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Figure 15.7: What is the optimum route for this random arrangement of N = 8 cities? The route
begins and ends at city W. A possible route is shown.

15.13 More Applications

You probably are convinced that Monte Carlo methods are powerful, flexible, and applicable to
a wide variety of systems. Extensions to the Monte Carlo methods that we have not discussed
include multiparticle moves, biased moves where particles tend to move in the direction of the
force on them, bit manipulation for Ising-like models, and the use of multiple processors to update
different parts of a large system simultaneously. We also have not described the simulation of
systems with long-range potentials such as Coulombic systems and dipole-dipole interactions. For
these potentials, it is necessary to include the interactions of the particles in the center cell with
the infinite set of periodic images.

We conclude this chapter with a discussion of Monte Carlo methods in a context that might
seem to have little in common with the types of problems we have discussed. This context is called
multivariate or combinatorial optimization, a fancy way of saying, “How do you find the global
minimum of a function that depends on many parameters?” Problems of this type arise in many
areas of scheduling and design as well as in physics, biology, and chemistry. We explain the nature
of this type of problem for the traveling salesman problem, although we would prefer to call it the
traveling peddler or traveling salesperson, problem.

Suppose that a salesman wishes to visit N cities and follow a route such that no city is visited
more than once and the end of the trip coincides with the beginning. Given these constraints,
the problem is to find the optimum route such that the total distance traveled is a minimum. An
example of N = 8 cities and a possible route is shown in Figure 15.7. All known exact meth-
ods for determining the optimal route require a computing time that increases as eN , and hence,
in practice, an exact solution can be found only for a small number of cities. (The traveling
salesman problem belongs to a large class of problems known as NP-complete. The NP refers to
nondeterministic-polynomial. Such problems cannot be done in a time proportional to a finite
polynomial in N on standard computers, though polynomial time algorithms are known for hypo-
thetical nondeterministic (quantum) computers.) What is a reasonable estimate for the maximum
number of cities that you can consider without the use of a computer?

To understand the nature of the different approaches to the traveling salesman problem,
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Figure 15.8: Plot of the function E(a) as a function of the parameter a.

consider the plot in Figure 15.8 of the “energy” or “cost” function E(a). We can associate E(a)
with the length of the route and interpret a as a parameter that represents the order in which
the cities are visited. If E(a) has several local minima, what is a good strategy for finding the
global (absolute) minimum of E(a)? One way is to vary a systematically and find the value of E
everywhere. This way corresponds to an exact enumeration method and would mean knowing the
length of each possible route, an impossible task if the number of cities is too large. Another way
is to use a heuristic method, that is, an approximate method for finding a route that is close to the
absolute minimum. One strategy is to choose a value of a, generate a small random change δa, and
accept this change if E(a+ δa) is less than or equal to E(a). This iterative improvement strategy
corresponds to a search for steps that lead downhill (see Figure 15.8). Because this strategy usually
leads to a local and not a global minimum, it is useful to begin from several initial choices of a and
to keep the best result. What would be the application of this type of strategy to the salesman
problem?

Because we cannot optimize the path exactly when N becomes large, we have to be satisfied
with solving the optimization problem approximately and finding a relatively good local minimum.
To understand the motivation for the simulated annealing algorithm, consider a seemingly unrelated
problem. Suppose we wish to make a perfect single crystal. You might know that we should start
with the material at a high temperature at which the material is a liquid melt and then gradually
lower the temperature. If we lower the temperature too quickly (a rapid quench), the resulting
crystal would have many defects or not become a crystal at all. The gradual lowering of the
temperature is known as annealing .

The method of annealing can be used to estimate the minimum of E(a). We choose a value
of a, generate a small random change δa, and calculate E(a + δa). If E(a + δa) is less than or
equal to E(a), we accept the change. However, if ∆E = E(a + δa) − E(a) > 0, we accept the
change with a probability p = e−∆E/T , where T is an effective temperature. This procedure is
the familiar Metropolis algorithm with the temperature playing the role of a control parameter.
The simulated annealing process consists of first choosing a value for T for which most moves
are accepted, and then gradually lowering the temperature. At each temperature, the simulation
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should last long enough for the system to reach quasiequilibrium. The annealing schedule, that is,
the rate of temperature decrease, determines the quality of the solution.

