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In these lectures
• Contents (1)

– Insulators, semiconductors, conductors
– Semiconductor materials: resistivity and conductivity
– Crystal structure of solids

• Reference textbooks

– D.A. Neamen, Semiconductor Physics and Devices, McGraw-Hill, 3rd

ed., 2003, p.1-16 (Crystal structure of solids)
– R.F.Pierret, Advanced Semiconductor Fundamentals, Prentice Hall,

2003, 2nd ed.
– S.M.Sze, Semiconductor Devices - Physics and Technology, J.Wiley

& Sons, 2nd ed., 1985.
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In these lectures
• Contents (2)

– Models for charge carriers: electrons and holes
– Pure (“intrinsic”) semiconductors at equilibrium

• Reference textbooks

– D.A. Neamen, Semiconductor Physics and Devices, McGraw-Hill, 3rd

ed., 2003, p.83-96 (Density of states, Fermi-Dirac), p. 103-114 (Charge
carriers in semiconductors)

– R.F.Pierret, Advanced Semiconductor Fundamentals, Prentice Hall,
2003, 2nd ed.

– S.M.Sze, Semiconductor Devices - Physics and Technology, J.Wiley
& Sons, 2nd ed., 1985.
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Insulators, semiconductors, conductors

(from SZE, fig.1-1)
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Semiconductor materials
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Resistivity ρ, conductivity σ
Recall the definitions:
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Ohm’s law (for “ohmic materials”)
R is a constant (at fixed T)
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Naïve microscopic interpretation
• Classical interpretation of Ohm’s law (Drude Model):

– Some electrons move “almost freely” in conductors
– They are subject to some sort of “collision” on atoms (not clear

how!): “dissipative” effect on the electron energy…
– Simplified picture:

• electrons are accelerated by the external field E
• on average, at time intervals τ electrons collide and “stop”
• the kinetic energy gained due to E is dissipated as “heat”
• The net resulting motion is a “drift” with average velocity v
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Exercise: 
check dimensions 
and units for 
resistivity, conductivity,
mobility
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Several problems…
• The simplified picture is appealing and defines quantities (drift

velocity, mobility) that can be indirectly measured and used to
characterize materials, but:

– Why do different materials behave differently?
– Dependence on temperature in this model: completely wrong!
– Computing the “mean free path” λ of electrons: surprise!      much larger than the

average distance d between atoms!
– NB: use “thermal velocity” rather than “drift velocity”…

⇒ We will introduce also the “Fermi velocity”, still larger

?
3

or;
m
kT

vvvvv thermdriftcollision ==== !"

NB: different physical meaning!
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Periodic table of the elements

(from ADL, Fig1-3)
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Periodic table and semiconductors

(from SZE, Table1-1)
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Element and compound semiconductors
Practical considerations: most frequently used in

standard devices:
– (Ge)… Si, GaAs

(from SZE, Table1-2)

Crystal structure
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Crystal lattice and unit cell
• Two-dimensional

periodic
arrangement of
atoms

(from PIER, Fig.1-1)
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Crystal lattice and unit cell

(from PIER, Fig.1-2)

Crystallography:
classification 
of all possible 
configurations
(14 Bravais cells,
230 possible patterns)

Three-dimensional periodic arrangement of atoms; an example

(from PIER, Fig.1-4)
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Si and GaAs unit cells

(from SZE, fig.1-3)

“Diamond lattice”: Si, Ge

“Zincblende lattice”: GaAs

Lattice constant: a = 5.43 Å (Si)
                              a = 5.64 Å (Ge) 

Lattice constant: a = 5.63 Å (GaAs)

Exercise: 
What is the distance between 
nearest neighbours in Si crystals?
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3. Bragg, “reciprocal lattice”, Brillouin

Constructive interference (Bragg) if:

 

n! = 2asin" ! = 2# k( )

“real” space
(x, y, z)

“reciprocal” space
(kx, ky, kz)

One-dimensional lattice reflections:

 

! = " 2 # sin! =1 # n 2"
k

= 2a # k = n"
a

One-dimensional “reciprocal lattice”: “first Brillouin zone” and “basis vector”
( )1m!
xk

0a!" a!
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Miller indices
• Miller indices (i j k)

– Intercepts of the plane on the
three cartesian axes, in units
of lattice constants

– Reciprocals, reduced to the
smallest integers having the
same ratio

• Other conventions and
“Wafer flats”

– See “advanced” topics

• On planes of
different
orientation in the
crystal:

– Different number
of atoms and
atom spacing

– Different crystal
properties
(mechanical,
electrical)

Exercise: 
If a plane has intercepts 
2a, 3a, 4a along the three
axes, find its Miller indices

Exercise: 
Find the number of atoms
Per cm2 in Si in the (100),
(110), and (111) planes

Valence bonds model
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Atoms bonding
• Classification (recall from Chemistry courses?)

