CORSO DI GEOMETRIA APPLICAZIONI LINEARI E MATRICI A.A. 2018/2019 PROF. VALENTINA BEORCHIA

INDICE

1.	Matrici associate a un'applicazione lineare	1
2.	Cambiamenti di base	4
3.	Diagonalizzazione	6

1. MATRICI ASSOCIATE A UN'APPLICAZIONE LINEARE

Abbiamo visto che ad ogni matrice $A \in M_{m,n}(\mathbb{K})$ corrisponde una applicazione lineare $L_A: \mathbb{K}^n \to \mathbb{K}^m$, con $L_A(v) := A \cdot v$. In questa sezione vedremo che, viceversa, data una applicazione lineare $f: V \to W$ tra spazi vettoriali di dimensione finita, fissata una base \mathcal{B} di V ed una base \mathcal{C} di W, possiamo associare una matrice $M_{\mathcal{C}}^{\mathcal{B}}(f)$ (la matrice che rappresenta f rispetto alle basi \mathcal{B} e \mathcal{C}), tale che se le coordinate di un vettore $v \in V$ riepsetto alla base \mathcal{B} sono

$$\begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix},$$

le coordinate di $f(v) \in W$ rispetto alla base \mathcal{C} sono date da

$$M_{\mathcal{C}}^{\mathcal{B}}(f) \cdot \left(egin{array}{c} c_1 \\ c_2 \\ \vdots \\ c_n \end{array}
ight).$$

Definizione 1.1. Siano V e W due spazi vettoriali di dimensione finita su \mathbb{K} . Sia $f:V \to W$ una applicazione lineare. Siano $\mathcal{B} = \{v_1, \ldots, v_n\}$ una base di V e $\mathcal{C} = \{w_1, \ldots, w_m\}$ una base di W. La matrice che rappresenta f rispetto alle basi \mathcal{B} e \mathcal{C} è definita come segue:

$$M_{\mathcal{C}}^{\mathcal{B}}(f) = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \in M_{m,n}(\mathbb{K}),$$

dove

$$f(v_j) = a_{1j}w_1 + a_{2j}w_2 + \dots + a_{mj}w_m.$$

In altre parole, la colonna j-ma di $M_{\mathcal{C}}^{\mathcal{B}}(f)$ è formata dalle coordinate di $f(v_j)$ rispetto alla base \mathcal{C} per ogni $j=1,\ldots,n$.

Osservazione 1.2. Sia $A \in M_{m,n}(\mathbb{K})$ e consideriamo la applicazione lineare $L_A : \mathbb{K}^n \to \mathbb{K}^m$. Siano \mathcal{E} e \mathcal{E}' le basi canoniche di \mathbb{K}^n e \mathbb{K}^m , rispettivamente. Allora si ha

$$M_{\mathcal{E}'}^{\mathcal{E}}(L_A) = A.$$

Infatti, se e_i denota il j-mo vettore della base canonica \mathcal{E} di \mathbb{K}^n , allora

$$L_A(e_j) = A \cdot e_j = A^{(j)},$$

e le coordinate di $A^{(j)}$ rispetto alla base canonica \mathcal{E}' di \mathbb{K}^m coincidono con gli scalari della colonna stessa.

Osservazione 1.3. *Sia f la applicazione nulla, cioè l'applicazione*

$$f(v) = 0, \quad \forall v \in V.$$

Allora

$$M_{\mathcal{C}}^{\mathcal{B}}(f) = 0$$

è la matrice nulla per ogni scelta di \mathcal{B} e \mathcal{C} . Infatti $f(v_j) = 0$ per ogni j = 1, ..., n, e le coordinate del vettore nullo sono tutte nulle in una qualsiasi base \mathcal{C} .

Inoltre, vale anche il viceversa: se $\dot{M}_{\mathcal{C}}^{\mathcal{B}}(f) = 0$ è la matrice nulla, allora

$$f(v_1) = 0, \dots f(v_n) = 0,$$

e per il Teorema di Struttura per Applicazioni Lineari da ciò segue che f è l'applicazione nulla.

Osservazione 1.4. Se V = W e $f = Id_V$, allora

$$M_{\mathcal{B}}^{\mathcal{B}}(Id_V) = I_n,$$

per ogni base \mathcal{B} di V. Infatti se $\mathcal{B} = \{v_1, \dots, v_n\}$ si ha

$$f(v_j) = v_j,$$

e le coordinate di v_j nella base \mathcal{B} sono tutte nulle eccetto la coordinata j-esima che vale 1.

Più in generale, se V=W e $f=c\cdot Id_V$, per qualche scalare $c\in\mathbb{K}$, allora

$$M_{\mathcal{B}}^{\mathcal{B}}(c \cdot Id_{V}) = c \cdot I_{n},$$

la verifica è lasciata per esercizio. Tale applicazione si chiama dilatazione.