The idea is to allow moves that result in solutions of worse quality than the current solution
(uphill moves) in order to escape from local minima. The probability of doing such a move is
decreased during the search. The slower the temperature is lowered, the higher the chance of
finding the optimum solution, but the longer the run time. The effective use of simulated annealing
depends on finding a annealing schedule that yields good solutions without taking too much time.
It has been proven that if the cooling rate is sufficiently slow, the absolute (global) minimum will
eventually be reached. The bounds for “sufficiently slow” depend on the properties of the search
landscape (the nature of E(a)) and are exceeded for most problems of interest. However, simulated
annealing is usually superior to conventional heuristic algorithms.

The moral of the simulated annealing method is that sometimes it is necessary to climb a hill
to reach a valley. The first application of the method of simulated annealing was to the optimal
design of computers. In Problem 15.31 we apply this method to the traveling salesman problem.

Problem 15.31. Simulated annealing and the traveling salesman problem

a. Generate a random arrangement of N = 8 cities in a square of linear dimension L =
√
N

and calculate the optimum route by hand. Then write a Monte Carlo program and apply the
method of simulated annealing to this problem. For example, use two arrays to store the x and
y coordinate of each city and an array to store the distances between them. The state of the
system, that is, the route represented by a sequence of cities, can be stored in another array. The
length of this route is associated with the energy of an imaginary thermal system. A reasonable
choice for the initial temperature is one that is the same order as the initial energy. One way
to generate a random rearrangement of the route is to choose two cities at random and to
interchange the order of visit. Choose this method or one that you devise and find a reasonable
annealing schedule. Compare your annealing results to exact results whenever possible. Extend
your results to larger N , for example, N = 12, 24, and 48. For a given annealing schedule,
determine the probability of finding a route of a given length. More suggestions can be found
in the references.

b. The microcanonical Monte Carlo algorithm (demon) discussed in Section 15.3 also can be used to
do simulated annealing. The advantages of the demon algorithm are that it is deterministic and
allows large temperature fluctuations. One way to implement the analog of simulated annealing
is to impose a maximum value on the energy of the demon, Ed,max, which is gradually decreased.
Guo et al. choose Ed,max to be initially equal to

√
N/4. Their results are comparable to the

usual simulated annealing method, but require approximately half the CPU time. Apply this
method to the same city positions that you considered in part (a) and compare your results.

15.14 Projects

Many of the original applications of Monte Carlo methods were done for systems of approximately
one hundred particles and lattices of order 322 spins. It would be instructive to redo many of
these applications with much better statistics and with larger system sizes. In the following, we
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discuss some additional recent developments, but we have omitted other important topics such as
Brownian dynamics and umbrella sampling. More ideas for projects can be found in the references.

Project 15.32. Overcoming critical slowing down

The usual limiting factor of most simulations is the speed of the computer. Of course, one way to
overcome this problem is to use a faster computer. Near a continuous phase transition, the most
important limiting factor on even the fastest available computers is the existence of critical slowing
down (see Problem 15.19). In this project we discuss the nature of critical slowing down and ways
of overcoming it in the context of the Ising model.

As we have mentioned, the existence of critical slowing down is related to the fact that the
size of the correlated regions of spins becomes very large near the critical point. The large size
of the correlated regions and the corresponding divergent behavior of the correlation length ξ
near Tc implies that the time τ required for a region to lose its coherence becomes very long if
a local dynamics is used. At T = Tc, τ ∼ Lz for L ≫ 1. For single spin flip algorithms, z ≈ 2,
and τ becomes very large for L ≫ 1. On a serial computer, the CPU time needed to obtain n
configurations increases as L2, the time needed to visit L2 spins. This factor of L2 is expected and
not a problem because a larger system contains proportionally more information. However, the
time needed to obtain n approximately independent configurations is of order τL2 ∼ L2+z ≈ L4

for the Metropolis algorithm. We conclude that an increase of L by a factor of 10 requires 104

more computing time. Hence, the existence of critical slowing down limits the maximum value of
L that can be considered.