– Ionic: “low affinity”: lose electrons, “high affinity”: absorb electrons;
negatively and positively charged ions attract each other

– Metallic: “sea” of loosely bound (almost free) outer electrons keep
together the positive ions left behind (found in good conductors)

– Covalent: energetically stable configuration with outer electrons
“shared” between neighbour atoms, when “shells” fully occupied
(very stable, found in semiconductors and insulators)

– Van der Waals: weak bonding between electric dipoles

• Covalent bonds (Si, Ge)
– Schematic representation
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Broken bonds: electrons and holes
Basic bond model of “intrinsic” (= “pure”) Silicon

a broken bond at position A,
resulting in a conduction electron
and a “hole”

deficiency filled by one of the
neighboring electrons (in B),
resulting in a shift of the “hole”
from A to B
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Energy band model
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Isolated atoms: energy levels

Idealized representation of the
first three allowed Bohr orbits
and their quantized energy levels

Schematic representation of 
how the 14 electrons fill the 
lowest available “shells”

Hydrogen atom (Z=1) Silicon atom (Z=14)

2

eV 6.13
n

En !=

21s
22s
62p
23s
23p

4 electrons needed 
to complete the 3p shell
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Isolated atoms: energy levels
Naïve pictures! (available electron states as circular Bohr orbits) 
QM: 3-d Schrödinger equation for electrons in the electrostatic field
- H atom (Z=1 electron): exact solutions (Bohr energies are OK!)
- (Z≠1)-electron atoms: approximate solutions (shell method)

More information:
- J.Bernstein et al, Chapters 9, 10, 11
- D.J.Griffiths, Chapters 4, 5.1, 5.2

Qualitatively: see applet with H wave functions and quantum numbers!
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From energy levels to energy bands

Somehow (quantum mechanics !),
when many atoms get close together
their quantized energy levels split
and turn into many states grouped in
“energy bands”, see diagrams

Conduction only happens if electrons
have empty “states” available at
nearby energy !  

 “Conduction Band” 

 “Valence Band” 
 “Gap” 
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Energy levels and energy bands diagrams
N Silicon atoms,
14 × N electrons: 
allowed states grouped
in energy bands, filled 
according to Pauli Principle

Isolated hydrogen atom,
only one electron:
allowed energy levels  En 

0,0

electrons boundfor    0

><

<+=

kinpot

kinpot

EE

EEE

!"" rEpot for    0

2 × N states

8 × N states

4 × N states

4 × N states

filled

filled

mostly
filled

mostly
empty
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Energy band representations

 insulators  semiconductors     conductors 

kinetic energy and 
potential energy
for electrons and holes
(= for “carriers”):
Why? See next slide…
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Energy band representations

 

Eelectron

 

Ehole

 

kelectron

 

khole
Close to the band edges, the E:k diagram is approximately parabolic,
similar to that of a free particle, with effective mass m*…

  

 

bottom of conduction band :   Ee ! EC " !
2ke

2

2me
# me

# > 0 kh = !ke mh
# = !me

#

top of valence band :               Ee ! EV " !
2ke

2

2me
# me

# < 0 Eh ! EV = ! Ee ! EV( ) " !
2kh

2

2mh
# mh

# > 0
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Crystal momentum and effective mass

  

 

E = p2

2m0

p = m0v = !k

Free electron: 

Electrons close to the bottom
of the conduction band (E>Ec):

  

 

E = Ec + p 2

2me
! p = me

!v = !ke

Holes close to the top
of the valence band:

  

 

Ehole = p 2

2mh
! p = mh

!v = !kh

From the practical point of view: 
electrons and holes in a crystal
as classical particles characterized by
 “effective mass”, kinetic energy, and
“crystal momentum”:
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Energy-momentum in three dimensions
• More complications:

– Different E-p relations in
different space
directions

– Usually only [111] and
[100] are shown

– Minimum E in
conduction band and
maximum E in valence
band may occur for
different crystal
momenta ! (“indirect”
semiconductors)

– Practical
consequences, see later
(for instance:
optoelectronic devices)

Si crystals: GaAs crystals: 

“indirect” 
semiconductor 

“direct” 
semiconductor 

mn*~0.07m0

mn*~0.19m0
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Indirect and direct semiconductors - 1

“indirect” 
semiconductor 

“direct” 
semiconductor 

 

Eelectron

 

kelectron

 

Eelectron

 

kelectron

 

!" a

 

!" a

 

! a

 

! a

Photon-induced transitions:

“direct” (2-body)
electron - photon
more probable, for the same ΔE 

“indirect” (3-body)
electron - photon - phonon
less probable, for the same ΔE 

Different optical properties! 