Proposizione 1.5. Siano V e W due spazi vettoriali su \mathbb{K} di dimensione finita, sia $f: V \to W$ una applicazione lineare, e siano $\mathcal{B} = \{v_1, \ldots, v_n\}$ una base di V e $\mathcal{C} = \{w_1, \ldots, w_m\}$ una base di W. Dato un vettore $v \in V$, se

$$v = \alpha_1 v_1 + \dots + \alpha_n v_n,$$

allora

$$f(v) = \beta_1 w_1 + \dots + \beta_m w_m,$$

dove

$$\begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_m \end{pmatrix} = M_{\mathcal{C}}^{\mathcal{B}}(f) \cdot \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix}$$

Dimostrazione. L'enunciato segue dalla seguente sequenza di uguaglianze, dove si sfrutta il fatto che f è lineare e la definizione di $M_c^{\mathcal{B}}(f)$:

$$f(v) = f(\alpha_1 v_1 + \dots + \alpha_n v_n) =$$

$$= \alpha_1 f(v_1) + \dots + \alpha_n f(v_n) =$$

$$= \alpha_1 (a_{11} w_1 + \dots + a_{m1} w_m) + \dots + \alpha_n (a_{1n} w_1 + \dots + a_{mn} w_m) =$$

$$= (\alpha_1 a_{11} + \dots + \alpha_n a_{1n}) w_1 + \dots + (\alpha_1 a_{m1} + \dots + \alpha_n a_{mn}) w_m.$$

Infine, osserviamo che per ogni i = 1, ..., m, lo scalare

$$\alpha_1 a_{i1} + \cdots + \alpha_n a_{in}$$

é proprio il coefficiente i-esimo della matrice colonna

$$M_{\mathcal{C}}^{\mathcal{B}}(f) \cdot \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix}$$
.

Uno dei vantaggi che si ottengono descrivendo una applicazione lineare f per mezzo delle matrici $M_{\mathcal{C}}^{\mathcal{B}}(f)$ è che possiamo usare i risultati concernenti i sistemi lineari per determinare $\mathrm{Im}(f)$ e $\ker(f)$ come segue.

Corollario 1.6. Sia $f:V\to W$ una applicazione lineare, dove V e W sono spazi vettoriali di dimensione finita. Siano $\mathcal{B}=\{v_1,\ldots,v_n\}$ una base di V e $\mathcal{C}=\{w_1,\ldots,w_m\}$ una base di W. Sia $M_{\mathcal{C}}^{\mathcal{B}}(f)$ la matrice che rappresenta f nelle basi \mathcal{B} e \mathcal{C} . Allora valgono le seguenti uguaglianze:

$$\ker(f) = \left\{ v = \alpha_1 v_1 + \dots + \alpha_n v_n \in V \mid M_{\mathcal{C}}^{\mathcal{B}}(f) \cdot \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix} = 0 \right\};$$

$$\operatorname{Im}(f) = \left\{ w = \beta_1 w_1 + \dots + \beta_m w_m \in W \mid \text{il sistema } M_{\mathcal{C}}^{\mathcal{B}}(f) \cdot X = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_m \end{pmatrix} \text{ e compatibile} \right\};$$

$$\operatorname{rg}(f) = \operatorname{rg} M_{\mathcal{C}}^{\mathcal{B}}(f).$$

Teorema 1.7. Siano V e W due spazi vettoriali di dimensione finita sul campo \mathbb{K} . Siano $\mathcal{B} = \{v_1, \ldots, v_n\}$ e $\mathcal{C} = \{w_1, \ldots, w_m\}$ basi di V e W, rispettivamente. Allora l'applicazione

$$M_{\mathcal{C}}^{\mathcal{B}}: \operatorname{Hom}(V, W) \to M_{m,n}(\mathbb{K}), \quad f \to M_{\mathcal{C}}^{\mathcal{B}}(f),$$

è un isomorfismo di spazi vettoriali. In particolare, $\operatorname{Hom}(V,W)$ ha dimensione finita pari a $n\cdot m=\dim(V)\cdot\dim(W)$.

Dimostrazione. Dimostriamo dapprima che $M_{\mathcal{C}}^{\mathcal{B}}$ è lineare. Siano $f, g \in \text{Hom}(V, W)$ e sia $c \in \mathbb{K}$. Denotiamo con a_{ij} (rispettivamente $b_i j$) l'elemento di posto (i, j) di $M_{\mathcal{C}}^{\mathcal{B}}(f)$ (rispettivamente di $M_{\mathcal{C}}^{\mathcal{B}}(g)$). Dobbiamo verificare che l'elemento di posto (i, j) di $M_{\mathcal{C}}^{\mathcal{B}}(f + g)$ coincide con

 $a_{ij} + b_{ij}$, per ogni i = 1, ..., m e j = 1, ..., n. Per definizione $[M_c^{\mathcal{B}}(f+g)]_{ij}$ è la coordinata i-esima di $(f+g)(v_i)$ rispetto alla base \mathcal{C} . Abbiamo le seguenti uguaglianze:

$$(f+g)(v_j) = f(v_j) + g(v_j) = (a_{1j}w_1 + \dots + a_{mj}w_m) + (b_{1j}w_1 + \dots + b_{mj}w_m) = (a_{1j} + b_{1j})w_1 + \dots + (a_{mj} + b_{mj})w_m.$$