If we are interested only in the static properties of the Ising model, the choice of dynamics
is irrelevant as long as the transition probability satisfies the detailed balance condition (15.18).
It is reasonable to look for a global algorithm for which groups or clusters of spins are flipped
simultaneously. We already are familiar with cluster properties in the context of percolation
(see Chapter 12). A naive definition of a cluster of spins might be a domain of parallel nearest
neighbor spins. We can make this definition explicit by introducing a bond between any two
nearest neighbor spins that are parallel. The introduction of a bond between parallel spins defines
a site-bond percolation problem. More generally, we may assume that such a bond exists with
probability p and that this bond probability depends on the temperature T .

The dependence of p on T can be determined by requiring that the percolation transition of
the clusters occurs at the Ising critical point, and by requiring that the critical exponents associated
with the clusters be identical to the analogous thermal exponents. For example, we can define a
critical exponent νp to characterize the divergence of the connectedness length of the clusters near
pc. The analogous thermal exponent ν quantifies the divergence of the thermal correlation length
ξ near Tc. We will argue in the following that these (and other) critical exponents are identical if
we define the bond probability as

p = 1− e−2J/kT . (bond probability) (15.79)

The relation (15.79) holds for any spatial dimension. What is the value of p at T = Tc for the
two-dimensional Ising model on the square lattice?

A simple argument for the temperature-dependence of p in (15.79) is as follows. Consider
the two configurations in Figure 15.9 which differ from one another by the flip of the cluster of
two spins. In Figure 15.9(a) the six nearest neighbor spins of the cluster are in the opposite
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(a) (b)

Figure 15.9: (a) A cluster of two up spins. (b) A cluster of two down spins, respectively. The filled
and open circles represent the up and down spins. Note the bond between the two spins in the
cluster. Adapted from Newman and Barkema.

direction and hence are not part of the cluster. Thus the probability of this configuration with a
cluster of two spins is p e−βJe6βJ , where p is the probability of a bond between the two up spins,
e−βJ is proportional to the probability that these two spins are parallel, and e6βJ is proportional
to the probability that the six nearest neighbors are antiparallel. In Figure 15.9(b) the cluster
spins have been flipped and the possible bonds between the cluster spins and its nearest neighbors
have to be “broken.” The probability of this configuration with a cluster of two (down) spins is
p(1 − p)6e−βJe−6βJ , where the factor of 1 − p)6 is the probability that the six nearest neighbor
spins are not part of the cluster. Because we want the probability that a cluster is flipped to be
unity, we need to have the probability of the two configurations and their corresponding clusters
be the same. Hence, we must have

pe−βJe6βJ = p(1− p)6e−βJe−6βJ , (15.80)

or (1− p)6 = e−12βJ . It is straightforward to solve for p and obtain the relation (15.79).

Now that we know how to generate clusters of spins, we can use these clusters to construct a
global dynamics instead of only flipping one spin at a time as in the Metropolis algorithm. The
idea is to grow a single (site-bond) percolation cluster in a way that is analogous to the single
(site) percolation cluster algorithm discussed in Section 13.1. The algorithm can be implemented
by the following steps:

i. Choose a seed spin at random. Its four nearest neighbor sites (on the square lattice) are the
perimeter sites. Form an ordered array corresponding to the perimeter spins that are parallel
to the seed spin and define a counter for the total number of perimeter spins.

ii. Choose the first spin in the ordered perimeter array. Remove it from the array and replace it
by the last spin in the array. Generate a random number r. If r ≤ p, the bond exists between
the two spins, and the perimeter spin is added to the cluster.

iii. If the spin is added to the cluster, inspect its parallel perimeter spins. If any of these spins
are not already part of the cluster, add them to the end of the array of perimeter spins.

iv. Repeat steps (ii) and (iii) until no perimeter spins remain.

v. Flip all the spins in the single cluster.
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This algorithm is known as single cluster flip or Wolff dynamics. Note that bonds rather than
sites are tested so that a spin might have more than one chance to join a cluster. In the following,
we consider both the static and dynamical properties of the two-dimensional Ising model using the
Wolff algorithm to generate the configurations.