 

ki,Ei( )

 

ki,Ei( )
 

k f ,E f( )

 

k f ,E f( )
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Indirect and direct semiconductors -2

“indirect” 
semiconductor 

“direct” 
semiconductor 

 

Eelectron

 

kelectron

 

Eelectron

 

kelectron

 

!" a

 

!" a

 

! a

 

! a

Energy and crystal momentum
“jumps” for electrons
in Silicon (typical):

Photons carry energy, 
but small momentum

 

ki,Ei( )

 

ki,Ei( )
 

k f ,E f( )

 

k f ,E f( )

  

 

!p = !!k = !k f " !ki # 0 ÷ !$ a

# 3%10"8  eV  s  cm-1  (Si)
!E = E f " Ei # Eg

#1.1 eV  (Si)

 

photons :  E !1eV "

" p = E c ! 3#10$11  eV  s  cm-1

phonons : p ! 3#10$8  eV  s  cm-1 "
" E = pvphase ! 0.02 eV

Phonons carry momentum, 
but small energy

19/21-11-2012 L.Lanceri - Complementi di Fisica - Lectures 24-26 32

A “real life”
example (Ge)

From:
C.Kittel, 
Introduction to Solid State Physics

Theoretical computation of the
“band structure of Ge”,
in good agreement with 
experimental data (not shown)
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Intrinsic semiconductors
at equilibrium

We need to know:
charge carriers concentration
(n electrons/cm3, p holes/cm3)

Outline of ingredients and final results
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Thermal equilibrium
• Thermal equilibrium = ?

– Between two bodies or systems in “thermal equilibrium” there
can be no net transfer of any sort  (law of detailed balancing).

• Thermal equilibrium: static, endless, useless… why do
we care?
– Systems near thermal equilibrium tend to come to equilibrium

in predictable ways
– The predictable behavior of systems not quite in equilibrium

allows us to design and construct useful devices!

• From the statistical point of view:
– Thermal equilibrium represents the distribution of maximum

probability, achieved when the detailed balancing between the
possible processes is reached.
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Finding the maximum probability
• First part: specify all possible “states” (solutions to the S.

equation) and a set of appropriate boundary conditions
– Possible eigenstates of the system (in our case E-k  plot!)
– Total internal energy of the system
– Rules about filling states (in our case the Pauli principle)
– Rules about conservation of particles

• Second part: procedure to find the most likely distribution of
particles among the states, that does not violate any of the rules
– Finding a maximum (prob.) subject to constraints (“rules”):

Lagrange’s method of undetermined multipliers
– Or, alternatively, apply thermodynamics (min. free energy)

• Let’s start with the “density of states” (step 1)

Step 1: density of states
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Density of states …
• Density of states g(E)

– g(E) = number of allowed states for electrons in the energy range
(E, E+dE ), per unit volume of the crystal

– For a general solution (any E ) we should use the full machinery of
band theory… (possible, but complicated!)

– but we are mainly interested in the band edges, normally populated
by carriers: much simpler!      Shortcut:

• Equivalent problem: density of states for electrons in a 3-d box,
provided we finally modify the solution, taking into account the
“effective mass” m* and the band structure

“Equivalent” problem:
electrons in a box
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Electrons in a box
• Infinitely deep 3-d potential

well:
Time-independent Schrödinger

equation

Separation of variables
m
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For each of the three functions:

 

1
!x
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"x 2
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2
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"x 2
+ kx

2!x = 0 0 < x < a

(similar for the other two)
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Energy eigenstates and eigenvalues

  

 

!E x,y,z( ) = Asin kxx( )sin kyy( )sin kzz( ) kx = nx"
a
, ky =

ny"
b
, kz = nz"

c

E = !
2k 2

2m
k 2 = kx

2 + ky
2 + kz

2 nx,ny,nz = ±1, ± 2, ± 3, ...

Each solution is associated with a 3-d k-space vector:

One solution per “cell”:
density per unit volume
of k-space:

 

1
!
a
!
b
!
c

= abc
! 3
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E  intervals in k-space

  

 

E = !
2k 2

2m
k 2 = kx

2 + ky
2 + kz

2

dE = dE
dk

dk = !
2k
m

dk

 

k, E
k + dk, E + dE

Counting the density of states in the interval (E, E + dE) or (k, k + dk) 
can be done in two steps:
- computing the spherical shell volume of k-space (see figure)
- multiplying it by the density of states in k-space (see previous slide)
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Counting the solutions in E  intervals

 

allowed energy states
unit volume in k - space
! 

" 
# 

$ 

% 
& = 1

8
' 2 ' abc

( 3 = abc
4( 3

Only the 1st octant in k-space
corresponds to independent
solutions

Each state can be occupied 
by two electrons with opposite spin
(Pauli principle)

 

energy states with
k < ! k < k + dk
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4( 3 4( k 2dk

  

 

energy states with
E < ! E < E + dE
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# 
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' ( ) E( )dE = abc m 2mE

* 2!3 dE + g E( ) ( ) E( )
V

= m 2mE
* 2!3

  

 

k 2 = 2mE
!2

dk = 2m
!

