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Problem 15.27. Characterization of a phase transition

a. Use your modified version of class Ising from Problem 15.26 to determine H(E,M). Read the
H(E,M) data from a file, and compute and plot F (E) for the range of temperatures of interest.
First generate data at T = 2.27 and use the Lee-Kosterlitz method to verify that the Ising
model in two dimensions has a continuous phase transition in zero magnetic field. Consider
lattices of sizes L = 4, 8, and 16.

b. Do a Lee-Kosterlitz analysis of the Ising model at T = 2 and zero magnetic field by plotting
F (M). Determine if the transition from M > 0 to M < 0 is first-order or continuous. This
transition is called field-driven because the transition occurs if we change the magnetic field.
Make sure your simulations sample configurations with both positive and negative magnetization
by using small values of L such as L = 4, 6, and 8.

c. Repeat part (b) at T = 2.5 and determine if there is a field-driven transition at T = 2.5.

∗Problem 15.28. The Potts Model

In the q-state Potts model, the total energy or Hamiltonian of the lattice is given by

E = −J
∑

i,j=nn(i)

δsi,sj , (15.59)

where si at site i can have the values 1, 2, . . . , q; the Kronecker delta function δa,b equals unity if
a = b and is zero otherwise. As before, we will measure the temperature in energy units. Convince
yourself that the q = 2 Potts model is equivalent to the Ising model (except for a trivial difference
in the energy minimum). One of the many applications of the Potts model is to helium absorbed
on the surface of graphite. The graphite-helium interaction gives rise to preferred adsorption
sites directly above the centers of the honeycomb graphite surface. As discussed by Plischke and
Bergersen, the helium atoms can be described by a three-state Potts model.

a. The transition in the Potts model is continuous for small q and first-order for larger q. Write a
Monte Carlo program to simulate the Potts model for a given value of q and store the histogram
H(E). Test your program by comparing the output for q = 2 with your Ising model program.

b. Use the Lee-Kosterlitz method to analyze the nature of the phase transition in the Potts model
for q = 3, 4, 5, 6, and 10. First find the location of the specific heat maximum, and then collect
data for H(E) at the specific heat maximum. Lattice sizes of order L ≥ 50 are required to
obtain convincing results for some values of q.

Another way to determine the nature of a phase transition is to use the Binder cumulant
method. The cumulant is defined by

UL ≡ 1− ⟨E4⟩
3⟨E2⟩2 . (15.60)

It can be shown that the minimum value of UL is

UL,min =
2

3
− 1

3

(E2
+ − E2

−
2E+E−

)2
+O(L−d), (15.61)



CHAPTER 15. MONTE CARLO SIMULATIONS OF THERMAL SYSTEMS 659

where E+ and E− are the energies of the two phases in a first-order transition. These results are
derived by considering the distribution of energy values to be a sum of Gaussians about each phase
at the transition, which become sharper and sharper as L → ∞. If UL,min = 2/3 in the infinite
size limit, then the transition is continuous.

Problem 15.29. The Binder cumulant and the nature of the transition

a. Suppose that the energy in a system is given by a Gaussian distribution with a zero mean.
What is the corresponding value of UL?

b. Consider the two-dimensional Ising model in the absence of a magnetic field and consider the
cumulant

VL ≡ 1− ⟨M4⟩
3⟨M2⟩2 . (15.62)

Compute VL for a temperature much higher than Tc. What is the value of VL? What is the
value of VL at T = 0?

c. Compute VL for values of T in the range 2.20 ≤ T ≤ 2.35 for L = 10, 20, and 40. Plot VL as
a function of T for these three values of L. Note that the three curves for VL cross at a value
of T that is approximately Tc. What is the approximate value of VL at this crossing? Can you
conclude that the transition is continuous?

d. Repeat Problem 15.28 using the Binder cumulant method and determine the nature of the
transition.

15.12 ∗Other Ensembles

So far, we have considered the microcanonical ensemble (fixed N , V , and E) and the canonical
ensemble (fixed N , V , and T ). Monte Carlo methods are very flexible and can be adapted to the
calculation of averages in any ensemble. Two other ensembles of particular importance are the
constant pressure and the grand canonical ensembles. The main difference in the Monte Carlo
method is that there are additional moves corresponding to changing the volume or changing the
number of particles. The constant pressure ensemble is particularly important for studying first-
order phase transitions because the phase transition occurs at a fixed pressure, unlike a constant
volume simulation where the system passes through a two phase coexistence region before changing
phase completely as the volume is changed.

In the NPT ensemble, the probability of a microstate is proportional to e−β(E+PV ). For a
classical system, the mean value of a physical quantity A that depends on the positions of the
particles can be expressed as

⟨A⟩NPT =

∫∞
0 dV e−βPV

∫
dr1dr2 . . . drNA({r}) e−βU({r})

∫∞
0 dV e−βPV

∫
dr1dr2 . . . drN e−βU({r}) . (15.63)

The potential energy U({r}) depends on the set of particle coordinates ({r}). To simulate the
NPT ensemble, we need to sample the coordinates r1, r2, · · · , rN of the particles and the volume


