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PRINT "temperature = "; T
PRINT "acceptance probability = "; accept
PRINT "mean energy per spin = "; eave
PRINT "mean squared energy per spin = "; e2ave
PRINT "mean magnetization per spin = "; mave
PRINT "mean of absolute magnetization per spin = "; abs_mave
PRINT "mean squared magnetization per spin = "; m2ave

END SUB

Achieving thermal equilibrium can account for a substantial fraction of the total run time.
The most practical choice of initial conditions is a configuration from a previous run that is at a
temperature close to the desired temperature. The following subroutine saves the last configuration
of a run and can be included at the end of the main loop in Program ising.

SUB save_config(N,L,T,spin(,))
INPUT prompt "name of file for last configuration = ": file$
OPEN #2: name file$, access output, create new
PRINT #2: T
FOR y = 1 to L

FOR x = 1 to L
PRINT #2: spin(x,y)

NEXT x
NEXT y
CLOSE #2

END SUB

A previous configuration can be used in a later run by adding a few statements to SUB initial
to allow the user to choose a previous configuration or a random configuration. A previous config-
uration can be read by calling the following subroutine:

SUB read_config(N,L,T,spin(,))
INPUT prompt "filename?": file$
OPEN #1: name file$, access input
INPUT #1: T
FOR y = 1 to L

FOR x = 1 to L
INPUT #1: spin(x,y)

NEXT x
NEXT y
CLOSE #1

END SUB

Problem 17.5. Equilibration of the two-dimensional Ising model

a. Run Program ising with the linear dimension of the lattice L = 16 and the heat bath temper-
ature T = 2. Determine the time, nequil, needed to equilibrate the system, if the directions of
the spins are initially chosen at random. Plot the values of E and M after each Monte Carlo
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step per spin. Estimate how many Monte Carlo steps per spin are necessary for the system to
reach equilibrium.

b. Write a subroutine that shows the spin configurations on the screen. One simple way to do so
is to draw a solid square about each spin site and color code the orientation of the spins. Is the
system “ordered” or “disordered” at T = 2 after equilibrium has been established?

c. Repeat part (a) with all spins initially up. Does the equilibration time increase or decrease?

d. Repeat parts (a)–(c) for T = 2.5.

Problem 17.6. Comparison with exact results
In general, a Monte Carlo simulation yields exact answers only after an infinite number of configu-
rations have been sampled. How then can we be sure our program works correctly, and our results
are statistically meaningful? One check is to ensure that our program can reproduce exact results
in known limits. In the following, we test Program ising by considering a small system for which
the mean energy and magnetization can be calculated analytically.

a. Calculate analytically the T dependence of E, M , C and χ for the two-dimensional Ising model
with L = 2 and periodic boundary conditions. (A summary of the calculation is given in
Appendix 17.31.)

b. Use Program ising with L = 2 and estimate E, M , C, and χ for T = 0.5 and 0.25. Use the
relations (17.12) and (17.14) to compute C and χ, respectively. Compare your estimated values
to the exact results found in part (a). Approximately how many Monte Carlo steps per spin
are necessary to obtain E and M to within 1%? How many Monte Carlo steps per spin are
necessary to obtain C and χ to within 1%?

Now that we have checked our program and obtained typical equilibrium configurations, we
consider the calculation of the mean values of the physical quantities of interest. Suppose we
wish to compute the mean value of the physical quantity A. In general, the calculation of A
is time consuming, and we do not want to compute its value more often than necessary. For
example, we would not compute A after the flip of only one spin, because the values of A in the
two configurations would almost be the same. Ideally, we wish to compute A for configurations
that are statistically independent. Because we do not know a priori the mean number of spin flips
needed to obtain configurations that are statistically independent, it is a good idea to estimate
this time in our preliminary calculations.