1
2
dE
E

Crystal volume V = abc

Density of states

k-space volume
between two spheres
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… density of states …
• Density of states, simplified model (box with infinitely deep walls)

• But: bands? Interaction with the crystal periodic potential? No
problem:
– the “average effective mass” m* and the “crystal wave number” k

describe the interactions with the crystal
– for E  close to EC  :

– Similarly for holes:

  

 

g E( ) = m 2mE
! 2!3

  

 

E ! EC " !
2k 2

2mn
# $ gC E( ) =

mn
# 2mn

# E ! EC( )
% 2!3

E & EC

  

 

EV ! E " !
2k 2

2mn
# $ gV E( ) =

mp
# 2mp

# EV ! E( )
% 2!3

E & EV
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… with “average” effective masses
• The effective masses appearing in the density of states for

some useful semiconductors (Si, Ge, GaAs) are averaged
over crystal directions

– only GaAs is approximately isotropic
– See R.F.Pierret, section 4.1.2, p.94, for details on Si and Ge

Step 2: probability distribution
function (Fermi-Dirac)
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F.-D. probability distribution function
• From thermodynamics:

– The most likely “macroscopic” state is the one corresponding to
the largest number W of equivalent “microscopic” states,
compatible with a given total number N of electrons and a fixed
total energy ETOT

– W = “thermodynamical probability”; “entropy” = ln (W )

Si available states at energy Ei
(partially) filled by Ni electrons
according to Pauli principle

 

W = Wi
i
! =

Si
Ni

" 

# 
$ 

% 

& 
' 

i
! = Si!

Si ( Ni( )!Ni!i
!

Ni
i
) = N = const.

EiNi
i
) = ETOT = const.Probability distribution function

at thermal equilibrium:
Ni / Si = ???  (at energy Ei )
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Maximization procedure to find Ni /Si
• Take the logarithm lnW, use Stirling’s approximation, and set the

differential to zero (Si  are constant, Ni  variable: see back-up
slides for details) to find Ni /Si that maximizes W or lnW

Introducing the undetermined Lagrange multipliers α and β to
express the constraints on total N and E (constant) one finds:

 

f Ei( ) = Ni

Si
= 1
1+ e!+"Ei

# f E( ) = 1
1+ e!+"E

For closely
spaced levels,
Ei → E

• α and β: from thermo-dynamical arguments ⇒ for fermions,
Fermi distribution:

 

! = 1
kBT

" = # EF

kBT
f E( ) = 1

1+ e E#EF( ) kBT

kB = 8.617 × 10-5 eV/K

T = absolute temperature

EF “chemical potential”
or “Fermi level”
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Alternative method - 1
Ei energy levels
Si "degeneracy" (# available states for each level)
Ni occupation number (# occupied states)  Ni ! Si
Ni Si Ei( ) probability distribution function (pdf)

F =U ! TS free energy

U = NiEi
i
" total energy

S = kB lnW entropy

W =
Si !

Ni ! Si ! Ni( )!i
# number of microstates
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Alternative method - 2
equilibrium condition:            conservation of particle number:

!F =
"F
"Nii

# !Ni = 0 !Ni
i
# = 0

at equilibrium, exchange of electrons between levels k  and l :

 "F
"Nk

!Nk +
"F
"Nl

!Nl = 0 !Nk + !Nl = 0

$% k,l : "F
"Nk

=
"F
"Nl

= µ "chemical potential"

At equilibrium, the chemical potential (defined as the rate of change 
of the free energy F for a change δN of the number of particles)
is the same for all the energy levels, constant across the system
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Alternative method - 3
F =U ! TS = N jEj

j
" ! kBT ln

Sj !
N j ! Sj ! N j( )!j

# =

= N jEj
j
" ! kBT lnSj ! ! lnN j ! ! ln Sj ! N j( )!$% &'j"

lnN !! N lnN " N Stirling's approximation (large N )

F = N jEj
j
! " kBT Sj lnSj " N j lnN j " Sj " N j( ) ln Sj " N j( )#$ %&

j
!
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Alternative method - 4

µ !
"F
"Ni

= Ei # kBT
"
"Ni

# Ni lnNi # Si # Ni( ) ln Si # Ni( )$% &' =

= Ei # kBT # lnNi #1+ ln Si # Ni( ) +1$% &' = Ei # kBT ln
Si
Ni

#1
(
)*

+
,-

Ei ! µ
kBT

= ln Si
Ni

!1
"
#$

%
&'

( exp Ei ! µ
kBT

"
#$

%
&'
=
Si
Ni

!1

f Ei( ) ! Ni

Si
= 1+ exp Ei " µ

kBT
#
$%

&
'(

)

*
+

,

-
.

