
Ising model	

	

Recover	what	we	have	done	in	class	for	the	3D	Ising	model	on	a	square	lattice	with	nearest	
neighbor	interactions	only,	and	without	external	magnetic	field.	

Recover	the	main	results	following	the	assignment	given	in	class,	and	then	add	these	
questions:	

1)	

	

2)		

Study	and	plot	(in	the	same	plot)	the	magnetization per site M vs MC steps for temperatures T = 
1.4, 2.269 and 3.4 for a lattice size of L = 50.  

3)	

Study	and	plot	(in	the	same	plot)	the	magnetization per site M vs energy per site E for 
temperatures T = 1.4, 2.269 and 3.4 for a lattice size of L = 50: what can you observe? 

4)	
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FIG. 1. Typical behaviour of a physical quantity A vs tem-
perature close to the critical point for various system sizes.
Figure taken from Thijssen8.

• The peak height scales as L�/⌫ , hence �max = �/⌫.

• The peak position scales as L�1/⌫ , hence � = 1/⌫.

• The peak width also scales as L
�1/⌫ , hence ⇥ =

1/⌫.

These are the finite-size scaling laws for any thermody-
namic quantity which diverges at the critical point as a
power law. From these laws it is clear that if the peak
height, position and width are calculated as a function
of the system size, the critical exponents ⌫ and � can be
determined.

Nevertheless, the finite-size scaling technique presents
di�culties due a to phenomena named critical slowing-
down3,8–10. Because of the critical slowing-down, config-
urations change very slowly, and it is di�cult to sample
enough configurations. Near the critical point, the fluc-
tuations increase and the time needed to obtain reliable
values for the quantities measured also increases. As the
system size increases, calculations for larger systems re-
quire more time, not only because of the computational
e↵ort needed per MC step for a larger system, but also
because we need to generate more and more configura-
tions in order to obtain reliable results.

C. The correlation function

In systems where a physical magnitude relies on posi-
tion, one generally asks, given a measure at point ri what
is the relation between another measure at a position rj .
This is given by the spatial correlation function and if
the system presents translational and rotational symme-
try (such as the Ising model), the correlation function
does not depend on the absolute positions, but on the

distance between them r = |ri � rj |. The correlation
function we are interested in is the spin-spin correlation
function that is given by,

G(r, T ) = hs(0)s(r)i � hs(0)i2, (36)

where hs(0)i = hs(r)i = M/N is the magnetization per
site. Because of the fact that for a given temperature, M
reaches a constant value, the behavior of the correlation
function is carried by the first term of eq. (36). Thus we
will consider the correlation function only as,

G(r, T ) = hs(0)s(r)i. (37)

We are limited to obtain the correlation function up to
L/2, where L is the lattice size. This came as a price
of the periodic boundary conditions we are using. For
example, if we were to calculate the correlation function
up to the value r = L we would find that the correlation
function would be equal to 1 there, which is wrong be-
cause we would be computing the correlation function at
r = 0.
The process for numerically computing the correlation

function is the following: For each spin in the lattice, we
determine the value of the local correlation function in
r = n taking the average magnetic state of the nearest
neighbors found advancing n steps in one direction (not
mixing êi with êj , i.e. not moving in diagonals). The
global correlation function is taken as the average of all
the local correlation functions. The process is repeated
for multiple simulations of the Ising model.

D. Hints, tips and improvements to the algorithm

As soon as Monte Carlo methods are used, one has
to think on ways of making e�cient calculations, as the
brute force involved in a Monte Carlo simulation often
requires a lot of trials to reduce standard deviation.

• First of all, Monte Carlo methods are always good
candidates for parallelization, which even in a dual-
core cpu will half the calculation time.

• Second, one can remove some “randomness” to the
method to improve e�ciency. In the case of the
Ising model, we know that the system will have pre-
ferred states as a function of the temperature. For
temperatures below the critical temperature, once
the system is near a local energy-minimum, it will
hardly jump to another one (even if the energy gap
is huge). All annealing methods are prone to this
phenomena, and hence, once the standard devia-
tions of the last steps start to decrease, the system
should be randomized entirely to make sure we are
not just sampling a single region of the entire space
of states.

• Third, one can also improve the selection of spins
to flip, and change a completely uniform random



	

Correlation function G(r, T ) for temperatures T = 1.4, 2.269, 3.4 for a lattice size of L = 50 (or 
better, for 128).  

	

From	1-4,	What	can	you	infer	about	the behavior of the system approaching the critical 
temperature? 
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