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Another quantity of interest is the mean magnetization 〈M〉 (see (16.7)) and the corresponding
thermodynamic derivative χ:

χ = lim
H→0

∂〈M〉
∂H

, (17.13)

where H is proportional to the external magnetic field. In the following, we will refer to H as the
magnetic field. The zero field magnetic susceptibility χ is an example of a linear response function,
because it measures the ability of a spin to “respond” due to a change in the external magnetic
field. In analogy to the heat capacity, χ is related to the fluctuations of the magnetization (see
Appendix 17.31):

χ =
1

kT

(
〈M2〉 − 〈M〉2

)
, (17.14)

where 〈M〉 and 〈M2〉 are evaluated in zero magnetic fields. Relations (17.12) and (17.14) are
examples of the general relation between linear response functions and equilibrium fluctuations.

Now that we have specified several equilibrium quantities of interest, we implement the
Metropolis algorithm for the Ising model. The possible trial change is the flip of a spin, si → −si.
The Metropolis algorithm was stated in Section 17.2 as a method for generating states with the
desired Boltzmann probability, but the flipping of single spins also can be interpreted as a reason-
able approximation to the real dynamics of an anisotropic magnet whose spins are coupled to the
vibrations of the lattice. The coupling leads to random spin flips, and we expect that one Monte
Carlo step per spin is proportional to the average time between single spin flips observed in the
laboratory. We can regard single spin flip dynamics as a time dependent process and observe the
relaxation to equilibrium after a sufficiently long time. In the following, we will frequently refer to
the application of the Metropolis algorithm to the Ising model as “single spin flip dynamics.”

In Problem 17.4 we use the Metropolis algorithm to simulate the one-dimensional Ising model.
Note that the parameters J and kT do not appear separately, but appear together in the dimen-
sionless ratio J/kT . Unless otherwise stated, we measure temperature in units of J/k, and set
H = 0.
Problem 17.4. One-dimensional Ising model

a. Write a Monte Carlo program to simulate the one-dimensional Ising model in equilibrium with
a heat bath. (Modify SUB changes in Program demon (see Chapter 16) or see Program ising,
listed in the following, for an example of the implementation of the Metropolis algorithm to the
two-dimensional Ising model.) Use periodic boundary conditions. As a test of your program,
compute the mean energy and magnetization of the lattice for N = 20 and T = 1. Draw the
microscopic state (configuration) of the system after each Monte Carlo step per spin.

b. Choose N = 20, T = 1, mcs = 100, and all spins up, that is, si = +1 initially. What is the
initial “temperature” of the system? Visually inspect the configuration of the system after each
Monte Carlo step and estimate the time it takes for the system to reach equilibrium. Then
change the initial condition so that the orientation of the spins is chosen at random. What is
the initial “temperature” of the system in this case? Estimate the time it takes for the system
to reach equilibrium in the same way as before.

from Gould-Tobochnick

And in case the spins are alternatively up and down?
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c. Choose N = 20 and equilibrate the system for mcs ≥ 100. Let mcs ≥ 1000 and determine 〈E〉,
〈E2〉, 〈M〉, and 〈M2〉 as a function of T in the range 0.1 ≤ T ≤ 5. Plot 〈E〉 as a function of
T and discuss its qualitative features. Compare your computed results for 〈E(T )〉 to the exact
result (for H = 0)

〈E〉 = −N tanhβJ. (17.15)

Use the relation (17.12) to determine the T dependence of C.

d. What is the qualitative dependence of 〈M〉 on T? Use the relation (17.14) to estimate the T
dependence of χ. One of the best laboratory realizations of a one-dimensional Ising ferromagnet
is a chain of bichloride-bridged Fe2+ ions known as FeTAC (Greeney et al.). Measurements of
χ yield a value of the exchange interaction J given by J/k = 17.4 K. (Experimental values of J
are typically given in temperature units.) Use this value of J to plot your Monte Carlo results
for χ versus T with T given in Kelvin. At what temperature is χ a maximum for FeTAC?

e. Is the acceptance probability an increasing or decreasing function of T? Does the Metropolis
algorithm become more or less efficient as the temperature is lowered?

f. Compute the probability density P (E) for a system of 50 spins at T = 1. Choose mcs ≥ 1000.
Plot lnP (E) versus (E − 〈E〉)2 and discuss its qualitative features.

We next apply the Metropolis algorithm to the two-dimensional Ising model on the square
lattice. The main program is listed in the following.

PROGRAM ising
! Monte Carlo simulation of the Ising model on the square lattice
! using the Metropolis algorithm
DIM spin(32,32),w(-8 to 8),accum(10)
LIBRARY "csgraphics"
CALL initial(N,L,T,spin(,),mcs,nequil,w(),E,M)
FOR i = 1 to nequil ! equilibrate system

CALL Metropolis(N,L,spin(,),E,M,w(),accept)
NEXT i
CALL initialize(accum(),accept)
FOR pass = 1 to mcs ! accumulate data while updating spins

CALL Metropolis(N,L,spin(,),E,M,w(),accept)
CALL data(E,M,accum())

NEXT pass
CALL output(T,N,mcs,accum(),accept)
END

In SUB initial we choose the initial directions of the spins, and compute the initial values of
the energy and magnetization. To compute the total energy, we consider the interaction of a spin
with its nearest neighbor spins to the north and the east. In this way we compute the energy of
each interaction only once and avoid double counting. One of the most time consuming parts of
the Metropolis algorithm is the calculation of the exponential function e−β∆E . Because there are
only a small number of possible values of β∆E for the Ising model (see Fig. 16.3), we store the