"1

=
1

1+ exp Ei " µ
kBT

#
$%

&
'(

µ T = 0K( ) ! EF

Chemical potential:

Relation with the occupancy of the available states:

Fermi-Dirac probability distribution function (pdf):

“Fermi energy”:
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f E( ) = 1
1+ e E!EF( ) kBT

Fermi-Dirac pdf
kB = 8.617 × 10-5 eV/K

T = absolute temperature

µ “chemical potential”
“Fermi level” EF ≡ µ(T=0K)

For fermions,
obeying the Pauli principle:

(what about bosons? See next slide)
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• Fermions: Fermi-Dirac distribution (at most one fermion per
state):

• Bosons: Bose-Einstein distribution (any number of bosons per
state)

• Classical: Maxwell-Boltzmann (good limit of quantum statistics
when: few particles / high temperature, small filling probability
per state)

fFD E( ) = 1
e E!µ( ) kBT +1

Fermions, bosons and classical limit

fBE E( ) = 1
e E!µ( ) kBT !1

fMB E( ) = 1
e E!µ( ) kBT = e! E!µ( ) kBT

This sign makes
a LARGE difference!
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Fermions, bosons and classical limit
Comparison of the 3 pdfs:

 

fFD E( ) = 1
e E!µ( ) kBT +1

 

fBE E( ) = 1
e E!µ( ) kBT !1

fMB E( ) = e! E!µ( ) kBT

 

E ! µ in units of kBT
µ =  "chemical potential"
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Fermions, bosons and classical limit
Analysis performed in statistical quantum mechanics
(if you are interested, see a primer in the back-up slides):
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-6 -4 -2 2 4 6

0.2

0.4

0.6

0.8

1• Fermi pdf

• approximate expressions for energies far enough from EF:

Fermi pdf: Boltzmann approximation

 

E ! EF > 3kT " F E( ) # e! E!EF( ) kT x > 3 " 1
1+ ex

# e!x
$ 
% 
& 

' 
( 
) 

E ! EF < !3kT" F E( ) #1! e! EF !E( ) kT x < !3 " 1
1+ ex

#1! ex
$ 
% 
& 

' 
( 
) 

kT
EE

x F!=

( ) xe
xf

+
!
1
1

( ) ( ) kTEE Fe
EF !+

"
1

1
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Number of carriers at band edges
(Boltzmann approximation)

– We have now “understood” all the ingredients needed to
obtain carrier concentrations  in intrinsic and extrinsic
semiconductors at equilibrium

• allowed and forbidden energy bands
• density of available states
• Fermi probability density function
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Intrinsic carrier concentrations n, p
( ) ( )

32

2
!!

cnn
C

EEmm
Eg

"
=

##

( ) ( ) kTEE FeEF !!"

( ) ( )
32

2
!!

EEmm
Eg Vpp

V

"
=

##

( ) ( ) kTEEFeEF !!"!1

n ! NCe
" EC "EF( ) kT

p ! NVe
" EF "EV( ) kT

“Effective density of states”
in the conduction band 

NC ! 2 2"mn
#kT

h2
$
%&

'
()

3 2

Exercise Integrate g(E)F(E) to obtain n and p 

NV ! 2
2"mp

#kT
h2

$

%&
'

()

3 2

“Effective density of states”
in the valence band 
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Intrinsic electron concentration n
• Explicit computation for electrons:

n = gC E( )
EC

!

" F E( )dE =

= 4# 2mn
$

h2
%
&'

(
)*

3 2

E + EC( )1 2 e+ E+EF( ) kT

EC

!

" dE =

= 4# 2mn
$

h2
%
&'

(
)*

3 2

,E 1 2e+ ,E +EC +EF( ) kT

0

!

" d ,E =

= 4# 2mn
$

h2
%
&'

(
)*

3 2

kT( )3 2 exp +
EC + EF

kT
%
&'

(
)*

x1 2e+ x dx
0

!

" =

= 2 2#mn
$kT

h2
%
&'

(
)*

3 2

exp +
EC + EF

kT
%
&'

(
)*

gC E( )    state density
Fermi f. for   E ! EF > 3kT

F E( ) " e! E!EF( ) kT   
change  variables:
#E = E ! EC d #E = dE

x = #E
kT

d #E = kTdx

x1 2e! x dx
0

"

# =
$
2
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Intrinsic hole concentration p
• Explicit computation for holes:

p = gV E( )
!"

EV

# 1! F E( )( )dE =

= 4$
2mp

%

h2
&

'(
)

*+

3 2

EV ! E( )1 2 e! EF !E( ) kT

!"

EV

# dE =

= 4$
2mp

%

h2
&

'(
)

*+

3 2

,E 1 2e! ,E +EF !EV( ) kT

0

"

# d ,E =

= 4$
2mp

%

h2
&

'(
)

*+

3 2

kT( )3 2 exp !
EF ! EV
kT

&
'(

)
*+

x1 2e! x dx
0

"

# =

= 2
2$mp

%kT
h2

&

'(
)

*+

3 2

exp !
EF ! EV
kT

&
'(

)
*+

gV E( )    state density
1! F E( )   for  E ! EF < !3kT

1! F E( ) " e! EF !E( ) kT

change  variables:
#E = EV ! E d #E = !dE

x = #E
kT

d #E = kTdx

x1 2e! x dx
0

"

# =
$
2
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Intrinsic carrier densites

NC : “Effective density” 
of states

in the conduction band (GaAs) 107.4  , (Si) 108.2

22

317319

23

2

!!