a. Modify your program for the Ising model on a square lattice so that single cluster flip dynamics
(the Wolff algorithm) is used. Compute the mean energy and magnetization for L = 16 as a
function of T for T = 2.0 to 2.7 in steps of 0.1. Compare your results to those obtained using
the Metropolis algorithm. How many cluster flips do you need to obtain comparable accuracy
at each temperature? Is the Wolff algorithm more efficient at every temperature near Tc?

b. Fix T at the critical temperature of the infinite lattice (Tc = 2/ln(1 +
√
2)) and use finite size

scaling to estimate the values of the various static critical exponents, for example, γ and α.
Compare your results to those obtained using the Metropolis algorithm.

c. Because we are generating site-bond percolation clusters, we can study their geometrical prop-
erties as we did for site percolation. For example, measure the distribution sns of cluster sizes
at p = pc (see Problem 13.3). How does ns depend on s for large s (see Project 13.15)? What
is the fractal dimension of the clusters in the Ising model at T = Tc?

d. The natural unit of time for single cluster flip dynamics is the number of cluster flips tcf . Measure
CM (tcf) and/or CE(tcf) and estimate the corresponding correlation time τcf for T = 2.5, 2.4,
2.3, and Tc for L = 16. As discussed in Problem 15.19, τcf can be found from the relation,
τcf =

∑
tcf=1 C(tcf). The sum is cut-off at the first negative value of C(tcf). Estimate the value

of zcf from the relation τcf = Lzcf .

e. To compare our results for the Wolff algorithm to our results for the Metropolis algorithm, we
should use the same unit of time. Because only a fraction of the spins are updated at each
cluster flip, the time tcf is not equal to the usual unit of time, which corresponds to an update
of the entire lattice or one Monte Carlo step per spin. We have that τ measured in Monte Carlo
steps per spin is related to τcf by τ = τcf⟨c⟩/L2, where ⟨c⟩ is the mean number of spins in the
single clusters, and L2 is the number of spins in the entire lattice. Verify that the mean cluster
size scales as ⟨c⟩ ∼ Lγ/ν with γ = 7/4 and ν = 1. (The quantity ⟨c⟩ is the same quantity as the
mean cluster size S defined in Chapter 12. The exponents characterizing the divergence of the
various properties of the clusters are identical to the analogous thermal exponents.)

f. To obtain the value of z that is directly comparable to the value found for the Metropolis
algorithm, we need to rescale the time as in part (e). We have that τ ∼ Lz ∝ LzcfLγ/νL−d.
Hence, z is related to the measured value of zcf by z = zcf − (d− γ/ν). What is your estimated
value of z? (It has been estimated that zcf ≈ 0.50 for the d = 2 Ising model, which would imply
that z ≈ 0.25.)

g. One of the limitations of the usual implementation of the Metropolis algorithm is that only
one spin is flipped at a time. However, there is no reason why we could not choose f spins at
random, compute the change in energy ∆E for flipping these f spins, and accepting or rejecting
the trial move in the usual way according to the Boltzmann probability. Explain why this
generalization of the Metropolis algorithm would be very inefficient, especially if f >> 1. We
conclude that the groups of spins to be flipped must be chosen with the physics of the system
in mind and not simply at random.
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Another cluster algorithm is to assign all bonds between parallel spins with probability p. As
usual, no bonds are included between sites that have different spin orientations. From this config-
uration of bonds, we can form clusters of spins using one of the cluster identification algorithms we
discussed in Chapter 12. The smallest cluster contains a single spin. After the clusters have been
identified, all the spins in each cluster are flipped with probability 1/2. This algorithm is known as
the Swendsen-Wang algorithm and preceded the Wolff algorithm. Because the Wolff algorithm is
easier to program and gives a smaller value of z than the Swendsen-Wang algorithm for the d = 3
and d = 4 Ising models, the Wolff algorithm is more commonly used.