Da questo segue che

$$[M_{\mathcal{C}}^{\mathcal{B}}(f+g)]_{ij} = a_{ij} + b_{ij} = [M_{\mathcal{C}}^{\mathcal{B}}(f)]_{ij} + [M_{\mathcal{C}}^{\mathcal{B}}(g)]_{ij},$$

per ogni $i = 1, \ldots, m$ e $j = 1, \ldots, n$, quindi

$$M_{\mathcal{C}}^{\mathcal{B}}(f+g) = M_{\mathcal{C}}^{\mathcal{B}}(f) + M_{\mathcal{C}}^{\mathcal{B}}(g).$$

Analogamente si dimostra che

$$M_{\mathcal{C}}^{\mathcal{B}}(c \cdot f) = c \cdot M_{\mathcal{C}}^{\mathcal{B}}(f),$$

quindi $M_{\mathcal{C}}^{\mathcal{B}}$ è lineare.

Per dimostrare che $M_{\mathcal{C}}^{\mathcal{B}}$ è iniettiva, è sufficiente provare che

$$\ker(M_{\mathcal{C}}^{\mathcal{B}}) = \{0\}.$$

Sia quindi $f \in \text{Hom}(V, W)$ tale che $M_{\mathcal{C}}^{\mathcal{B}}(f) = 0 \in M_{m,n}(\mathbb{K})$. Per l'Osservazione 1.3 si ha che f = 0, da cui segue la tesi.

Per concludere, dimostriamo che $M_{\mathcal{C}}^{\mathcal{B}}$ è suriettiva. Sia quindi $A=(a_{ij})\in M_{m,n}(\mathbb{K})$. Definiamo $f_A\in \mathrm{Hom}(V,W)$ come l'unica applicazione lineare tale che

$$f_A(v_j) = a_{1j}w_1 + \dots + a_{mj}w_m$$
, per ogni $j = 1, \dots, n$.

Dalla definizione segue facilmente che $M_{\mathcal{C}}^{\mathcal{B}}(f_A) = A$, quindi $M_{\mathcal{C}}^{\mathcal{B}}$ è suriettiva.

2. CAMBIAMENTI DI BASE

In questa sezione vedremo come cambia la matrice $M_{\mathcal{C}}^{\mathcal{B}}(f)$ al variare delle basi \mathcal{B} e \mathcal{C} . Questo seguirà dalla seguente proposizione.

Proposizione 2.1. Siano U, V e W tre spazi vettoriali sul campo \mathbb{K} , di dimensione p, n, m, rispettivamente. Siano

$$\mathcal{D} = \{u_1, \dots, u_p\}, \qquad \mathcal{B} = \{v_1, \dots, v_n\}, \qquad \mathcal{C} = \{w_1, \dots, w_m\}$$

basi di U, V e W, rispettivamente.

Siano $g: U \to V$ e $f: V \to W$ applicazioni lineari. Allora si ha

$$M_{\mathcal{C}}^{\mathcal{D}}(f \circ g) = M_{\mathcal{C}}^{\mathcal{B}}(f) \cdot M_{\mathcal{B}}^{\mathcal{D}}(g).$$

Dimostrazione. Si vedano gli appunti della lezione.

Corollario 2.2. Sia V uno spazio vettoriale di dimensione n sul campo \mathbb{K} . Sia \mathcal{B} una base di V. Allora valgono le seguenti affermazioni.

(1) Sia $f:V\to V$ un operatore lineare. Allora f è un isomorfismo se e solo se $M^{\mathcal{B}}_{\mathcal{B}}(f)$ è invertibile. In tal caso si ha

$$M_{\mathcal{B}}^{\mathcal{B}}(f^{-1}) = M_{\mathcal{B}}^{\mathcal{B}}(f)^{-1}.$$

(2) Sia $A \in M_n(\mathbb{K})$. Allora A è invertibile se e solo se rg(A) = n.

Dimostrazione. (1) Supponiamo che $f: V \to V$ sia un isomorfismo, e sia f^{-1} la funzione inversa di f, che è ancora lineare. Allora valgono le uguaglianze

$$f \circ f^{-1} = f^{-1} \circ f = \mathrm{Id}_V.$$

Abbiamo

$$M_{\mathcal{B}}^{\mathcal{B}}(f \circ f^{-1}) = M_{\mathcal{B}}^{\mathcal{B}}(f^{-1} \circ f) = M_{\mathcal{B}}^{\mathcal{B}}(\mathrm{Id}_{V}) = \mathbb{I}_{n}.$$

Dalla Proposizione precedente segue che

$$\mathbb{I}_n = M_{\mathcal{B}}^{\mathcal{B}}(f) \cdot M_{\mathcal{B}}^{\mathcal{B}}(f^{-1}) = M_{\mathcal{B}}^{\mathcal{B}}(f^{-1}) \cdot M_{\mathcal{B}}^{\mathcal{B}}(f)$$

e dalla definizione di matrice invertibile e matrice inversa segue l'enunciato.

