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In these lectures: contents

« After completing the discussions of charge-carrier concentrations
in semiconductors at equilibrium, now:

¢ Introduction to drift and diffusion

* Electrons in a real crystal
— Scattering of electrons by:
» “defects” (elastic)
» “phonons” (inelastic)
» electrons ?
— Boltzmann transport equation and the “relaxation time” approximation
— Electrical conductivity in metals and in semiconductors

— Integrals of the Boltzmann equation and drift-diffusion equation for the
current density J
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Textbooks: references

Simplified approach to transport phenomena (drift and diffusion):
— D.A. Neamen, Semiconductor Physics and Devices, McGraw-Hill, 3rd
ed., 2003, p.154-180 (5.1 Carrier drift, 5.2 Carrier diffusion, 5.3 Graded
impurity distribution)
— R.F.Pierret, Advanced Semiconductor Fundamentals, Prentice Hall,
2003, 2nd ed., p. 175-210 (6.1 Drift, 6.2 Diffusion).

— S.M.Sze, Semiconductor Devices - Physics and Technology, J.Wiley
& Sons, 2nd ed., 1985, p. 30-43 (2.1 Drift, 2.2 Diffusion).

Transport phenomena including the Boltzmann transport
equation:

— H.lbach, H.Luth, Solid State Physics, 34 ed., Springer, p.241-250 (9.4
The Boltzmann Equation and Relaxation Time, 9.5 The Electrical
Conductivity of Metals), p.409-415 (12.5 Conductivity of
Semiconductors)

— J.M.Feldman, The Physics and Circuit Properties of Transistors,
J.Wiley&Sons, 1972, p.152-194 (4 The Motion of electrons in Real
Crystals)
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Introduction

Transport of charge carriers:
Drude Model (simplified)
Drift and Diffusion
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Drude Model

Conduction electrons:

— Ideal classical gas, confined in the crystal

— Collisions with the walls and with crystal imperfections

— Characteristic mean time t between collisions taken as a
constant

Why should it be at least partially OK?

— Response of electrons to external forces: classical dynamics,
provided effective mass is used

— Occupation probability of conduction band states for non-
degenerate s.c.: Fermi-Dirac pdf approximated by the classical
Boltzmann pdf

Weak points
— Quantum approach needed for collision probabilities
— Mean time: complicated function of energy t(E)
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Drift
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Random thermal motion
Statistical mechanics:
equipartition theorem
for electrons

Drift current density (Drude model)

Drift combined with thermal motion
“classical electron”:

charge -|q]

effective mass m*
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» ‘“average” behaviour of
individual carriers in an

velocity, mobility

external electrical field: drift

* collective behaviour: current
density (electrons and holes)

Drift current density and conductivity

-
I /|
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l’/ n(cm-3)

- L

J.=J,+J., =(dnu, +lapu, e = oe,

electrons holes \
Resistivity and conductivity: Electric field
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p=—= = o= —+ P q*
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Diffusion

Diffusion process

* Qualitatively:

— If there is a space variation of carrier concentration in the
semiconductor material: then carriers tend to move
predominantly from a region of high concentration to a region
of low concentration

Microscopic scale: in each section, |

vy R =

- equal out-flow to +x and -x by o0 e :

- different in-flow from right and left e |

Net effect: 3 st <3

- - X
carrier concentrations tend to level out ®
; ~— JTp|dift Injdiff —>=

Macroscopic scale: ® o

current densities Diffuss ® o Diffuge o

N ® ® ©® 0..:0..0

o, i ® ® @ ® A @i &1 O ‘
(b)
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Diffusion process (simplified)
Thermal motion:
mean free path =

Quantitative flux, for electrons: [ = Vv, T. thermal velocity
Left to right through plane at x=0 X mean free time
1n(-0) 1
F‘l — _Q — _n(_l)v’h CURRENT
2 T, 2

ELECTRONS
S

Right to left through the same

ELECTRON DENSITY n(x)

plane l
| |
F,= 5 n(lyv,, ;
Net rate of carrier flow at x=0 ) r
DISTANCE Xx
1 dn
F=F—-F,=—v_[n(-l)—n(])|= n—l:no—l(j
) Ih[ (=)= )] Taylor series (=1)=n(0) dx )_,
dn dn expansion:
= 1 P=p n(1)=n(0)+ 1| 9"
dx dx dx )._,
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Diffusion equations

« Diffusion current, electrons (1-dimensional case):

if positive gradient

dn
- — dn/dx > 0
Jn,x o |q|F |q|Dn dx then: positive current
Jox>0
+ Similarly, holes:
d fa if positive gradient
_ - ' dp/dx > 0
‘]p,x - |q|F - |q|Dp d then: negative current
X J,,<0
» Diffusivity:
) Dimensionally OK;
Dn =v, nln =v, T a more complete 3-d
’ ’ analysis gives a
— — 1,2 numerical coefficient
Dp - vth,plp = Vit (1/3)
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Drift and Diffusion

