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a. Estimate the integral of f(x) = e−x in the interval 0 ≤ x ≤ 1 using the sample mean Monte
Carlo method with n = 104, n = 106, and n = 108. Determine the exact integral analytically
and estimate the n dependence of the actual error. How does your estimated error compare
with the error estimate obtained from the relation (11.23)?

b. Generate 19 additional measurements of the integral each with n = 106 samples. Compute
the standard deviation of the 20 measurements. Is the magnitude of this standard deviation
of the means consistent with your estimates of the error obtained in part (a)? Compute the
histogram of the additional measurements and confirm that the distribution of the measurements
is consistent with a Gaussian distribution.

c. Divide your first measurement of n = 106 samples into s = 10 subsets of 105 samples each. Is
the value of σs/

√
s consistent with your previous error estimates?

d. Estimate the integral ∫ 1

0
e−x2

dx (11.24)

to two decimal places using σ/
√
n as an estimate of the probable error.

e. Estimate the integral
∫ 2π
0 cos2 θ dθ using n = 106, where θi = θi−1 + (2r − 1)δ, r is uniformly

distributed between 0 and 1, and δ = 0.1. Note that because cos θ = cos θ+2kπ for any integer
k, we do not have to restrict the range of θi. Estimate the error using (11.23). Is this error
estimate accurate? Also, estimate the error by grouping the data into m = 10, 102, 103, 104,
and 105 data points and compute σs/

√
s, for s = 105, 104, 103, 102, and 10, respectively. How

large must m be so that the error estimates for different m are approximately the same? Discuss
the relation between this result and the correlation of the data points.

∗Problem 11.11. Importance of randomness

We learned in Chapter 7 that the random number generator included with many programming
languages is based on the linear congruential method. In this method each term in the sequence
can be found from the preceding one by the relation

xn+1 = (axn + c) modm, (11.25)

where x0 is the seed, and a, c, and m are nonnegative integers. The random numbers r in the
unit interval 0 ≤ r < 1 are given by rn = xn/m. To examine the effect of a poor random number
generator, we choose values of x0, m, a, and c such that (11.25) has poor statistical properties,
for example, a short period. What is the period for x0 = 1, a = 5, c = 0, and m = 32? Estimate
the integral in Problem 11.10 by making a single measurement of n = 104 samples using the linear
congruential method (11.25) with these values of x0, a, c, and m. Analyze your measurement by
computing σs/s1/2 for s = 20 subsets. Then divide your data into s = 10 subsets. Is the value of
σs/s1/2 consistent with what you obtained for s = 20? If not, why?

∗Problem 11.12. Error estimating by bootstrapping

Suppose that we have made a series of measurements, but do not know the underlying probability
distribution of the data. How can we estimate the errors of the quantities of interest in an unbiased
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way? One way is to use a method known as bootstrapping, a method that uses random sampling
to estimate the errors.

Consider a set of n measurements such as n values of the pairs (xi, yi), and suppose we
want to fit this data to the best straight line. If we label the original set of measurements,
M = {m1,m2, . . .mn}, then the kth resampled data set M k consists of n measurements that
are randomly chosen from the original set. This procedure means that some of the mi may not
appear in Mk and some may appear more than once. We then compute the quantity Gk from the
resampled data set. For example, Gk could be the slope found from a least squares calculation. If
we do this resampling nr times, a measure of the error in the quantity G is given by σ2

G, where

σG =
1

nr − 1

nr∑

k=1

[
Gk − ⟨Gk⟩

]2
. (11.26)

with

⟨Gk⟩ =
1

nr

nr∑

k=1

Gk. (11.27)

a. To see how this procedure works, consider n = 15 pairs of points xi randomly distributed
between 0 and 1, with the corresponding values of y given by yi = 2xi + 3 + si, where si is a
uniform random number between −1 and +1. First compute the slope, m, and the intercept,
b, using the least squares method and their corresponding errors using (7.41).

b. Resample the same set of data 200 times, computing the slope and intercept each time using the
least squares method. From your results estimate the probable error for the slope and intercept
using (11.26). How well do the estimates from bootstrapping compare with the direct error
estimates found in part a? Does the average of the bootstrap values for the slope and intercept
equal m and b, respectively, from the least squares fits. If not why not? Do your conclusions
change if you resample 800 times?

11.5 Nonuniform Probability Distributions

In Sections 11.2 and 11.4 we learned how uniformly distributed random numbers can be used to
estimate definite integrals. We will find that it is more efficient to sample the integrand f(x) more
often in regions of x where the magnitude of f(x) is large or rapidly varying. Because importance
sampling methods require nonuniform probability distributions, we first consider several methods
for generating random numbers that are not distributed uniformly. In the following, we will denote
r as a member of a uniform random number sequence in the unit interval 0 ≤ r < 1.

Suppose that two discrete events 1 and 2 occur with probabilities p1 and p2 such that p1+p2 =
1. How can we choose the two events with the correct probabilities using a uniform probability
distribution? For this simple case, it is clear that we choose event 1 if r < p1; otherwise, we choose
event 2. If there are three events with probabilities p1, p2, and p3, then if r < p1 we choose event
1; else if r < p1 + p2, we choose event 2; else we choose event 3. We can visualize these choices by
dividing a line segment of unit length into three pieces whose lengths are shown in Figure 11.4.