Viceversa, se $M_{\mathcal{B}}^{\mathcal{B}}(f)$ è invertibile, allora l'unica soluzione del sistema lineare omogeneo

$$M_{\mathcal{B}}^{\mathcal{B}}(f) \cdot X = 0$$

è $X=(M^{\mathcal{B}}_{\mathcal{B}}(f))^{-1}\cdot 0=0$. Da ciò segue che $\ker(f)=\{0\}$, quindi f è iniettivo; essendo un operatore $f:V\to V$, è anche suriettivo, quindi è un isomorfismo.

(2) Consideriamo la applicazione lineare

$$L_A:\mathbb{K}^n\to\mathbb{K}^n$$

e ricordiamo che risulta

$$A = M_{\mathcal{E}}^{\mathcal{E}}(L_A),$$

dove \mathcal{E} è la base canonica di \mathbb{K}^n . Dal punto 1. si ha che A è invertibile se e solo se L_A è un isomorfismo. D'altra parte, L_A è un isomorfismo se e solo se L_A è suriettiva, cioè se e solo se $\operatorname{rg}(L_A) = n$.

Definizione 2.3. Sia V uno spazio vettoriale di dimensione n sul campo \mathbb{K} . Siano

$$\mathcal{B} = \{v_1, \dots, v_n\} \quad \text{e} \quad \mathcal{C} = \{w_1, \dots, w_n\}$$

due basi di V. La matrice del cambiamento di base da B a C è la matrice

$$M_{\mathcal{C}}^{\mathcal{B}}(Id_V) \in M_n(\mathbb{K})$$

che rappresenta la funzione identità $Id_V: V \to V$ rispetto alle basi \mathcal{B} e \mathcal{C} .

Osservazione 2.4. (1)

(2) Per ogni $j = 1, \ldots, n$, siano

$$a_{1j},\ldots,a_{nj}$$

le coordinate di v_j rispetto alla base C. Allora la colonna j-esima di $M_c^{\mathcal{B}}(Id_V)$ è data da

$$\begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{nj} \end{pmatrix}.$$

(3) Per ogni vettore $v \in V$, se

$$\begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix}$$

è la colonna delle coordinate di v rispetto alla base \mathcal{B} , allora la colonna delle coordinate di v rispetto alla base \mathcal{C} è data da

$$\begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix} = M_{\mathcal{C}}^{\mathcal{B}}(Id_V) \cdot \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix}.$$

Quindi $M_{\mathcal{C}}^{\mathcal{B}}(Id_V)$ permette di determinare le coordinate di un vettore rispetto alla base \mathcal{C} se sono note le sue coordinate rispetto a \mathcal{B} , per questo prende il nome di matrice del cambiamento di base da \mathcal{B} a \mathcal{C} .

Proposizione 2.5. La matrice di cambio di base $M_c^{\mathcal{B}}(Id_V)$ è invertibile, e vale la seguente uguaglianza:

$$M_{\mathcal{C}}^{\mathcal{B}}(Id_V)^{-1} = M_{\mathcal{B}}^{\mathcal{C}}(Id_V).$$

Dimostrazione. Valgono le seguenti identità:

$$\mathbb{I}_n = M_{\mathcal{B}}^{\mathcal{B}}(Id_V), \qquad Id_V = Id_V \circ Id_V, \qquad M_{\mathcal{B}}^{\mathcal{B}}(Id_V \circ Id_V) = M_{\mathcal{B}}^{\mathcal{C}}(Id_V) \cdot M_{\mathcal{C}}^{\mathcal{B}}(Id_V).$$

Da questo segue l'enunciato.

Come corollario possiamo esprimere Corollario 5. Sia f: V?W una applicazione lineare. Siano B, B? due basi di V e C,C? due basi di W. Allora B? C B B? MC?(f)=MC?(IdW)MC(f)MB (IdV). (2) In particolare, se V=W, MC(f)=(MCB(IdV))?1 MB(f)MCB(IdV). (3) Dim. Applicando la Proposizione 3 al prodotto MB(f) MB? (IdV) abbiamo: B B? B? B? B? B B. B B.

3. DIAGONALIZZAZIONE

Sia V uno spazio vettoriale di dimensione finita n sul campo \mathbb{K} , e sia $f:V\to V$ un operatore lineare. Abbiamo visto che, scelta una base \mathcal{B} di V, possiamo rappresentare f per mezzo di una matrice $M_{\mathcal{B}}^{\mathcal{B}}(f)$. Molte proprietà di f possono essere studiate tramite la matrice $M_{\mathcal{B}}^{\mathcal{B}}(f)$. L'obiettivo di questa sezione è di stabilire se, data f, esiste una base di V tale che la matrice che rappresenta f rispetto a tale base sia diagonale.

Ricordiamo che, se \mathcal{C} è un'altra base di V, allora le matrici $M_{\mathcal{C}}^{\widetilde{\mathcal{C}}}(f)$ ed $M_{\mathcal{B}}^{\mathcal{B}}(f)$ solo collegate dalla formula:

(3.1)
$$M_{\mathcal{C}}^{\mathcal{C}}(f) = M_{\mathcal{C}}^{\mathcal{B}}(Id_V)^{-1} \cdot M_{\mathcal{B}}^{\mathcal{B}}(f) \cdot M_{\mathcal{C}}^{\mathcal{B}}(Id_V).$$

Questo motiva la seguente definizione.