Drift and diffusion are correlated:
Einstein’s relation

* Mobility:

e

Mobility and Diffusivity

gl
===
m
+ Diffusivity: 1
D=—v'1T

Einstein’s relations

2

(For electrons, holes)

(from equipartition theorem)

v kT Mobility and diffusivity
<Vf> = <Vf> = <VZ2> = <%> = ; are correlated !
b= kT :kBT@T:kBT D/u:kBT
m g m g 4]
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Electrons in real crystals

Scattering on
defects, phonons, other electrons
Boltzmann equation
Relaxation time approximation
Electrical conductivity
Drift-diffusion equation

Scattering of electrons

» Classical theory (Drude, 1900):
— Scattering expected from positive ions in the lattice
— Predicted mean free path (1-5 A) ...
— Mean free path from data: 2 orders of magnitude higher!

* Bloch waves or Bloch packets:
— Separable solutions, describe unperturbed electron propagation
if the periodicity is perfect
— Possible origin of perturbations of stationary Bloch waves:
» One-electron approximation (non-interacting electrons):
— Lattice defects, fixed in time and space
— Time-dependent deviations from periodicity: /attice vibrations
» Electron-electron collisions
— Usually much less probable! (Pauli principle at work)

*  We will give a qualitative picture of these processes
— Quantitative treatment: beyond our scope

27/28-11-2012 L.Lanceri - Complementi di Fisica - Lectures 28-30 16
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Scattering: transition probabilities

» ingredients of the general method to compute “transition
probabilities” from “perturbation theory”:
— Potential H’ representing the additional interaction as a small
perturbation of the periodic potential (Hamiltonian H)
— Initial (k') and final (k’ ) stationary Bloch states for electrons
— Recipe to compute the probability w,., that the initial state (k) is
scattered into the final state (k’ ), from perturbation theory:

- -2
_ ¥ ik Fpp .. —ikF
Wi ~U dr u.e™” "H'ue

— These probabilities can be entered in a statistical description of
how the population of electrons in available states is influenced
by the scattering process, moving electrons between stationary
states according to probability w,.,

27/28-11-2012 L.Lanceri - Complementi di Fisica - Lectures 28-30 17

Scattering on
lattice defects
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Scattering of electrons on lattice defects - 1

* Qualitatively:
— Impurities and defects are fixed. For charged impurities:
— The electron mass is much smaller than the ion mass

— Elastic scattering is expected, with electrons retaining their
initial energy L2

-q 2 \ ]
S 0.

y.
b: impact parameter oz g
0: scattering angle g v
Only the velocity (or k) direction of the \

electron changes:

the scattering angle depends on the initial
velocity of the electron: slower electrons
are scattered on average at larger angles.

{—b—>f .~ Slow e~

Figure 4.1 Electron scattering by an ionized donor. Trajectories for fast and slow
electrons are shown.
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Scattering of electrons on lattice defects - 2

Results (semi-quantitative):

» scattering angle 6
— inversely proportional to:
* v,2 (squared speed)
b (impact parameter)

+ “relaxation” time 7,
— After a large number of scattering events:

» the speed (energy) distribution of electrons does not
change, but

* the direction is randomized
— Fast electrons: redistributed slowly (larger 1)
— Slow electrons: redistributed quickly (smaller 1)
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Scattering on
phonons

Scattering of electrons on “phonons” -1

 What is a “phonon” ? qualitatively:

— A “phonon” is a quantum of energy associated to a lattice vibration
mode, equivalent in many respects to the “photon” as a quantum of
“electromagnetic vibrations”:

— both photons and phonons are bosons, and share similar wave
properties (Planck and DeBroglie relations)

E=hw=hv p=hk=%

» Electron (fast) and atom (slow) dynamics:

— Some physical properties of crystals are determined mainly by the
relatively slow movement of atoms about their equilibrium position
(for example: sound velocity and thermal properties like specific
heat, thermal expansion, thermal conductivity)

— Electrical conductivity in metals and semiconductors requires an
understanding of the interaction between atom dynamics and
electron dynamics, via “electron scattering on phonons”

27/28-11-2012 L.Lanceri - Complementi di Fisica - Lectures 28-30 22
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Scattering of electrons on “phonons” - 2
* To compute the electron-phonon scattering probability:

(1) From the analysis of vibrations of atomic chains:

— derive E-k dispersion relations for phonons, and represent
them in Brillouin zones (similar to what we have done for
electrons!);

— classify phonons (higher energy: “optical”’; lower energy:
“acoustic”; polarization: “longitudinal”, “transverse”)

(2) Find the number (or density) of phonons as a function of
temperature, using Bose statistics (phonons = bosons)

(3) Understand the conditions that must be satisfied for electron-
phonon scattering to take place

(4) Evaluate the scattering probability by counting the number of ways
each scattering event could take place

— Since the potential representing the interaction of electrons and
phonons is time-dependent, their scattering is expected to be
eminently inelastic : the electron changes energy.