One way to estimate the time interval over which configurations are correlated is to compute
the time displaced autocorrelation function CA(t) defined as

CA(t) =
〈A(t + t0)A(t0)〉 − 〈A〉2

〈A2〉 − 〈A〉2 . (17.16)

A(t) is the value of the quantity A at time t. The averages in (17.16) are over all possible time
origins t0 for an equilibrium system. Because the choice of the time origin is arbitrary for an
equilibrium system, CA depends only on the time difference t rather than t and t0 separately.
For sufficiently large t, A(t) and A(0) will become uncorrelated, and hence 〈A(t + t0)A(t0)〉 →
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〈A(t + t0)〉〈A(t0)〉 = 〈A〉2. Hence CA(t) → 0 as t → ∞. In general, CA(t) will decay exponentially
with t with a decay or correlation time τA whose magnitude depends on the choice of the physical
quantity A as well as the physical parameters of the system, for example, the temperature. Note
that CA(t = 0) is normalized to unity.

The time dependence of the two most common correlation functions, CM (t) and CE(t) is
investigated in Problem 17.7. As an example of the calculation of CE(t), consider the equilibrium
time series for E for the L = 4 Ising model at T = 4 : −4, −8, 0, −8, −20, −4, 0, 0, −24,
−32, −24, −24, −8, −8, −16, −12. The averages of E and E2 over these sixteen values are
〈E〉 = −12, 〈E2〉 = 240, and 〈E2〉 − 〈E〉2 = 96. We wish to compute E(t)E(0) for all possible
choices of the time origin. For example, E(t = 4)E(0) is given by

〈E(t = 4)E(0)〉 =
1
12

[
(−20 ×−4) + (−4 ×−8) + (0 × 0)

+ (0 ×−8) + (−24 ×−20) + (−32 ×−4)
+ (−24 × 0) + (−24 × 0) + (−8 ×−24)
+ (−8 ×−32) + (−16 ×−24) + (−12 ×−24)

]
. (17.17)

We averaged over the twelve possible choices of the origin for the time difference t = 4. Verify that
〈E(t = 4)E(0)〉 = 460/3 and CE(t = 4) = 7/72.

In the above calculation of 〈E(t)E(0)〉, we included all possible combinations of E(t)E(0)
for a given time series. To implement this procedure on a computer, we would need to store
the time series in memory or in a data file. An alternative procedure is to save the last nsave
values of the time series in memory and to average over fewer combinations. This procedure is
implemented in SUB correl; the correlation functions are computed and printed in SUB c output.
SUB correl uses two arrays, Esave and Msave, to store the last nsave values of the energy and
the magnetization at each Monte Carlo step per spin. These arrays and the arrays Ce and Cm may
be initialized in a separate subroutine.

SUB correl(Ce(),Cm(),E,M,esave(),msave(),pass,nsave)
! accumulate data for time correlation functions
! save last nsave values of M and E
! index0 = array index for earliest saved time
IF pass > nsave then

! compute Ce and Cm after nsave values are saved
LET index0 = mod(pass-1,nsave) + 1
LET index = index0
FOR tdiff = nsave to 1 step -1

LET Ce(tdiff) = Ce(tdiff) + E*esave(index)
LET Cm(tdiff) = Cm(tdiff) + M*msave(index)
LET index = index + 1
IF index > nsave then LET index = 1

NEXT tdiff
END IF
! save latest value in array position of earliest value
LET esave(index0) = E
LET msave(index0) = M
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END SUB

SUB c_output(N,Ce(),Cm(),accum(),mcs,nsave)
! compute time correlation functions
LET ebar = accum(1)/mcs
LET e2bar = accum(2)/mcs
LET Ce(0) = e2bar - ebar*ebar
LET mbar = accum(3)/mcs
LET m2bar = accum(4)/mcs
LET Cm(0) = m2bar - mbar*mbar
LET norm = 1/(mcs - nsave)
PRINT
PRINT "t","Ce(t)","Cm(t)"
PRINT
FOR tdiff = 1 to nsave

! correlation functions defined so that C(t=0) = 1
! and C(infinity) = 0
LET Ce(tdiff) = (Ce(tdiff)*norm - ebar*ebar)/Ce(0)
LET Cm(tdiff) = (Cm(tdiff)*norm - mbar*mbar)/Cm(0)
PRINT tdiff,Ce(tdiff),Cm(tdiff)

