) = log g(Ny, Uy) o(Ny — 1, Uy — &) = a(Ny, U) _<%) —8(3—Z>
U N

Witer
= o(N,, U(,)+7—7

Problem: find the average thermal occupancy of the orbital thus singled out

9
Y
i

N
aOn:

S
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.

Reservoir Reservoir

Z=exp|(0u—0)/k,T] +exp[(1u—€) [k, T] =

=1+exp|(u—¢)/k,T]
Average orbital occupancy:
B exp[(u—e)/kBT] | 1
(N(e))= 1+exp|(u—&)/k,T] | exp[(e—w)/k,T]+1 us

Fermi-Dirac distribution function

Vacant
0 fermions
0 energy PR SRS
N, fermions N, — 1 fermions
U, energy s Uy — ¢ energy
8(Ny, Up) 8Ny — 1, Uy —¢)
o(Ny, Up) = log g(N,, Uy) o(Ny — 1, Uy — &) = o(N,,

Gibbs sum (“system” = orbital with two states only) =,

1 fermion
& energy

% = (&), ~(36),

pooe
Utr—7

Fermi-Dirac

5 19/21-11-2012 L.Lanceri - Complementi di Fisica - Lectures 24-26

pdf
z

L.Lanceri - Complementi di Fisica

39



Complementi di Fisica - Lectures 24-26 19/21-11-2012

probability distribution function
(Fermi-Dirac)

Detailed calculations
(Combinatorial approach)

F.-D. probability distribution function

* From thermodynamics:

— The most likely “macroscopic” state is the one corresponding to
the largest number W of equivalent “microscopic” states,
compatible with a given total number N of electrons and a fixed
total energy E;

— W= “thermodynamical probability”; “entropy” = In (W)

N; electrons

el e R A ___ 4—| Siavailable states at energy E;
; ‘\/‘ (partially) filled by N, electrons
Bk A O e

. § S; states
e me W

N (S,—N,)N,!

EEt —m —o— —— —— —— —o— i \"Vi

E,+ —eo— —eo— —— —— ZN‘-ZN:COIISt.

i

Probability distribution function
at thermal equilibrium:
| N; S;=7?7?7? (at energy E;)
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inNi = E;,; =const.
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Maximization procedure to find N,/S;

» Take the logarithm, use Stirling’s approximation, and set the
differential to zero (S; are constant, N; variable):

InW =Y'(InS,!~In(S, = N,)! - InN,))

Inx!=xlnx—x (x large)

InW = Y [S,InS, S, (S, —N,)In(S,~ N,)+(S,~ N,) = N,InN, + N,]

=Y [S,InS,~ (S, —N,)In(S,~ N,) = N,InN,]

d(inw)=3, a(lal;vw Jan,

=Y [In(S,~N,)+1-InN, - 1]aN,

=Y In(S,/N,~1)dN, =0

i
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Constraints: Lagrange multipliers
d(InW)=0. = Y.In(S,/N,~1)dN,=0
ZN,.;N. = Y dN,=0
ZEiNi;ETOT. = Z;idNi:O

Introducing the undetermined Lagrange multipliers o and J :

> [In(S,/N, = 1)~ o~ BE,]JdN, =0

i

In(S,/N, ~1)~ o~ BE, =0

S,/N,—1=¢"P
N. 1 1 For closely
f(E,-) = ?' = —1 + o*tBE; — f(E) = H—TﬁE spaced levels,
i ¢ e E >E
7 19/21-11-2012 L.Lanceri - Complementi di Fisica - Lectures 24-26 82

L.Lanceri - Complementi di Fisica 41



Complementi di Fisica - Lectures 24-26 19/21-11-2012

Number of carriers at band edges
(Boltzmann approximation)

— Summary of results for “intrinsic” semiconductors
* “Intrinsic” density of carriers
» “effective density of states”
* “Intrinsic” Fermi level
+ “Mass action” law
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Intrinsic Fermi level and carrier density
N.= 2[ 2mm kT ]3/2

N. : “Effective density” n

of states

~ 19 -3 . 17 -3
in the conduction band =2.8x10 c”i (Sg/)z, 47107 em™ (Gas)
_ | 2mm kT o
N, : “Effective density” Ny =2 B2 o @ T~300K
of states

in the valence band =1.04x10"cm™ (Si), 7.0x10" cm™ (GaAs)
nzNee | Eor an intrinsic Intrinsic
~(Eq~Ey)/kT|  semiconductor: n=p="n;| carier
p=Nye ™ ' density

m
n—p:>El.:EF:7EC+EV +k—T1n & ziEC*—EV +—3kT1n L :EisiEC-'_EV
2 N, 2 4 m, 2
“mass action law”: at thermal equilibrium: Intrinsic
I —E, [kT _ ~E, [2kT Fermi
np=n; =N.N,e * n.=,N-N,e level
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