27/28-11-2012 L.Lanceri - Complementi di Fisica - Lectures 28-30 23

(1) E(k) for phonons -1

Simplest model: A ﬂ ﬂﬂ ﬂj\s-n[(ﬁn)“‘ /j/
1-d lattice of equal l/rid .
atoms (mass M)

ita /sm[(ﬁ)%”f]

interacting only with
nearest neighbours by

ement

H H anure 4. 3 Two waves that correspond to the same sinusoidal displacement of the
Ilnear sprlngs Of atoms. Since there is no way to observe the waveléngth directly, and since both yield
strength K_ the same physically observable effect, the two waves are equivalent.

In this model: dispersion
relation E(k):

* :2%(1—coskd)

k—>
Figure 4.4 The E:k plot (also called a dispersion diagram) for one mode of a mono-
E — hw atomic lattice.
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(1) E(k) for phonons - 2

; ; d | d . d | ;
—0 +@ —@ —@ —@ +@ o— X
xn—l — 'xn xn+1
x}’l

Classical equation for the position of the n-th atom (elastic forces)

d*x
dtzn = _K[(xn - xn+l) - (xn*' R )]

x,(1)=Ae" ") | where X,=nd is the average position

= -Mw’x, = KAe" ™" [e" + e —2] =2Kx, [coskd —1]

M

In this model: = 2£ (1 —CoS kd)
dispersion relation E(k): M
E=lhw
27/28-11-2012 L.Lanceri - Complementi di Fisica - Lectures 28-30 25

(1) Lattice model for Ge, Si

Figure 4.5 A one-dimensional monoatomic lattice with two inequivalent sites. This
is a one-dimensional analog of germanium and silicon.

More realistic model, = two relations for E(k):
approaching the + “optical branch” (higher energy)
properties of Ge, Si - “acoustic branch” (lower energy)

o KK K12+K22+2K1K
M M?

> 2 coske
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(1) Phonon classification

1013
T0
“real life” for Ge, Si: Lo 1/2x(1st Brillouin zone)
Transverse (T) and T
. . 5x10'2| H
Longitudinal (L) ' 7
oscillation modes for = 3 =
Acoustic branch (A) and ok L e el =
Optical branch (O) Ge (111)
T 1013 L -
at small k: 2 L0
Acoustic phonons have » (H2) =
frequencies characteristic U - b e 1
of sound waves = Ll
Optical phonons can 3 , S :
couple via ion dipole et Yy 2 0 :
moments to infrared Ge (100) Si (100)
. Figure 4.6 E:k plot for Si and Ge. The ordinate is frequency; the abscissa is the frac-
phOtonS- tion of the maximum values of k [different in the (100) and (111) directions]. TO =
~ -16 13 = transverse optical branch; TA = transverse acoustical bi h; LO = longitudinal
hV -~ (36X1 0 X1 0 ) eV optical branch; and LA = longitudinal acoustical b;anch.r?ll-::om B.N. g:lfékuh‘;g;
~ 4 meV and P. K. Iyengar, Phys. Rev. 111, 747 (1958).]
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(2) Number of phonons and (3) scattering regimes

*  Number of phonons = (number of “modes”) x (number of phonons
in each mode)
— Number of “modes” = number of lattice cells in the crystal
(computation similar to number of “states” for electrons)

— Number of phonons in each mode at temperature T:
Bose-Einstein probability distribution function (phonons=bosons!)

* From an analysis of energy (E) and momentum (k) conservation in
electron-phonon scattering:
— At moderate T and low electric field: scattering rate dominated by
low-energy acoustic phonons
— Larger T and/or electric field: also electrons jumping between band
minima (“valleys”) contribute (with large change in k)

— Large electric fields: electron drift velocity saturation due to
spontaneous emission of (higher energy) optical phonons

27/28-11-2012 L.Lanceri - Complementi di Fisica - Lectures 28-30 28
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(4) electron-phonon scattering rate
* From a more detailed analysis (FELD p.181, WANG p.216)

— Dominant contribution from acoustic phonons:
rate = 1/ (“mean free time” between collisions):