Definizione 3.1. Due matrici $A, B \in M_n(\mathbb{K})$ sono simili se esiste C matrice invertibile tale che

$$B = C^{-1} \cdot A \cdot C.$$

In tal caso si scrive $A \sim B$.

Quindi, se due matrici rappresentano lo stesso operatore rispetto a due basi, allora esse sono simili. Vale anche il viceversa, come afferma il seguente risultato.

Lemma 3.2. Sia $f: V \to V$ un operatore lineare, e sia $A = M_{\mathcal{B}}^{\mathcal{B}}(f) \in M_n(\mathbb{K})$, dove $\mathcal{B} = \{v_1, \ldots, v_n\}$ è una base di V. Allora, se $B \in M_n(\mathbb{K})$, si ha che $B \sim A$ se e solo se esiste una base \mathcal{C} di V tale che

$$B = M_{\mathcal{C}}^{\mathcal{C}}(f).$$

Dimostrazione. Se esiste una base \mathcal{C} di V tale che $B=M_{\mathcal{C}}^{\mathcal{C}}(f)$, allora A e B sono simili per la relazione (3.1).

Viceversa, supponiamo che A e B siano simili. Quindi per definizione esiste una matrice invertibile C tale che

$$B = C^{-1} \cdot A \cdot C.$$

Sia c_{ij} l'elemento di posto (i,j) di C. Definiamo una base $\mathcal{C}=\{w_1,\ldots,w_n\}$ di V come segue:

$$w_j := c_{1j}v_1 + \dots + c_{nj}v_n, \qquad j = 1, \dots, n.$$

Con questa costruzione si ha che

$$C = M_{\mathcal{B}}^{\mathcal{C}}(Id_V),$$

quindi, essendo C invertibile, si ha in particolare che gli n vettori w_1,\ldots,w_n sono linearmente indipendenti, e siccome $\dim V=n$ sono anche dei generatori. Inoltre possiamo scrivere

$$B = C^{-1} \cdot A \cdot C = M_{\mathcal{C}}^{\mathcal{B}}(Id_V) \cdot M_{\mathcal{B}}^{\mathcal{B}}(f) \cdot M_{\mathcal{B}}^{\mathcal{C}}(Id_V) = M_{\mathcal{C}}^{\mathcal{C}}(f).$$

Osservazione 3.3. La similitudine è una relazione di equivalenza tra le matrici a coefficienti in \mathbb{K} . La verifica è lasciata per esercizio.

Osservazione 3.4. *La matrice unità* \mathbb{I}_n *è simile solo a se stessa, la verifica è molto semplice.*

Lemma 3.5. Siano $A, B \in M_n(\mathbb{K})$. Se $A \sim B$, allora

$$\det(A) = \det(B).$$

Dimostrazione. Se $A \sim B$, allora esiste C invertibile tale che

$$B = C^{-1} \cdot A \cdot C.$$

Da ciò segue

$$\det B = \det(C^{-1} \cdot A \cdot C) = \det C^{-1} \cdot \det A \cdot \det C$$

per il Teorema di Binet. Abbiamo visto che

$$\det C^{-1} = \frac{1}{\det C},$$

ed essendo la moltiplicazione tra scalari commutativa, abbiamo

$$\det C^{-1} \cdot \det A \cdot \det C = \det A.$$

Osservazione 3.6. Si può dimostrare più in generale (esercizio facoltativo) che due matrici simili hanno lo stesso rango.

Osservazione 3.7. Notiamo che non vale il viceversa, cioè esistono matrici quadrate con lo stesso determinante, che NON sono simili. Ad esempio, le matrici

$$A = \left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right), \quad B = \left(\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array}\right)$$

hanno entrambe determinante 0, ma non sono simili, ad esempio perchè hanno rango diverso:

$$rgA = 0, rgB = 1.$$

Nemmeno le matrici

$$\mathbb{I}_2 = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right), \qquad B = \left(\begin{array}{cc} 2 & 1 \\ 1 & 1 \end{array}\right)$$

sono simili, sebbene si abbia $\det \mathbb{I}_2 = 1 = \det B$. Infatti, \mathbb{I}_2 è simile solo a se stessa.

Il Lemma 3.5 ci permette di definire il determinante di un endomorfismo come segue:

Definizione 3.8. Sia V uno spazio vettoriale di dimensione finita su K. Sia f? End(V). Allora det(f) := det(MB(f)), dove B 'e una base di V. Osserviamo che, per il Lemma 2, det(f) non dipende dalla scelta della base B, quindi la definizione 'e ben posta.

Definizione 3.9. Sia V uno spazio vettoriale di dimensione finita n sul campo \mathbb{K} e sia $f: V \to V$ un operatore lineare. Allora f si dice diagonalizzabile se esiste una base \mathcal{B} di V tale che $M_{\mathcal{B}}^{\mathcal{B}}(f)$ è diagonale. In tal caso, \mathcal{B} è detta base di V che diagonalizza f.