Project 15.33. Invaded cluster algorithm

In Problem 13.7 we found that invasion percolation is an example of a self-organized critical
phenomenon. In this cluster growth algorithm, random numbers are independently assigned to the
bonds of a lattice. The growth starts from the seed sites of the left-most column. At each step
the cluster grows by the occupation of the perimeter bond with the smallest random number. The
growth continues until the cluster satisfies a stopping condition. We found that if we stop adding
sites when the cluster is comparable in extent to the linear dimension L, then the fraction of bonds
that are occupied approaches the percolation threshold pc as L → ∞. The invaded percolation
algorithm automatically finds the percolation threshold!

Machta and co-workers have used this idea to find the critical temperature of a spin system
without knowing its value in advance. For simplicity, we will discuss their algorithm in the context
of the Ising model, although it can be easily generalized to the q-state Potts model (see the
references). Consider a lattice on which there is a spin configuration {si}. The bonds of the lattice
are assigned a random order. Bonds (i, j) are tested in this assigned order to see if si is parallel
to sj . If so, the bond is occupied and spins i and j are part of the same cluster. Otherwise, the
bond is not occupied and is not considered for the remainder of the current Monte Carlo step. The
set of occupied bonds partitions the lattice into clusters of connected sites. The clusters can be
found using the Newman-Ziff algorithm (see Section 12.3). The cluster structure evolves until a
stopping condition is satisfied. Then a new spin configuration is obtained by flipping each cluster
with probability 1/2, thus completing one Monte Carlo step. The fraction f of bonds that were
occupied during the growth process and the energy of the system are measured. The bonds are
than randomly reordered and the process begins again. Note that the temperature is not an input
parameter.

If open boundary conditions are used, the appropriate stopping rule is that a cluster spans the
lattice (see Chapter 12, page ??). For periodic boundary conditions, the spanning rule discussed
in Project 12.17 is appropriate.

Write a program to simulate the invaded cluster algorithm for the Ising model on the square
lattice. Start with all spins up and determine how many Monte Carlo steps are needed for equi-
libration. How does this number compare to that required by the Metropolis algorithm at the
critical temperature for the same value of L? An estimate for the critical temperature can be
found from the relation (15.79) with f corresponding to p.

After you are satisfied that your program is working properly, determine the dependence of
the critical temperature on the concentration c of non-magnetic impurities. That is, randomly
place non-magnetic impurities on a fraction c of the sites.
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Project 15.34. Physical test of random number generators

In Section 7.9 we discussed various statistical tests for the quality of random number generators.
In this project we will find that the usual statistical tests might not be sufficient for determining
the quality of a random number generator for a particular application. The difficulty is that the
quality of a random number generator for a specific application depends in part on how the subtle
correlations that are intrinsic to all deterministic random number generators couple to the way
that the random number sequences are used. In this project we explore the quality of two random
number generators when they are used to implement single spin flip dynamics (the Metropolis
algorithm) and single cluster flip dynamics (Wolff algorithm) for the two-dimensional Ising model.

a. Write methods to generate sequences of random numbers based on the linear congruential
algorithm

xn = 16807xn−1 mod (231 − 1), (15.81)

and the generalized feedback shift register (GFSR) algorithm

xn = xn−103 ⊕ xn−250. (15.82)

In both cases xn is the nth random number. Both algorithms require that xn be divided by the
largest possible value of xn to obtain numbers in the range 0 ≤ xn < 1. The GFSR algorithm
requires bit manipulation. Which random number generator does a better job of passing the
various statistical tests discussed in Problem 7.35?

b. Use the Metropolis algorithm and the linear congruential random number generator to determine
the mean energy per spin E/N and the specific heat (per spin) C for the L = 16 Ising model at
T = Tc = 2/ln(1+

√
2). Make ten independent runs (that is, ten runs that use different random

number seeds), and compute the standard deviation of the means σm from the ten values of
E/N and C, respectively. Published results by Ferrenberg, Landau, and Wong are for 106 Monte
Carlo steps per spin for each run. Calculate the differences δe and δc between the average of
E/N and C over the ten runs and the exact values (to five decimal places) E/N = −1.45306
and C = 1.49871. If the ratio δ/σm for the two quantities is order unity, then the random
number generator does not appear to be biased. Repeat your runs using the GFSR algorithm
to generate the random number sequences. Do you find any evidence of statistical bias?

c. Repeat part (b) using Wolff dynamics. Do you find any evidence of statistical bias?

d. Repeat the computations in parts (b) and (c) using the random number generator supplied with
your programming language.

