
From: An Introduction to Computer Simulation Methods Third Edition (revised)
by Harvey Gould, Jan Tobochnik, and Wolfgang Christian
	

Ch	11:	Numerical	and	Monte	Carlo	Methods	

	

Comparison	of	different	deterministic	methods	for	numerical	integration	

The	assignment	suggests	to	use	routines	from	the	Open	Source	Physics	library	and	some	java-based	project,	but	
don’t	worry:	you	can	easily	implement	your	own	subroutines	and	complement	what	we	have	done	in	class.	

First	of	all,	implement	the	Romberg's	method	for	numerical	integration	(you	can	easily	find	the	algorithm	
searching	on	the	web).			

	

Implement	also	your	own	ODE	solver	(ordinary	differential	equation),	such	as	the	Euler	method	that	we	have	

also	discussed	in	class.	If	you	are	finding	the	value	of	the	 ,	then	we	can	solve	the	integral	
as	an	ordinary	differential	equation	as		dy/dx=f(x),	y(a)=0.		We	can	then	use	any	of	the	numerical	techniques	
such	as	Euler’s	methods	to	find	the	value	of	y(b)	which	would	be	the	approximate	value	of	the	integral.	

	

	

CHAPTER 11. NUMERICAL AND MONTE CARLO METHODS 436

by others. This use is appropriate because usually these libraries are well written, and there is no
reason why a user should re-invent them. However, the downside is that users do not always know
or care what the libraries are doing and sometimes can obtain puzzling or even incorrect results.
In Problem 11.6 we explore this issue.

Problem 11.6. Understanding errors in integration routines

a. Use the ode, simpson, trapezoid, and rhomberg methods in the Integral class of the Open
Source Physics library to estimate the integral of sin2(2πx) between x = 0 and 1 with a tolerance
of 0.01. The exact answer is 0.5. Do all four methods return results within the tolerance? Are
some results much more accurate than the tolerance? Change the tolerance to 0.1. How do the
results change? Notice that for some of the methods, the results are much better than might
be expected because the positive and negative errors cancel. Why does the trapezoid method
always give the exact answer?

b. Integrate the same function from x = 0.2 to 1.0. How accurate are the results now? Explore
how the results change with the input tolerance. Does the behavior of the ode integrator differ
from the others. Why? How do you think the tolerance parameter is used for each of the
methods?

c. Integrate f(x) = xn for various values of n. How do the different integrators compare? Why
does the trapezoid integrator do worse than the others for n = 2?

11.2 Simple Monte Carlo Evaluation of Integrals

We now explore a much different method of estimating integrals. Consider the following example.
Suppose an irregularly shaped pond is in a field of known area A. The area of the pond can be
estimated by throwing stones so that they land at random within the boundary of the field and
counting the number of splashes that occur when a stone lands in a pond. The area of the pond
is approximately the area of the field times the fraction of stones that make a splash. This simple
procedure is an example of a Monte Carlo method.

To be more specific, imagine a rectangle of height h, width b− a, and area A = h(b− a) such
that the function f(x) is within the boundaries of the rectangle (see Figure 11.3). Compute n
pairs of random numbers xi and yi with a ≤ xi ≤ b and 0 ≤ yi ≤ h. The fraction of points xi, yi
that satisfy the condition yi ≤ f(xi) is an estimate of the ratio of the integral of f(x) to the area
of the rectangle. Hence, the estimate Fn in the hit or miss method is given by

Fn = A
ns

n
, (hit or miss method) (11.13)

where ns is the number of points below the curve or “splashes,” and n is the total number of
points. The number of points chosen at random in (11.13) should not be confused with the
number of intervals used in the numerical methods discussed in Section 11.1.

Another Monte Carlo integration method is based on a mean-value theorem of integral calcu-
lus, which states that the definite integral (11.1) is determined by the average value of the integrand