Una matrice $A \in M_n(\mathbb{K})$ è detta diagonalizzabile se è simile ad una matrice diagonale.

Osservazione 3.10. Sia $A \in M_n(\mathbb{K})$. Allora A è diagonalizzabile se e solo se l'operatore $L_A : \mathbb{K}^n \to \mathbb{K}^n$ è diagonalizzabile.

Questo segue dal fatto che $A = M_{\mathcal{E}}^{\mathcal{E}}(L_A)$, dove \mathcal{E} è la base canonica di \mathbb{K}^n .

Osservazione 3.11. Se $\dim(V) = 1$, allora ogni operatore $f: V \to V$ è diagonalizzabile ed ogni base di V diagonalizza f.

Vedremo che se invece $\dim(V) > 1$, allora esistono operatori che non sono diagonalizzabili, come ad esempio le rotazioni del piano di un angolo $\alpha \neq 0, \pi$.

Il seguente risultato è una riformulazione della Definizione 3.9 che motiva le definizioni che seguono.

Lemma 3.12. Sia $f:V\to V$ un operatore lineare. Sia $\mathcal{B}=\{v_1,\ldots,v_n\}$ una base di V che diagonalizza f. Allora, per ogni $i=1,\ldots,n$ si ha

$$f(v_i) = \lambda_i v_i,$$

per opportuni $\lambda_i \in \mathbb{K}$.

Viceversa, se esiste una base $\mathcal B$ di V con tali proprietà, allora f è diagonalizzabile e $\mathcal B$ diagonalizza f.

Dimostrazione. Per definizione abbiamo che $M_{\mathcal{B}}^{\mathcal{B}}(f)$ è diagonale, quindi del tipo

$$M_{\mathcal{B}}^{\mathcal{B}}(f) = \begin{pmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{pmatrix}.$$

Dalla definizione di matrice associata ad f nella base \mathcal{B} segue che

$$f(v_1) = a_{11}v_1 + 0 \ v_2 + \dots + 0 \ v_n = a_{11}v_1,$$

$$f(v_2) = 0 \ v_1 + a_{22} \ v_2 + \dots + 0 \ v_n = a_{22}v_2,$$

$$\dots$$

$$f(v_n) = 0 \ v_1 + 0 \ v_2 + \dots + a_{nn} \ v_n = a_{nn}v_n.$$

Basta allora porre $\lambda_i = a_{ii}$.

Viceversa, se $\mathcal{B} = \{v_1, \dots, v_n\}$ è una base di V tale che $f(v_j) = \lambda_j v_j$ per ogni $j = 1, \dots, n$, allora

$$M_{\mathcal{B}}^{\mathcal{B}}(f) = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix},$$

che è diagonale, quindi f è diagonalizzabile e \mathcal{B} diagonalizza f.

Definizione 3.13. Sia V uno spazio vettoriale su un campo \mathbb{K} . Sia $f:V\to V$ un operatore. Un autovettore di f è un vettore $v\in V$ diverso dal vettore nullo, $v\neq 0$, tale che esiste $\lambda\in\mathbb{K}$ per cui vale

$$f(v) = \lambda v$$
.

In tal caso, λ si dice autovalore di f relativo all'autovettore v.

Lo spettro di f è l'insieme degli autovalori di f, esso si denota con Sp(f) ed è un sottoinsieme finito del campo \mathbb{K} .

Sia $A \in M_n(\mathbb{K})$. Un autovettore di A è un vettore $v \in \mathbb{K}^n$ non nullo tale che v sia un autovettore di L_A , cioè tale che $A \cdot v = \lambda v$, per qualche $\lambda \in \mathbb{K}$. In tal caso, λ è l'autovalore di A relativo all'autovettore v. Lo spettro di A si definisce come l'insieme degli autovalori di A e si indica con cred Sp(A).

Osservazione 3.14. Se $f = Id_V$, allora ogni vettore $v \in V \{0\}$ è un autovettore di f, con autovalore corrispondente $\lambda = 1$; infatti si ha f(v) = v = 1 v per ogni $v \in V$.

Viceversa, se $f: V \to V$ è tale che per ogni $v \in V$, $v \neq 0$ si ha che v è autovettore di f con autovalore 1, allora $f = Id_V$; la verifica è lasciata per esercizio.

Osservazione 3.15. *Si ha che* $0 \in \text{Sp}(f)$ *se e solo se* $\text{ker}(f) \neq \{0\}$.

Possiamo riformulare il Lemma 3.12 con la terminologia degli autovettori nel modo seguente:

Proposizione 3.16. Un operatore $f:V\to V$ è diagonalizzabile se e solo se esiste una base $\mathcal B$ di V formata da autovettori.

Vediamo ora le principali proprietà degli autovettori ed autovalori.

Teorema 3.17. Sia V uno spazio vettoriale sul campo \mathbb{K} e sia $f:V\to V$ un operatore lineare. Allora valgono le seguenti proprietà.