Project 15.35. Nucleation and the Ising model

a. Equilibrate the two-dimensional Ising model at T = 4Tc/9 and B = 0.3 for a system with
L ≥ 50. What is the equilibrium value of m? Then flip the magnetic field so that it points
down, that is, B = −0.3. Use the Metropolis algorithm and plot m as a function of the time t
(the number of Monte Carlo steps per spin). What is the qualitative behavior of m(t)? Does it
fluctuate about a positive value for a time long enough to determine various averages? If so, the
system can be considered to have been in a metastable state. Watch the spins evolve for a time
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before m changes sign. Visually determine a place in the lattice where a “droplet” of the stable
phase (down spins) first appears and then grows. Change the random number seed and rerun
the simulation. Does the droplet appear in the same spot at the same time? Can the magnitude
of the field be increased further or is there an upper bound above which a metastable state is
not well defined?

b. As discussed in Project 15.32, we can define clusters of spins by placing a bond with probability
p between parallel spins. In this case there is an external field and the proper definition of
the clusters is more difficult. For simplicity, assume that there is a bond between all nearest-
neighbor down spins and find all the clusters of down spins. One way to identify the droplet that
initiates the decay of the metastable state is to monitor the number of spins in the largest cluster
as a function of time after the quench. At what time does the number of spins in the largest
cluster begin to grow quickly? This time is an estimate of the nucleation time. Another way
of estimating the nucleation time is to follow the evolution of the center of mass of the largest
cluster. For early times after the quench, the center of mass position has large fluctuations.
However, at a certain time, these fluctuations decrease considerably, which is another criterion
for the nucleation time. What is the order of magnitude of the nucleation time?

c. While the system is in a metastable state, clusters of down spins grow and shrink randomly
until eventually one of the clusters becomes large enough to grow, nucleation occurs, and the
system decays to its stable macroscopic state. The cluster that initiates this decay is called
the nucleating droplet. This type of nucleation is due to spontaneous thermal fluctuations and
is called homogeneous nucleation. Although the criteria for the nucleation time that we used
in part (b) are plausible, they are not based on fundamental considerations. From theoretical
considerations the nucleating droplet can be thought of as a cluster that just makes it to the top
of the saddle point of the free energy that separates the metastable and stable states. We can
identify the nucleating droplet by using the fact that a saddle point structure should initiate
the decay of the metastable state 50% of the time. The idea is to save the spin configurations at
regular intervals at about the time that nucleation is thought to have occurred. We then restart
the simulation using a saved configuration at a certain time and use a different random number
sequence to flip the spins. If we have intervened at a time such that the largest cluster decays
in more than 50% of the trials, then the intervention time (the time at which we changed the
random number seed) is before nucleation. Similarly, if less than 50% of the clusters decay, the
intervention is after the nucleation time. The nucleating droplet is the cluster that decays in
approximately half of the trial interventions. Because we need to do a number of interventions
(usually in the range 20–100) at different times, the intervention method is much more CPU
intensive than the other criteria. However, it has the advantage that it has a sound theoretical
basis. Redo some of the simulations that you did in part (b) and compare the different estimates
of the nucleation time. What is the nature and size of the nucleating droplet? If time permits,
determine the probability that the system nucleates at time t for a given quench depth. (Measure
the time t after the flip of the field.)

d. Heterogeneous nucleation occurs in nature because of the presence of impurities, defects, or
walls. One way of simulating heterogeneous nucleation in the Ising model is to fix a certain
number of spins in the direction of the stable phase (down). For simplicity, choose the impurity
to be five spins in the shape of a + sign. What is the effect of the impurity on the lifetime of
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the metastable state? What is the probability of droplet growth on and off the impurity as a
function of quench depth B?

e. The questions raised in parts (b)–(d) become even more interesting when the interaction between
the spins extends beyond nearest neighbors. Assume that a given spin interacts with all spins
that are within a distance R with an interaction strength of 4J/q, where q is the number of
spins within the interaction range R. (Note that q = 4 for nearest neighbor interactions on the
square lattice.) A good choice is R = 10, although your preliminary simulations should be for
smaller R. How does the value of Tc change as R is increased?