"

##$

%%&

'
(()

*
+

cmcm

h
kTmN n

C
,

 

n ! NCe
" EC "EF( ) kT

p ! NVe
" EF "EV( ) kT

For an intrinsic
semiconductor: inpn ==

Intrinsic
carrier
density

(GaAs) 100.7  , (Si) 1004.1

2
2

318319

23

2

!!

"

##$

%
%
&

'
(
(
)

*
+

cmcm

h
kTm

N p
V

,
NV : “Effective density” 

of states
in the valence band 

@ T~300K 

NC, NV : also called “quantum concentrations” in statistical mechanics 
physical meaning: in the Boltzmann approx. (“non-degenerate” semiconductors) 
n << NC , p << NV : low occupancy of states, behaviour similar to classical gas
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“effective densities” or “quantum concentrations”
NC, NV : physical meaning: density corresponding to the transition 
              from the classical to the quantum behaviour of a gas

 

n ! 1
r3

E = p2

2m
= h2

2m"2

E = 1
2
mv 2 = 3

2
kBT

particles 
concentration

de Broglie

equipartition

average distance between particles

 

h2

2m!2
= 3
2
kBT " ! = h

3mkBT

“thermal” de Broglie wavelength

 

r

Classical gas condition

 

r >> ! " 1
n1 3

>> h
3mkBT

" n << 3mkBT
h2

# 
$ 
% 

& 
' 
( 
3 2

= nq
“quantum
concentration”
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Intrinsic Fermi level

                                       Intrinsic Fermi level:

in the limit of equal effective mass for electrons and holes,
approximately in the middle of the forbidden energy gap

 

n = p

! Ei = EF = EC + EV

2
+ kT
2
ln NV

NC

" 

# 
$ 

% 

& 
' = EC + EV

2
+ 3kT
4
ln

mp

mn

" 

# 
$ 

% 

& 
' 

! Ei (
EC + EV

2

 

n ! NCe
" EC "EF( ) kT

p ! NVe
" EF "EV( ) kT

For an intrinsic
semiconductor: inpn ==

Intrinsic
carrier
density
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Mass action law

 

n ! NCe
" EC "EF( ) kT

p ! NVe
" EF "EV( ) kT

For an intrinsic
semiconductor: inpn == Intrinsic

carrier
density

kTE
VCi

kTE
VCi

gg eNNneNNnnp 22 !! ===
“mass action law”: at thermal equilibrium:

Typical values at room temperature (T = 300 K, kT = 0.0259 eV):

2.4×1013

1.8×106

1.5×1010

ni [cm-3]

Ge
GaAs
Si

1.04×1019

4.7×1017

2.8×1019

NC [cm-3]

6.0×1018

7.0×1018

1.04×1019

NV [cm-3]

0.55

0.067

1.08

mn*/m0

0.55

0.48

0.56

mp*/m0

1.43

0.66

1.11

Eg [eV]
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Intrinsic carrier densities
• Temperature dependence

– increase with temperature
– smaller with larger Eg

• Caveats:
– Pure Si: very low conductivity:

σ ≈ 10-6 (Ω cm)-1 at T ≈ 300 K
– However, in practice dominated by

defects (Kowalski method: typically
1011/cm2)                                                ⇒
σ ≈ 10-5 (Ω cm)-1

– Doping is needed in practice, to
control conductivity!

Room 
temperature

Exercise Estimate orders of magnitude for
the conductivity of Si (pure and with realistic defects)
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Lectures 24-26 - summary
• Using results from quantum mechanics in 1-d (periodic potential,

infinite potential well) and in 3-d (hydrogen and hydrogen-like atoms,
angular momentum and spin) we moved from single particle
(electron) to many (weakly or non-interacting) particles (electrons),
filling one-particle states (“orbitals”) according to the Pauli exclusion
principle for identical fermions.

• We qualitatively described the “band model” for conductors,
insulators and semiconductors, linking it to the results obtained in
the 1-d simple Kronig-Penney model (periodic potential), (E:k)
dispersion relations and effective mass for electrons and holes

• We considered equilibrium statistics and obtained both the density
of states and the Fermi-Dirac probability distribution functions,
essential ingredients to predict equilibrium carrier concentrations.

• We finally computed the charge-carrier concentrations in intrinsic
(pure) semiconductors at thermal equilibrium, evaluated the Fermi
level, and formulated the “mass action law”
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Lecture 24-26 - exercises
• Exercise 1: Consider a simplified model of a conductor with

non-interacting conduction electrons in a 3-d infinite well. Find the
Fermi energy and the average inter-electron spacing.  Apply the
results to the case of aluminum (A=27), assuming: density ρ =
2.7x103 kg/m3, and three free atoms per electron (hint: see
Bernstein, par.10-5 and example 10-5).