R:i o< kTv,
T

c

— The electron-phonon scattering rate is proportional to the
temperature T and to the electron speed v,

27/28-11-2012 L.Lanceri - Complementi di Fisica - Lectures 28-30 29

Conclusion

« Comparing the rates at different temperatures

— Impurity scattering is dominant at low T

— Phonon scattering is dominant at high T

27/28-11-2012 L.Lanceri - Complementi di Fisica - Lectures 28-30 30
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Electron-electron scattering

Electron-electron scattering

* Naively one would expect it to be important, but:

— It is elastic, does not change the energy and total momentum

— Despite their high density, electrons are partially screened by
the lattice, and

— The Pauli principle allows electrons to scatter only if they can
find appropriate empty final states !!!

As a result:
— Many orders of magnitude less probable than scattering on
defects and phonons
— To a good approximation, in most conditions electron-electron
scattering can be neglected!
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The Boltzmann Equation

Basic idea

* In the statistical approach, all properties of a system (i.e.:
electrons in a semiconductor crystal) can be deduced, once
the probability density function f of its components
(electrons) in the appropriate “phase-space” (position and
momentum or wave number) is known:

— For instance, drift velocity of electrons in a semiconductor:
computed as the average of the (group) velocities of individual
electrons, weighted by the pdf f;

L[5 (FR)f (7R 0)0E
e sr 03

— Electrical current density: similar method... (see later)

* The first common task is to find the pdf, on- and off-(thermal)
equilibrium

K ey
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Carriers distribution off-equilibrium ?

*  What happens when...

— ... the distribution of carriers, originally in thermal equilibrium, is
altered by the presence of external forces and by scattering
processes ?

Away from equilibrium:
Boltzmann distribution function
= probability of finding an electron
in a small phase space volume
- 1 (dx dy dz dk, dk, dk,)
fo[E(k)] = W at position r, momentum k and time ¢ :

o 7(F k1)

= Set up a differential continuity equation (Boltzmann equation,
describing in general all transport phenomena) for the pdf f

= Book-keeping of all possible changes with time of the number of
electrons in a given phase space (d°r d°k ) volume

e
: I 27/28-11-2012 L.Lanceri - Complementi di Fisica - Lectures 28-30 35 INEN

Thermal equilibrium:
Fermi distribution

The Boltzmann Equation - 1d version

With the additional scattering contribution,
for electrons in an external electric field:

/A A (a_fJ

dt or ox ok, ot
)'CE@:VX l.cxzﬂz—eEx/h
d dt
ai:—vxi_i_iExi_i_ a_f
ot ox h "ok, \ot)

/

™~

Net particle flux in-out
phase-space element
due to velocity

Net particle flux in-out
phase-space element
due to acceleration
(change in velocity or k)

Net particle flux in-out
phase-space element
due to scattering
(change in velocity or k)

(change in position)

% 1? 27/28-11-2012
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Boltzmann Equation solutions

Boltzmann Equation solutions

* To understand how this equation works, and the
meaning of “relaxation time”, let us consider a
“simple” case with no dependence on the position in
the crystal, and let us find the solutions for the non-
equilibrium pdf f in two interesting cases:

1) An applied electric field brings the system to a non-
equilibrium stationary condition (steady current)

2) The electric field is switched off and the system “relaxes
back” to the equilibrium state, in a characteristic time.

27/28-11-2012 L.Lanceri - Complementi di Fisica - Lectures 28-30 38
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Non-equilibrium stationary solution

i Non-equilibrium :
; stationary solution sllabget s
i
A U
af-fy g
Bk
—_
f=— :
IO S 3 i K
Equilibrium: 1+e—(E—EF)/kT 0 S
E= " (+k+E) b
D N
Fig. 9.4a,b. The effect of a constant electric field ¢, on the k-space distribution of quasi-===
electrons: (a) The Fermi sphere of the equilibrium distribution |- — —, centered at (0.0.
displaced in the stationary state by an amount dk,=—et/,/fi. (b) The new Fermi distribu
J(E(K)) only differs significantly from the equilibrium distribution f; (= — —) in the vicinits

the Fermi energy (Fermi radius)
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Relaxation to the equilibrium distribution (2)

At t=0, when the system is in the stationary non-equilibrium
condition f,.,, the external field is switched off (initial condition).

