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Ch	6	

	

We studied in class the logistic map. Its bifurcation diagram indicates that the period 
doubling behavior ends at �r ≈ 0.892. This value of r is known very precisely and is given by 
r = r∞ = 0.892486417967 . . . At r = r∞, the sequence of period doublings accumulate to a 
trajectory of infinite period.  

In the following, we will find further numerical evidence that the general behavior of the 
logistic map is independent of the details of the form xn+1 = f(xn) = 4rxn(1 − xn)   of f(x).  

	
	

	
	

DO	the	analysis	of	these	maps	at	your	best…	
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a. Use BifurcateApp to identify period 2, period 4, and period 8 behavior as can be seen in
Figure 6.2. Choose ntransient ≥ 1000. It might be necessary to “zoom in” on a portion of
the plot. How many period doublings can you find?

b. Change the scale so that you can follow the iterations of x from period 4 to period 16 behavior.
How does the plot look on this scale in comparison to the original scale?

c. Describe the shape of the trajectory near the bifurcations from period 2 to period 4, period 4
to 8, etc. These bifurcations are frequently called pitchfork bifurcations.

The bifurcation diagram in Figure 6.2 indicates that the period doubling behavior ends at
r ≈ 0.892. This value of r is known very precisely and is given by r = r∞ = 0.892486417967 . . .
At r = r∞, the sequence of period doublings accumulate to a trajectory of infinite period. In
Problem 6.3 we explore the behavior of the trajectories for r > r∞.

Problem 6.3. Chaotic behavior

a. For r > r∞, two initial conditions that are very close to one another can yield very different
trajectories after a few iterations. As an example, choose r = 0.91 and consider x0 = 0.5 and
0.5001. How many iterations are necessary for the iterated values of x to differ by more than
ten percent? What happens for r = 0.88 for the same choice of seeds?

b. The accuracy of floating point numbers retained on a digital computer is finite. To test the
effect of the finite accuracy of your computer, choose r = 0.91 and x0 = 0.5 and compute
the trajectory for 200 iterations. Then modify your program so that after each iteration, the
operation x = x/10 is followed by x = 10*x. This combination of operations truncates the last
digit that your computer retains. Compute the trajectory again and compare your results. Do
you find the same discrepancy for r < r∞?

c. What are the dynamical properties for r = 0.958? Can you find other windows of periodic
behavior in the interval r∞ < r < 1?

6.3 Period Doubling

The results of the numerical experiments that we did in Section 6.2 probably have convinced you
that the dynamical properties of a simple nonlinear deterministic system can be quite complicated.

To gain more insight into how the dynamical behavior depends on r, we introduce a simple
graphical method for iterating (6.5). In Figure 6.3 we show a graph of f(x) versus x for r = 0.7. A
diagonal line corresponding to y = x intersects the curve y = f(x) at the two fixed points x∗ = 0
and x∗ = 9/14 ≈ 0.642857 (see (6.6b)). If x0 is not a fixed point, we can find the trajectory in
the following way. Draw a vertical line from (x = x0, y = 0) to the intersection with the curve
y = f(x) at (x0, y0 = f(x0)). Next draw a horizontal line from (x0, y0) to the intersection with the
diagonal line at (y0, y0). On this diagonal line y = x, and hence the value of x at this intersection
is the first iteration x1 = y0. The second iteration x2 can be found in the same way. From the
point (x1, y0), draw a vertical line to the intersection with the curve y = f(x). Keep y fixed at
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Figure 6.7: Comparison of f(x, r) for r = s1 with the second iterate f (2)(x) for r = s2. (a) The
function f(x, r = s1) has unstable fixed points at x = 0 and x = 1 and a stable fixed point at
x = 1/2. (b) The function f (2)(x, r = s1) has a stable fixed point at x = 1/2. The unstable fixed
point of f (2)(x) nearest to x = 1/2 occurs at x ≈ 0.69098, where the curve f (2)(x) intersects the
line y = x. The upper right-hand corner of the square box in (b) is located at this point, and the
center of the box is at (1/2, 1/2). Note that if we reflect this square about the point (1/2, 1/2),
the shape of the reflected graph in the square box is nearly the same as it is in part (a), but on a
smaller scale.

behavior of f (4)(x, r = s3) in the square about x = 1/2 with f (2)(x, r = s2) in its square
about x = 1/2. The size of the squares are determined by the unstable fixed point nearest
to x = 1/2. Find the appropriate scaling factor and superimpose f (2) and the rescaled form
of f (4).