• Exercise 2: Explain the reason for introducing the effective
mass in the density of states as obtained from the “infinite well”
box model.
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Back-up slides

Quantum statistics primer

Entropy
Thermal contact and thermal equilibrium

Temperature and Boltzmann factor
Diffusive contact and diffusive equilibrium

Chemical potential and Gibbs factor
Fermi-Dirac and Bose-Einstein statistics

distribution functions and classical limit
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Entropy
Quantum states are either accessible or not accessible to a system
All accessible states are equally probable (fundamental assumption)

Entropy S measures the number of accessible states

 

S = kB! ! = logg
g :  number of accessible quantum states

Example: system of 3
elementary magnets, each
with magnetic moment +m
(up) or -m (down).

If the total magnetic moment
is M = 2m, there are g = 3
accessible states
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Thermal contact and equilibrium

The two systems in thermal contact:
they exchange energy, not particles

Two insulated systems:

 

U1,U2 energies U =U1 +U2

N1, N2 particles N = N1 + N2

g N,U( ) = g1 N1,U1( )g2 N2,U !U1( )
U1

"

Energy is exchanged maximizing entropy ( ⇔ g ) to reach equilibrium

 

dg = !g
!U1

" 

# 
$ 

% 

& 
' 
N1

g2dU1 + g1
!g
!U2

" 

# 
$ 

% 

& 
' 
N2

dU2 = 0 , dU1 + dU2 = 0

( 1
g1

!g
!U1

" 

# 
$ 

% 

& 
' 
N1

= 1
g2

!g
!U2

" 

# 
$ 

% 

& 
' 
N2

( ! logg
!U1
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# 
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& 
' 
N1

= ! logg
!U2
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& 
' 
N2

( !)1
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' 
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!U2
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Temperature
Thermal equilibrium condition:
no net energy transfer,
maximum entropy

 

1
!1

" #$1
#U1

% 

& 
' 

( 

) 
* 
N1

= #$ 2

#U2

% 

& 
' 

( 

) 
* 
N2

" 1
! 2

 

! " kBT,
1
T1

" kB
#$1
#U1

% 

& 
' 

( 

) 
* 
N1

= #S1
#U1

% 

& 
' 

( 

) 
* 
N1

= #S2
#U2

% 

& 
' 

( 

) 
* 
N2

= kB
#$1
#U1

% 

& 
' 

( 

) 
* 
N1

" 1
T2

+ 1
T
" #S

#U
% 
& 
' 

( 
) 
* 
N

corresponding to equal “absolute (Kelvin) temperature” T:

Definition of absolute (Kelvin) temperature T

 

U1 , N1
!1

 

U2 , N2

! 2

Temperature regulates the energy transfer !
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Boltzmann factor
Small system, with only two states, in
thermal contact with a large system called
reservoir ; total energy U0

 

0 U0 g U0( )
! U0 "! g U0 "!( )

 

P !( )
P 0( )

=
g U0 "!( )
g U0( )

=
exp # U0 "!( )[ ]
exp # U0( )[ ] = exp " !

kBT
$ 

% 
& 

' 

( 
) 

System Reservoir
state 1

state 2
energy energy accessible

states
The ratio of probabilities for the two states of the small system
depends on the corresponding multiplicities g for the reservoir

“Boltzmann factor”

 

! U0 "#( ) $! U0( ) "# %!
%U0

& 

' 
( 

) 

* 
+ 
N

= ! U0( ) " #
kBT

 

U0 !" energy
g U0 !"( ) states

 

!
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Partition function, etc.

 

P !1( )
P !2( )

=
exp "!1 kBT[ ]
exp "!2 kBT[ ]

Ratio of probabilities for two of the states of the system :

“Partition function”

 

P !s( ) =
exp "!s kBT( )

Z
Z # exp "! j kBT( )

j
$

Probability of a given state s of the system:

Generalization to
systems with any
number of states
(s), with energies

 

!s

Basic ingredients for
all computations
(average macroscopic
quantities, etc.)
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Diffusive contact and equilibrium
“Helmoltz free energy”

 

F !U "TS =U " #$

Balance of conflicting
requirements (minimum U,
maximum “disorder” S)

is minimum for systems in
thermal contact with a
reservoir, with constant
volume

“diffusive equilibrium” (zero net particle transfer) if F is a minimum
with respect to variations

 

F = F1 + F2 =U1 +U2 ! " #1 + # 2( ) N = N1 + N2 = constant

 

dN1 = !dN2

dF =
!F
dN1

"
#$

%
&' (

dN1 +
!F
dN2

"
#$

%
&' (

dN2 =
!F
dN1

"
#$

%
&' (

)
!F
dN2

"
#$

%
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Chemical potential

 

µ !,N,V( ) " #F
dN

$ 
% 
& 

' 
( 
) 
! ,V

“chemical potential”:
definition Two systems 1, 2:

diffusive equilibrium

thermal equilibrium

 