The Boltzmann equation in the “relaxation approximation”
is then reduced to, for t > 0:

alz_f_fo

ot T

f(1=0)=fou
Solution: f — fO = (fsmt _ fo)e—f/f

The meaning of 7is now clear: it is the characteristic time
needed by the system to “relax back”

from the stationary non-equilibrium state to the equilibrium state,
under the action of all the different scattering processes
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Relaxation to equilibrium

Fig. 9.5a,b. Electron scattering processes in k-space. The dashed circle represents the Fern
surface in thermodynamic equilibrium (<“= 0). Under the influence of an electric lield <, and
for a constant current, the Fermi surface is displaced as shown by the full circle. (a) Whes
the electric field is switched off, the displaced Fermi surface relaxes back to the equilibriun
distribution by means of electron scattering from occupied states (@) to unoccupicd states
(O). Since the states A and B are at dillerent distances from the k-space origin (i.e., have dif-
ferent energies), the relaxation back to equilibrium must involve inelastic scattering events
(e.g.. phonon scattering). (b) For purely elastic scattering (from states A to B), the Ferm:
sphere would simply expand. When the field is switched off, equilibrium can only be achieved
by inelastic scattering into states C within the dashed (equilibrium) Fermi sphere

27/28-11-2012 L.Lanceri - Complementi di Fisica - Lectures 28-30 41

Conductivity
in metals and semiconductors
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Electrical conductivity - old

* In a previous lecture:

— we wrote down a relation between carrier drift velocity and
external electric field, introducing conductivity and mobility

— It was based on simple assumptions about not well identified
scattering processes for electrons, every 1 seconds

— The original model (Drude, 1900) assumed an ideal electron gas
with all free electrons contributing to conduction (This point of
view is in contradiction with the Pauli principle!), in the presence
of a “frictional” force leading to a constant average drift velocity:

. 7 P L] .
acceleration ~ friction — oxternal field
., m
mv +—v,=—eE,
T
average 2
) et . ent
velocity: v,=0 = v,=——E, = j =—env,=neuE = E,
m m
. 2
Drude o=Je JENT Vel _€T
model: E, m E| m
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Electrical conductivity - new

* Let us consider the implications of the new concepts:

— Electrons in crystals are a Fermi gas: due to the Pauli principle
only the electrons close to the Fermi surface can contribute!

— The current density can be computed summing the contributions
of all states in the first Brillouin zone, and assuming for small
fields the approximate linearized solution to the Boltzmann
equation just discussed (assume electric field E = E,)

jn = 871r3 J. V(l;)f(lz)dlz particle current density
Ist.Br.z.
j=- ¢ 3 1st£rj(l€)f(l€)dq = electrical current density

BN k
-5 [ diw(x fo(k)+%()Ex§%

1st.Br.z. x
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Electrical conductivity in metals - 1

Developing these expressions:

— The integral becomes a surface integral at the Fermi
surface in k-space

— Only the properties at the Fermi surface are important
» Electron velocity, Relaxation time, Effective mass

— The result is (explicit derivation beyond our scope, see
Ibach p.245-249)
eT(E - )

. 2
oc=2x =00 T(*EF)n, u=—-r=
E m m

X

Formally equivalent to the Drude model, but now:
— Well defined relaxation time (electrons at the Fermi level)

— Effective mass instead of free electron mass

— n = total concentration of electrons in the “conduction band”

27/28-11-2012 L.Lanceri - Complementi di Fisica - Lectures 28-30 45

Electrical conductivity in metals - 2

From these expressions:

o= jx ezr(EF)n’

U= eT(fF)

E m" m

X

Correct orders of magnitude!

Correct temperature-dependence of conductivity
— Concentration n of carriers in metals: not dependent on T

— T-dependence entirely from the relaxation time, evaluated at
the Fermi energy E.

1 1 1 1
o —= + = p:pph(T)+pdef

o T Tphonons 7’-defects

phonons contribution: | | defects contribution: o
approx. linearin T approx. constant in T At “high” T
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Electrical conductivity in metals - 3

6 T

Cu +332 %Ni

w
T

Specific resistance (107° Ohm cm)
N w
\\\\\
|

~

Cu+2.16 % Ni

Cu+112 % Ni

1 “pure” Cu Fig. 9.7. Resistivity ¢ of pure cops
of copper-nickel alloys of various ¢
0 1 tions. (After [9.4])
100 200 300
Temperature (K)
111 1 o)
Pp=E— o< —= + = P—Pph( * Pt
o T Tphonons 7’-defects
phonons contribution: | | defects contribution: o
approx. linearin T approx. constantin T At *high” T
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Electrical conductivity in semiconductors - 1

* Both electrons in lower conduction band and
holes in upper valence band contribute:

e (k)" (8))

Jj=e(nu,+pu, )E u=— <v2(];)>

The expression for the mobility is obtained (...) averaging
over the appropriate states at the edges of the
conduction (electrons) or valence (holes) band

Qualitatively: performing this computation (...) one obtains:
1 phonons:  (v)e< NT, E,o<T
Ue<T, —o<(v)X N
T defects: (v)oeAlT, Ty oc(v) ocT

