From: An Introduction to Computer Simulation Methods Third Edition (revised) by Harvey Gould, Jan Tobochnik, and Wolfgang Christian

ch 7 Random Processes *R and <i>R* and *R* and *R*

(here reference is made to some java projects; disregard this suggestion and write your own \sup subroutines in your favorite programming language)

Problem 7.14. Random walks with steps of variable length

a. Consider a random walk in one dimension with jumps of all lengths. The probability that the length of a single step is between *a* and $a + \Delta a$ is $f(a)\Delta a$, where $f(a)$ is the probability density. If the form of $f(a)$ is given by $f(a) = C e^{-a}$ for $a > 0$ with the normalization condition $\int_0^\infty p(a)da = 1$, the code needed to generate step lengths according to this probability density is given by (see Section 12.5)

 $stepLength = -Math.log(1 - Math.random());$

Modify Walker and WalkerApp to simulate walks of variable length with this probability density. Note that the bin width ∆*a* is one of the input parameters. Consider *N* ≥ 100 and visualize the motion of the walker. Generate many walks of *N* steps and determine $p(x) \Delta x$, the probability that the displacement is between *x* and $x + \Delta x$ after *N* steps. Plot $p(x)$ versus *x* and confirm that the form of $p(x)$ is consistent with a Gaussian distribution.

b. Assume that the probability density $f(a)$ is given by $f(a) = C/a^2$ for $a \ge 1$. Determine the normalization constant *C* using the condition $C \int_1^{\infty} a^{-2} da = 1$. In this case, we will learn in Section 12.5 that the statement

 $stepLength = 1.0/(1.0 - Math.random())$;

generates values of *a* according to this form of $f(a)$. Do a Monte Carlo simulation as in part (a) and determine $p(x) \Delta x$. Is the form of $p(x)$ a Gaussian? This type of random walk for which *f*(*a*) decreases as a power law, $a^{-1-\alpha}$, is known as a *Levy flight* for $\alpha \leq 2$.