NEXT tdiff
END SUB

Problem 17.7. Correlation times

a. Choose L = 4 and T = 3 and equilibrate the system. Then look at the time series of M and
E after every Monte Carlo step per spin and estimate how often M changes sign. Does E
change sign when M changes sign? How often does M change sign for L = 8 (and T = 3)? In
equilibrium, positive and negative values of M are equally likely in the absence of an external
magnetic field. Is your time series consistent with this equilibrium property? Why is it more
meaningful to compute the time displaced correlation function of the absolute value of the
magnetization rather than the magnetization itself if L is relatively small?

b. Choose L = 16 and T = 1 and equilibrate the system. Then look at the time series of M . Do
you find that positive and negative values of M are equally likely? Explain your results.

c. Modify Program ising so that the equilibrium averaged values of CM (t) and CE(t) are com-
puted. As a check on your program, use the time series for E given in the text to do a hand
calculation of CE(t) in the way that it is computed in SUB correl and SUB c output. Choose
nsave = 10.

d. Estimate the correlation times from the energy and the magnetization correlation functions
for L = 8, and T = 3, T = 2.3, and T = 2. Save the last nsave = 100 values of the
magnetization and energy only after the system is equilibrated. Are the correlation times τM

and τE comparable? One way to determine τ is to fit C(t) to an assumed exponential form
C(t) ∼ e−t/τ . Another way is to define the integrated correlation time as

τ =
∑

t=1

C(t). (17.18)
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The sum is cut off at the first negative value of C(t). Are the negative values of C(t) physically
meaningful? How does the behavior of C(t) change if you average your results over longer runs?
How do your estimates for the correlation times compare with your estimates of the relaxation
time found in Problem 17.5? Why would the term “decorrelation time” be more appropriate
than “correlation time?”

e. To describe the relaxation towards equilibrium as realistically as possible, we have randomly
selected the spins to be flipped. However, if we are interested only in equilibrium properties,
it might be possible to save computer time by selecting the spins sequentially. Determine
if the correlation time is greater, smaller, or approximately the same if the spins are chosen
sequentially rather than randomly. If the correlation time is greater, does it still save CPU
time to choose spins sequentially? Why is it not desirable to choose spins sequentially in the
one-dimensional Ising model?

Problem 17.8. Estimate of errors
How can we quantify the accuracy of our measurements, for example, the accuracy of the mean
energy 〈E〉? As discussed in Chapter 11, the usual measure of the accuracy is the standard
deviation of the mean. If we make n independent measurements of E, then the most probable
error is given by

σm =
σ√

n − 1
, (17.19)

where the standard deviation σ is defined as

σ2 = 〈E2〉 − 〈E〉2. (17.20)

The difficulty is that, in general, our measurements of the time series Ei are not independent, but
are correlated. Hence, σm as given by (17.19) is an underestimate of the actual error.

How can we determine whether the measurements are independent without computing the
correlation time? One way is based on the idea that the magnitude of the error should not depend
on how we group the data. For example, suppose that we group every two data points to form
n/2 new data points E(2)

i given by E(g=2)
i = (1/2)[E2i−1 + E2i]. If we replace n by n/2 and

E by E(2) in (17.19) and (17.20), we would find the same value of σm as before provided that
the original Ei are independent. If the computed σm is not the same, we continue this averaging
process until σm calculated from

E(g)
i =

1
2
[E(g/2)

2i−1 + E(g/2)
2i ] (g = 2, 4, 8, . . . ) (17.21)

is approximately the same as that calculated from E(g/2).

a. Use the above averaging method to estimate the errors in your measurements of 〈E〉 and 〈M〉
for the two-dimensional Ising model. Let L = 8, T = 2.269, and mcs ≥ 16384, and calculate
averages after every Monte Carlo step per spin after the system has equilibrated. If necessary,
increase the number of Monte Carlo steps for averaging. A rough measure of the correlation time
is the number of terms in the time series that need to be averaged for σm to be approximately
unchanged. What is the qualitative dependence of the correlation time on T − Tc?