µ1 = µ2

!1 = ! 2

 

µ = µtot = µint + µext
“internal” (thermal origin) + “external”
(gravitational, electrostatic, magnetic, etc.)
contributions

 

µ U,N,V( ) = !" #$
dN

% 
& 
' 

( 
) 
* 
U ,V

= !T #S
dN

% 
& 
' 

( 
) 
* 
U ,V

Relation with entropy
(can be derived)

Chemical potential:
guides the flow of particles

Temperature:
guides the flow of energy

 

µ1 > µ2 ! dN1 = "dN2 < 0

#1 > # 2 ! dU1 = "dU2 < 0

Particles: net flow from 1 to 2

Energy: net flow from 1 to 2
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Gibbs factor
System in
thermal and
diffusive contact
with a reservoir

Ratio of probabilities for two of the states of the system
(generalization of the Boltzmann factor: it can be shown that…):

P N1,!1( )
P N2 ,!2( ) =

exp N1µ " !1( ) kBT#$ %&
exp N2µ " !2( ) kBT#$ %&

Probability of a given state s of the system:

P Ns ,! s( ) = exp Nsµ " ! s( ) kBT#$ %&
'

' ( exp Nµ " ! s N( )( ) kBT#
$

%
&

N ,s
)

“Gibbs factor”

“Gibbs sum”
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Fermi-Dirac distribution function

“System” = single orbital, vacant or
occupied by a single fermion

Reservoir = all other orbitals

Problem: find the average thermal occupancy of the orbital thus singled out
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Fermi-Dirac distribution function

Gibbs sum (“system” = orbital with two states only)

 

! = exp 0µ " 0( ) kBT[ ] + exp 1µ "#( ) kBT[ ] =

=1+ exp µ "#( ) kBT[ ]
Average orbital occupancy:

 

N !( ) =
exp µ "!( ) kBT[ ]
1+ exp µ "!( ) kBT[ ] = 1

exp ! " µ( ) kBT[ ] +1
# f !( ) Fermi-Dirac

pdf
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probability distribution function
(Fermi-Dirac)

Detailed calculations
(Combinatorial approach)
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F.-D. probability distribution function
• From thermodynamics:

– The most likely “macroscopic” state is the one corresponding to
the largest number W of equivalent “microscopic” states,
compatible with a given total number N of electrons and a fixed
total energy ETOT

– W = “thermodynamical probability”; “entropy” = ln (W )

Si available states at energy Ei
(partially) filled by Ni electrons

 

W = Wi
i
! =

Si
Ni

" 

# 
$ 

% 

& 
' 

i
! = Si!

Si ( Ni( )!Ni!i
!

Ni
i
) = N = const.

EiNi
i
) = ETOT = const.Probability distribution function

at thermal equilibrium:
Ni / Si = ???  (at energy Ei )
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Maximization procedure to find Ni/Si

• Take the logarithm, use Stirling’s approximation, and set the
differential to zero (Si  are constant, Ni  variable):

 

lnW = lnSi!! ln Si ! Ni( )!! lnNi!( )
i
"

ln x!# x ln x ! x x  large( )
lnW # Si lnSi ! Si ! Si ! Ni( ) ln Si ! Ni( ) + Si ! Ni( ) ! Ni lnNi + Ni[ ]

i
"

= Si lnSi ! Si ! Ni( ) ln Si ! Ni( ) ! Ni lnNi[ ]
i
"

d lnW( ) =
$ lnW( )
$Nii

" dNi

= ln Si ! Ni( ) + 1! lnNi !1[ ]
i
" dNi

= ln Si Ni !1( )
i
" dNi = 0
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Constraints: Lagrange multipliers

 

d lnW( ) = 0. ! ln Si Ni "1( )
i
# dNi = 0

Ni
i
# = N. ! dNi

i
# = 0

EiNi
i
# = ETOT . ! EidNi

i
# = 0

Introducing the undetermined Lagrange multipliers α and β :

 

ln Si Ni !1( ) !" !#Ei[ ]
i
$ dNi = 0

ln Si Ni !1( ) !" !#Ei = 0

Si Ni !1= e"+#Ei

f Ei( ) = Ni

Si
= 1
1+ e"+#Ei

% f E( ) = 1
1+ e"+#E

For closely
spaced levels,
Ei → E
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Number of carriers at band edges
(Boltzmann approximation)

– Summary of results for “intrinsic” semiconductors
• “Intrinsic” density of carriers
• “effective density of states”
• “Intrinsic” Fermi level
• “Mass action” law
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Intrinsic Fermi level and carrier density
NC : “Effective density” 

of states
in the conduction band (GaAs) 107.4  , (Si) 108.2
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“mass action law”: at thermal equilibrium:

(GaAs) 100.7  , (Si) 1004.1
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NV : “Effective density” 

of states
in the valence band 

@ T~300K 