- (1) Se $v \in V$ è un autovettore di f, allora l'autovalore corrispondente a v è unico.
- (2) Siano $v_1, \ldots, v_m \in V$ autovettori di f con relativi autovalori $\lambda_1, \ldots, \lambda_m \in \mathbb{K}$, rispettivamente. Se

$$\lambda_i \neq \lambda_j$$
, per ogni $i \neq j$, $i, j = 1, \dots, m$,

allora v_1, \ldots, v_m sono linearmente indipendenti.

(3) Sia $\lambda \in Sp(f)$ un autovalore di f. Allora l'insieme

$$V_{\lambda} := \{v \in V \mid v \text{ autovettore con autovalore } \lambda\} \cup \{0\} = \ker(f - \lambda \cdot Id_V).$$

In particolare, V_{λ} è un sottospazio vettoriale di V.

Dimostrazione. Si vedano gli appunti della lezione.

Definizione 3.18. Il sottospazio V_{λ} è detto autospazio di f relativo all'autovalore λ .

Corollario 3.19. Sia V uno spazio vettoriale di dimensione finita n sul campo \mathbb{K} e sia f un operatore lineare. Allora f ha al più n autovalori distinti.

Teorema 3.20. Sia V uno spazio vettoriale di dimensione finita n sul campo \mathbb{K} . Sia $f: V \to V$ un operatore lineare e sia $\mathrm{Sp}(f)\{\lambda_1,\ldots,\lambda_k\}$ il suo spettro, con $\lambda_i \neq \lambda_j$ se $i \neq j$. Allora valgono le seguenti affermazioni:

- (1) $\dim(V_{\lambda_1}) + \cdots + \dim(V_{\lambda_k}) \leq n$.
- (2) Primo criterio di diagonalizzabilità: f è diagonalizzabile se e solo se

$$\dim(V_{\lambda_1}) + \dots + \dim(V_{\lambda_k}) = n.$$

Dimostrazione. Si vedano gli appunti della lezione.

Dal precedente Teorema si ottiene un procedimento per determinare se un dato operatore f è diagonalizzabile, ed eventualmente trovare una base di V che diagonalizza f. Si procede come segue:

- (1) Si determinano gli autovalori di f, e quindi il suo spettro $Sp(f) = \{\lambda_1, \dots, \lambda_k\};$
- (2) Per ogni $i=1,\ldots,k$ si determina la dimensione dell'autospazio $V_{\lambda_i}=\ker(f-\lambda_i\,Id_V)$; osserviamo che per il teorema della dimensione si ha

$$\dim(V_{\lambda_i}) = \dim(\ker(f - \lambda_i Id_V)) = \dim(V) - \operatorname{rg}(f - \lambda_i Id_V);$$

(3) si verifica se vale l'ugaglianza

$$\dim(V_{\lambda_1}) + \dots + \dim(V_{\lambda_k}) = n;$$

(4) in caso affermativo, per trovare una base di V formata da autovettori di f, si determina una base \mathcal{B}_i dell'autospazio V_{λ_i} per ogni $i=1,\ldots,k$. Allora l'unione $\mathcal{B}_1 \cup \ldots \mathcal{B}_k = \mathcal{B}$ è una base di V formata da autovettori, quindi \mathcal{B} diagonalizza f.

Osservazione 3.21. Osserviamo che per determinare una base \mathcal{B}_i bisogna risolvere il sistema lineare omogeneo

$$(M_{\mathcal{C}}^{\mathcal{C}}(f) - \lambda_i \cdot \mathbb{I}_n) \cdot X = 0,$$

dove C è una qualunque base di V.

Vediamo ora come trovare tutti gli autovalori di f, e quindi determinare il suo spettro.

Proposizione 3.22. Sia $\lambda \in \mathbb{K}$ uno scalare. Allora $\lambda \in \operatorname{Sp}(f)$ se e solo se $\ker(f - \lambda \operatorname{Id}_V) \neq \{0\}$ se e solo se

$$\det(f - \lambda I d_V) = 0.$$

Dimostrazione. Per definizione si ha che $\lambda \in \operatorname{Sp}(f)$ se e solo se esiste $v \neq 0$ tale che

$$f(v) = \lambda v,$$

quindi se e solo se

$$f(v) - \lambda v = (f - \lambda Id_V)(v) = 0,$$

cioè se e solo se l'operatore $f - \lambda Id_V$ ha un vettore non nullo nel nucleo, quindi

$$\ker(f - \lambda Id_V) \neq \{0\}.$$

Da una conseguenza del Teorema di Dimensione segue che $\lambda \in \mathrm{Sp}(f)$ se e solo se $f-\lambda \ Id_V$ non è un isomorfismo, quindi se e solo se $f-\lambda \ Id_V$ non ha rango massimo, e quindi se e solo se

$$M_{\mathcal{C}}^{\mathcal{C}}(f - \lambda Id_V) = M_{\mathcal{C}}^{\mathcal{C}}(f) - \lambda M_{\mathcal{C}}^{\mathcal{C}}(Id_V) = M_{\mathcal{C}}^{\mathcal{C}}(f) - \lambda \mathbb{I}_n,$$

dove $\mathcal C$ è una base qualsiasi di V, non ha rango massimo, cioè se e solo se

$$\det(M_{\mathcal{C}}^{\mathcal{C}}(f) - \lambda \, \mathbb{I}_n) = \det(f - \lambda \, Id_V) = 0.$$