1

Average scattering
velocity “cross-section”

phonons: 1, o< T

= 32
defects: Uy ocT
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T — dependence of mobility in semiconductors
104
Np=10"*cm-3 S /
f (TR (T2
Scattering on A
. MPURITY  LATTICE
phonons (lat‘nce): 7 = 10%6 ‘CATTERINEOZC:}TTERING
““ph Tph o o = 10'7 BN
Scattering on : -
defects (impurities): - B
N
Hef def 5 e \\
N\
5200 200 500 1000
T(K)
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Lectures 28-30 — summary - 1

*  We revisited the properties of electrons, treated as Bloch waves, and
holes, in a “perfect crystal”: effective mass, currents

* The description of electrons in “real” crystals has to take into
account scattering processes on impurities or defects and on
phonons (lattice deformations corresponding to vibration modes)

* The Boltzmann equation governs the probability distribution function
for electrons in “phase-space” (position and momentum), when the
system is brought away from thermal equilibrium (Fermi pdf)

*  We considered two typical non-equilibrium solutions: steady-state
and relaxation towards equilibrium, in the relaxation-time
approximation
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Lectures 28-30 — summary - 2

* The qualitative and quantitative features of electrical conductivity in
metals and semiconductors (for instance: conductivity, mobility,
temperature dependence) are well described by considering
electrons as Bloch waves and computing the relevant average
quantities (drift velocity, current density etc) over k-space.

* Formally, the expressions found for conductivity and mobility are
similar to those of the classical Drude model; crucial differences are
the properties of relaxation time (for conductors: computed at the
Fermi surface!), and the effective mass.

« Finally, averaging over k-space the Boltzmann transport equation,
also for Bloch waves or packets one obtains the “drift-diffusion
equation” for electric current densities: a detailed derivation predicts
additional terms with respect to those we already discussed, for
instance a diffusion term depending on temperature gradient; this
treatment can be further extended.
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Lectures 28-30 — summary - 3

* The drift-diffusion continuity equation obtained from the
Boltzmann equation explicitly contains the “Einstein relation”
between drift and diffusion coefficients, that can be also
justified in simpler terms

* The Boltzmann transport equation is the basis for simulations,
both in the “averaged mode” (continuity equation for current
densities), and in a “Monte Carlo” mode (tracing individual
wave packets).

* This second mode is relevant for simulating very small
devices, where carriers undergo a small number of collisions.
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Lectures 28-30 - exercises

* Exercise 1: From slide 19, figure 4.6: determine the order of
magnitude of phonon energies in Silicon in the different branches,
at k = k,,,,. What is the order of magnitude for k,,,, in Silicon (1st
Brillouin zone)?

* Exercise 2: Write down the expression of conductivity and
mobility in the classical Drude model. What changes in these
expressions in the quantum theory of conductivity for metals?
And for semiconductors?

* Exercise 3: Write down the Boltzmann transport equation and
the drift-diffusion continuity equation. Discuss qualitatively the
meaning of each term.
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Back-up slides

More details
on the Boltzmann equation
and the
drift-diffusion continuity equation
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Drift-Diffusion
Continuity Equation

From the Boltzmann Equation...

* The Boltzmann equation tells us how the density f of electrons in
phase space (position, momentum) evolves as a function of time:

f _ -5 F g, foh :
= V.f-—.V.f—-=2J20 F
o eV Vel

* But we are mainly interested in the electrical current density in real
space, related to the drift velocity distribution in position-space:
how do we get it? Remember that if the pdf f is known, the drift
velocity should be computed as an average over k-space of the
group velocity v:

_ e

T External force on electrons

L[5 (FR) (7 k1)
i(F 1) = 4% (n(F)J)( ) . on(f)=

* The recipe is then clear: multiply each term of the Boltzmann eq. by

v, and integrate over all k-space, to obtain the “continuity equation”
for electrical current densities

4;3 | (Fid) %
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Some rather lengthy calculations:

...continuity equation!