∗Problem 6.8. Other one-dimensional maps

It is easy to modify your programs to consider other one-dimensional maps. Determine the quali-
tative properties of the one-dimensional maps:

f(x) = xer(1−x) (6.12)

f(x) = r sinπx. (6.13)

Do they also exhibit the period doubling route to chaos? The map in (6.12) has been used by
ecologists (cf. May) to study a population that is limited at high densities by the effect of epidemics.
Although it is more complicated than (6.5), its advantage is that the population remains positive
no matter what (positive) value is taken for the initial population. There are no restrictions on
the maximum value of r, but if r becomes sufficiently large, x eventually becomes effectively zero.
What is the behavior of the time series of (6.12) for r = 1.5, 2, and 2.7? Describe the qualitative
behavior of f(x). Does it have a maximum?
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The sine map (6.13) with 0 < r ≤ 1 and 0 ≤ x ≤ 1 has no special significance, except that it
is nonlinear. If time permits, determine the approximate value of δ for both maps. What limits
the accuracy of your determination of δ?

The above qualitative arguments and numerical results suggest that the quantities α and δ are
universal , that is, independent of the detailed form of f(x). In contrast, the values of the accumu-
lation point r∞ and the constant C in (6.8) depend on the detailed form of f(x). Feigenbaum has
shown that the period doubling route to chaos and the values of δ and α are universal properties
of maps that have a quadratic maximum, that is, f ′(x)|x=xm

= 0 and f ′′(x)|x=xm
< 0.

Why is the universality of period doubling and the numbers δ and α more than a curiosity?
The reason is that because this behavior is independent of the details, there might exist realistic
systems whose underlying dynamics yield the same behavior as the logistic map. Of course, most
physical systems are described by differential rather than difference equations. Can these systems
exhibit period doubling behavior? Several workers (cf. Testa et al.) have constructed nonlinear
RLC circuits driven by an oscillatory source voltage. The output voltage shows bifurcations, and
the measured values of the exponents δ and α are consistent with the predictions of the logistic
map.

Of more general interest is the nature of turbulence in fluid systems. Consider a stream
of water flowing past several obstacles. We know that at low flow speeds, the water flows past
obstacles in a regular and time-independent fashion, called laminar flow. As the flow speed is
increased (as measured by a dimensionless parameter called the Reynolds number), some swirls
develop, but the motion is still time-independent. As the flow speed is increased still further,
the swirls break away and start moving downstream. The flow pattern as viewed from the bank
becomes time-dependent. For still larger flow speeds, the flow pattern becomes very complex and
looks random. We say that the flow pattern has made a transition from laminar flow to turbulent
flow.

This qualitative description of the transition to chaos in fluid systems is superficially similar
to the description of the logistic map. Can fluid systems be analyzed in terms of the simple models
of the type we have discussed here? In a few instances such as turbulent convection in a heated
saucepan, period doubling and other types of transitions to turbulence have been observed. The
type of theory and analysis we have discussed has suggested new concepts and approaches, and
the study of turbulent flow is a subject of much current interest.

6.5 Measuring Chaos

How do we know if a system is chaotic? The most important characteristic of chaos is sensitivity
to initial conditions. In Problem 6.3 for example, we found that the trajectories starting from
x0 = 0.5 and x0 = 0.5001 for r = 0.91 become very different after a small number of iterations.
Because computers only store floating numbers to a certain number of digits, the implication of
this result is that our numerical predictions of the trajectories of chaotic systems are restricted to
small time intervals. That is, sensitivity to initial conditions implies that even though the logistic
map is deterministic, our ability to make numerical predictions of its trajectory is limited.

How can we quantify this lack of predictably? In general, if we start two identical dynamical
systems from slightly different initial conditions, we expect that the difference between the trajec-
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