Osservazione 3.23. Osserviamo che la funzione

$$\mathbb{K} \to \mathbb{K}, \qquad x \to \det(A - x \,\mathbb{I}_n)$$

è polinomiale; in altre parole, se consideriamo x come una variabile, e calcoliamo $\det(A - x \mathbb{I}_n)$ formalmente con uno dei metodi visti, otteniamo un polinomio di grado n a coefficienti in \mathbb{K} nella indeterminata x.

Definizione 3.24. Sia V uno spazio vettoriale di dimensione finita su un campo \mathbb{K} e sia $f:V\to V$ un operatore lineare. Il polinomio caratteristico $p_f(x)$ di f si definisce come il polinomio

$$p_f(x) = \det(f - x Id_V) \in \mathbb{K}[x].$$

Sia $A \in M_n(\mathbb{K})$. Il polinomio caratteristico $p_A(x)$ di A è il polinomio

$$p_A(x) = \det(A - x \mathbb{I}_n) \in \mathbb{K}[x].$$

Osservazione 3.25. (1) Il grado di $p_f(x)$ è uguale alla dimensione n di V. Inoltre, il coefficiente di x^n è uguale a $(-1)^n$, mentre il termine noto coincide con $\det(f)$.

(2) Se $A \in M_n(\mathbb{K})$, allora

$$p_A(x) = p_{L_A}(x).$$

Questo segue dal fatto che $A=M^{\mathcal{E}}_{\mathcal{E}}(L_A)$, dove \mathcal{E} è la base canonica di \mathbb{K}^n .

Come conseguenza immediata della Proposizione 3.22 abbiamo il seguente Corollario.

Corollario 3.26. Uno scalare $\lambda \in \mathbb{K}$ è un autovalore di f se e solo se λ è una radice del polinomio caratteristico di f:

$$\lambda \in \operatorname{Sp}(f) \iff p_f(\lambda) = 0.$$

In particolare, il numero degli autovalori distinti di f è minore o uguale a $\dim(V)$.

Il precedente risultato fornisce un metodo per calcolare gli autovalori di $f:V\to V$, quindi lo spettro $\mathrm{Sp}(f)$ di f.

Concludiamo il capitolo con un altro criterio per stabilire se un operatore è diagonalizzabile.

Definizione 3.27. Sia V uno spazio vettoriale di dimensione finita su un campo \mathbb{K} , sia $f:V\to V$ un operatore e sia $\lambda\in\operatorname{Sp}(f)$.

La molteplicità algebrica $m_a(\lambda)$ di λ è la molteplicità di λ come radice del polinomio caratteristico $p_f(x)$.

La molteplicità geometrica $m_q(\lambda)$ di λ è la dimensione dell'autospazio V_{λ} relativo a λ :

$$m_a(\lambda) = \dim V_{\lambda}.$$

Proposizione 3.28. *Per ogni* $\lambda \in \operatorname{Sp}(f)$ *valgono le diseguaglianze:*

$$1 \le m_g(\lambda) \le m_a(\lambda) \le n.$$

Teorema 3.29. Secondo criterio di diagonalizzabilità: Sia V uno spazio vettoriale di dimensione finita sul campo \mathbb{K} e sia $f:V\to V$ un operatore lineare. Allora f è diagonalizzabile se e solo se valgono le seguenti condizioni:

- (1) il polinomio caratteristico $p_f(x)$ si fattorizza come prodotto di polinomi di grado 1 in $\mathbb{K}[x]$;
- (2) $per ogni \lambda \in Sp(f) si ha$

$$m_g(\lambda) = m_a(\lambda).$$

Dimostrazione. Sia

$$\operatorname{Sp}(f) = \{\lambda_1, \dots, \lambda_k\},\$$

con $\lambda_i \neq \lambda_j$, per ogni $i \neq j$. Siccome $p_f(x)$ ha grado n, per la condizione 1. del Teorema si ha $m_a(\lambda_1) + \cdots + m_a(\lambda_k) = n$.

Dalla Proposizione 3.28 segue che

$$m_g(\lambda_1) + \cdots + m_g(\lambda_k) \le m_a(\lambda_1) + \cdots + m_a(\lambda_k) = n,$$

ed inoltre vale l'uguaglianza se e solo se

$$m_g(\lambda_i) = m_a(\lambda_i)$$

per ogni $i=1,\dots,k$. Quindi le condizioni 1. e 2. sono equivalenti alla condizione

$$m_g(\lambda_1) + \dots + m_g(\lambda_k) = n,$$

che è equivalente al fatto che f sia diagonalizzabile per il Primo criterio di diagonalizzabilità.

Corollario 3.30. Sia $n = \dim(V)$. Se f ha n autovalori distinti, allora f è diagonalizzabile.