P - DO
.[vga_J:d3k=_ J.Vg(vg 'V;f)d3k— .[vg ;Vlzf 3 — ng S Tfo &Ik
l / introducing:
onu) 1 = F - o
( )+—V;(nkBT)—n—:—ﬂ {7,, gE i?p ¢E
at: m \\\\\\ , m T Jn =—ql’lljin .]p =—qpﬁp
! N ):;ff/ . w,=qt,/m i, :qu/m
¥ 8 and multiplying by q =
v s " -
I, . 5 = k,T = _
Ty dJ, +J,=gnu,| E+ ="~V .n+-LV.T
ot n q p

For electrons (similar for holes):

hex
27/28-11-2012
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Drift-diffusion continuity equation

For electrons (similar for holes), if T is uniform:

L=Wm&+l%T
n

v;nj:qnunﬁwv;n
q d

" 27/28-11-2012

“Mobility” and “Diffusivity” |Drift] [ Diffusion|
o together...! T
goteg “Diffusion coefficient”: (D =p ks
q
electrons holes
Drift drift — drift drift —
ri J! Jon +J0 =qnu,E +gpu E, here -
Diffusion jd — jdff 4 ydilf :an@—qD @ q9=4.
¥ e ox P ox
" electrons holes
IAZ‘ L.Lanceri - Complementi di Fisica - Lectures 28-30 58
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Boltzmann equation

General, 3-d

The Boltzmann Equation - 1

Time
evolution
in phase
space

=

In the absence of scattering: Example of k, changing
~ because of an external
¢ 7, k field: d(hk,) = (-eE,)dt
Y=t+dt: F'=F+vdt, k'=k+(—e)Edi/h 4—,

*— x changing because of

velocity: dx = v, dt

t+dt

o

|
|
|
|
x

-

S
Fig. 13:2*1 Figure illustrating the motion of a particle in one dimension
in a two-dimensional phase space specified by the particle position ¢ and
its velocity v..
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The Boltzmann Equation - 2

Conservation of the number of particles (electrons):

f(?',l?’,t') &7 &k = f(?,l?,z) &’ d’k

&I Pk’ =dF I’k | = f(?',l?’,t’)— f(?,/?,t) =0

v
Phase-space volume-element: it can be distorted in shape, but
(Liouville theorem) its volume remains constant in time!

o . o o (o, o, o, ) of
CURPIR PR AP O A S A A PR
:Hax”ay”azz]{akx o o

df af L N Boltzmann Equation
f T+ V;;f -k =01 in compact (gradient) notation
d at in the absence of scattering

e
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The Boltzmann Equation - 3

With the additional scattering contribution,
for electrons in an external electric field:

df _of _ |9
dr asz +ka } (arl

Net particle flux in-out || Net particle flux in-out Net particle flux in-out

phase-space element || phase-space element phase-space element

due to velocity due to acceleration due to scattering
(change in position) (change in velocity or k) || (change in velocity or k)
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Boltzmann Equation: interpretation

What is the meaning of the terms containing gradients, for instance:
_‘7.§;f=_vxai A va_f

Y

x| Yoy oz

Net particle flux (in-out) a phase-space element: consider for example the
x-projection, for the position part: Incoming electrons:
4 > f(x,y,z,lg,t) dydz &’k (det)

i GrEwa \ Outgoing electrons:

f(x+ dx,y,z,/g ,t) dydz &’k (v.dr)

Net flux (in-out):

vx[f(x,y,z,l;,t) - f(x + dx,y,z,lz,t)] dydz &k dt =

P ) -

3 —vxaldx iy dz d°k dt

R | X .

i dx Similar for the other
ig. 13:2:2 Figure illustrating a fized element of volume of phase space for i i iti

a particle moving in one dimension and specified by its position z and prOJeCtlonS of posmon

velocity v.. and k!
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Drift-diffusion
continuity equation

Derivation
from the Boltzmann equation
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From the Boltzmann Equation...

* The continuity equations for the electrical current density in
semiconductors can be obtained from the Boltzmann

equation:
f . -5, F g, Iof F o E
o eV Ty Vi P

Force on electrons

* Multiplying by the group velocity and integrating over the
momentum space dk, dk, dk,:

Igzdk——j (7, Vof)ak - v [ f} Igf;ﬁd%

* One obtains the “continuity equation”
(detailed derivation: see FELD p.187-194, MOUT p.100-104)

v
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...Integrals...

Boltzmann equation for the pdf f:
F . o . F -
¥ ;o9 Ly It
ot h T

< \ﬁ\
I;ZdE:—I (7, V)%~ [7 [ Vf}k [5. =0 g

Multiplying by v,, integrating over k-space, and expressing the
results in terms of the average velocities u and of the
concentrations n (if you are really interested, hints about integral
computations are given in the back-up slides) one obtains (next

slide)...
o [T R P (FR R )
—_— = _ 7[ — —_
u(r,r)= ) , n(7.t) (r,k,t) d
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--integrals (1! 2) Do not depend

First term: r on time
of d ;7 0 , d(un
.[ gatdkatj.vgfdgkﬁ(étn un) 47t (at)zo
L[5 (FR) £ (R AR
(7.1 = 4% (n(?),t)( )

Second term:
= (= v 3, O - (= 37 47[3—’
[5,6, 9.0\ =, [ 5,5, 1)k =..= Y, (nk, )
A

Kinetic energy, equipartition theorem:
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..integrals (3, 4)...

