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a. Modify Program ising to simulate the antiferromagnetic Ising model on the square lattice in
zero magnetic field. Because J does not appear explicitly in Program ising, change the sign
of the energy calculations in the appropriate places in the program. To compute the staggered
magnetization on a square lattice, define one sublattice to be the sites (x, y) for which the
product mod(x, 2) × mod(y, 2) = 1; the other sublattice corresponds to the remaining sites.

b. Choose L = 16 and the initial condition to be all spins up. What configuration of spins
corresponds to the state of lowest energy? Compute the temperature dependence of the mean
energy, specific heat, magnetization, and the susceptibility χ. Does the temperature dependence
of any of these quantities show evidence of a phase transition?

c. Compute the temperature dependence of Ms and the staggered susceptibility χs defined as (see
(17.14))
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Verify that the temperature dependence of Ms for the antiferromagnetic Ising model is the same
as the temperature dependence of M for the Ising ferromagnet. Could you have predicted this
similarity without doing the simulation?

d. In part (b) you might have noticed that χ shows a cusp. Compute χ for different values of L at
T = TN ≈ 2.269. Do a finite size scaling analysis and verify that χ does not diverge at T = TN .

e. Consider the behavior of the antiferromagnetic Ising model on a triangular lattice. Choose
L ≥ 16 and compute the same quantities as before. Do you see any evidence of a phase
transition? Draw several configurations of the system at different temperatures. Do you see
evidence of many small domains at low temperatures? Is there a unique ground state? If you
cannot find a unique ground state, you share the same frustration as do the individual spins
in the antiferromagnetic Ising model on the triangular lattice. We say that this model exhibits
frustration because there is no spin configuration on the triangular lattice such that all spins
are able to minimize their energy (see Fig. 17.3).

The Ising model is one of many models of magnetism. The Heisenberg, Potts, and x-y models
are other examples of models of magnetic materials familiar to condensed matter scientists as
well as to workers in other areas. Monte Carlo simulations of these models and others have been
important in the development of our understanding of phase transitions in both magnetic and
nonmagnetic materials. Some of these models are discussed in Section 17.11.

17.7 Simulation of Classical Fluids

The existence of matter as a solid, liquid and gas is well known (see Fig. 17.4). Our goal in this
section is to use Monte Carlo methods to gain additional insight into the qualitative differences
between these three phases.

Monte Carlo simulations of classical systems are simplified considerably by the fact that the
velocity (momentum) variables are decoupled from the position variables. The total energy can be
written as E = K({vi}) + U({ri}), where the kinetic energy K is a function of only the particle
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