Third term: Ln;i%rr&;;ing
J [Z V,;f]ﬂ? L 5 ot = [ ppai= +]
=ZJ(V kf)- £ V k) d3/€=—i [ faF=amnt

—»
—_ 4
|
|
3

g
[
8
I
o
—
~
S
x~
|
N
a.ﬂ
N

Fourth term:

J.Vg%d%:%uﬁgf 4’k — J'i/odslg): 47Z;nﬁ

average velocity =0
at equilibrium
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...continuity equation!

Substituting in:

= af 3 = (= O 37 = F 37 = f fo 3.
| Lk [5,6, V;f)dk—J.vg;VEf k-7, Lo g’k
onu) 1 = F nu
i) | 1g gy nE 1
o  m m T
introducing: <Vt
F =—gE F =qF “ . N e
J, =—qnii, J =—qpi o - _ ky o
Ty, T, —2++J =gnu |E+——-V.n+-LV.T
M, =qT,/m W, =qT,[m ot q
and multiplying by qr: For electrons (similar for holes):
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Drift-diffusion continuity equation

.

For electrons (similar for holes):

k

&
<!

~|

V.n+

S8
< |

q

A A

"L'n a‘]n +jn :qnun(é_i_lkBT
n

| Drift| | Diffusion |
The two familiar terms

F-———— ==

————————p

relaxation time 1 is small:
This new term can be neglected
if frequency is not too high
(few hundred MHz)

Temperature gradient:

We did not discuss this before:
also a temperature gradient
can drive an electric current!

27/28-11-2012
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Backup slides

Other details

Scattering of electrons on lattice defects - 2

* Quantitative result: scattering angle
— From energy and angular momentum conservation (...): for

a given “impact parameter b ” and “initial speed v,” of the
incident particle (see FELD p.157-162, WANG p.214):

0. q’ 1
tan| — |= — T3,
2 4rem” vyb

— The scattering angle is inversely proportional to the square
of the incident particle’s initial speed v,, at a given impact
parameter b, and increases with decreasing b
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Scattering of electrons on lattice defects - 3

* Quantitative result: randomization or “relaxation” time:
— After a large number of scattering events:
» the speed (energy) distribution of the electron population does
not change, but
« the direction is randomized, for example:
— Switch on an external electric field E, = average vg, # 0
— After switching off E, = average v, is brought back to 0
— Exponential law: average v, = vy, exp(-t / 1g)
— Randomization or “relaxation time” (see FELD p.157-162):

_ -1/3 b,,: max. impact parameter
VS b, (1/ 2)2N N: defects concentration
R 472/ 2 __4d
log(l+v, b /a a=——-
oibfa) | o=t

— Fast electrons are redistributed slowly (larger 1) and vice-versa
— Speed (scalar): absolute value of velocity (vector)
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The Boltzmann Equation - 1

In the absence of scattering: Example of k, changing
~ because of an external
Time ly 7 7, k field: d(hk,) = (-eE,)dt

evolution .- -
inphase | (=t+dt: F'=r+vdt, k'=k+(—e)Edt/h «—
space

P *— x changing because of

velocity: dx = v, dt

t+dit

-

x

fe Ay

|
|
|
|
x

Fig. 13:2*1 Figure illustrating the motion of a particle in one dimension
in a two-dimensional phase space specified by the particle position ¢ and
its velocity v..
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Scattering term & relaxation-time approx.

Scattering term: in principle computed from scattering probability w,,.
and from the pdf f; the net effect is in general:

”,
| = e L) e 10) 158 w0}
\/V

S

For the scattering to take place (Pauli Principle):
the initial state must be filled (f), the final state must be empty (7-f)

“relaxation time approximation”

= - - Assumptions on the effect of collisions:
af(k) _ f(k) - fo(k) restore the local equilibrium described by f,,

ot ol changing f back to f, exponentially,
s with a relaxation time of the order
of the time between collisions
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Stationary non-equilibrium solution (1)

Under the influence of an external field, a stationary non-equilibrium
condition can be reached: in a simple case with f not dependent on position:

o

. of
=0 (not dep. on position) el i
Ew » (stationary)

The Boltzmann equation (1-d version for simplicity) is reduced to:

g ¥ __ f(];) _ fo(lz) Approximate solution:
h "ok, B ”L'(I;) the normal Fermi
function, computed at
- - - hif I fk
0= iu 2 ) | s

Approximate linearized solution for small fields:

- -~ e [\ = Results from the action of the external field E
f(k) = fO(k to T(k) Ej and includes the effects of scattering (t)
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