Project 15.36. The n-fold way: Simulations at low temperature

Monte Carlo simulations become very inefficient at low temperatures because almost all trial
configurations will be rejected. For example, consider an Ising model for which all spins are up,
but a small magnetic field is applied in the negative direction. The equilibrium state will have
most spins pointing down. Nevertheless, if the magnetic field is small and the temperature is low
enough, equilibrium will take a very long time to occur.

What we need is a more efficient way of sampling configurations if the acceptance probability
is low. The n-fold way algorithm is one such method. The idea is to accept more low probability
configurations, but to weight them appropriately. If we use the usual Metropolis rule, then the
probability of flipping the ith spin is

pi = min
[
1, e−∆E/kT

]
. (15.83)

One limitation of the Metropolis algorithm is that it becomes very inefficeint if the probabilities
pi are very small. If we sum over all the spins, then we can define the total weight

Q =
∑

i

pi. (15.84)

The idea is to choose a spin to flip (with probability one) by computing a random number,
rQ, between 0 and Q and finding spin i that satisfies the condition:

i−1∑

k=0

pk ≤ rQ <
i∑

k=0

pk. (15.85)

There are two more ingredients we need to make this algorithm practical. We need to determine
how long a configuration would remain unchanged if we had used the Metropolis algorithm. Also
the algorithm would be very inefficient because on average the computation of which spin to flip
from (15.85) would take O(N) computations. This second problem can be easily overcome by
realizing that there are only a few possible values of pi. For example, for the Ising model on a
square lattice in a magnetic field, there are only n = 10 possible values of pi. Thus, instead of
(15.85), we have

i−1∑

α=0

nαpα ≤ rQ <
i∑

α=0

nαpα, (15.86)
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where α labels one of the n possible values of pi or classes, and nα is the number of spins in class
α. Hence, instead of O(N) calculations, we need to perform only O(n) calculations. Once we know
which class we have chosen, we can randomly flip one of the spins in that class.

Next we need to determine the time spent in a configuration. The probability in one Metropolis
Monte Carlo step of choosing a spin at random is 1/N , and the probability of actually flipping
that spin is pi, which is given by (15.83). Thus, the probability of flipping any spin is

1

N

N−1∑

i=0

pi =
1

N

n−1∑

α=0

nαpα =
Q

N
, (15.87)

The probability of not flipping any spin is q ≡ 1−Q/N , and the probability of not flipping after s
steps is qs. Thus, if we generate a random number r between 0 and 1, the time s in Monte Carlo
steps per spin to remain in the current configuration will be determined by solving

qs−1 ≤ r < qs. (15.88)

If Q/N << 1, then both sides of (15.88) are approximately equal, and we can approximate s by

s ≈ ln r

ln q
=

ln r

ln(1−Q/N)
≈ −N

Q
ln r. (15.89)

That is, we would have to wait s Monte Carlo steps per spin on the average before we would flip
a spin using the Metropolis algorithm. Note that the random number r in (15.88) and (15.89)
should not be confused with the random number rQ in (15.86).

The n-fold algorithm can be summarized by the following steps:

i. Start with an initial configuration and determine the class to which each spin belongs. Store
all the possible values of pi in an array. Compute Q. Store in an array the number of spins in
class α, nα.

ii. Determine s from (15.89). Accumulate any averages such as the energy and magnetization
weighted by s. Also, accumulate the total time tTotal += s.

iii. Choose a class of spin using (15.86) and randomly choose which spin in the chosen class to
flip.

iv. Update the classes of the chosen spin and its four neighbors.

v. Repeat steps (ii)–(iv).

To conveniently carry out step (iv) set up the following arrays: spinClass[i] returns the
class of the ith spin, spinInClass[k][alpha] returns the kth spin in class α, and spinIndex[i]
returns the value of k for the ith spin to use in the array spinInClass[k][alpha]. If we define
the local field of a spin by the sum of the fields of its four neighbors, then this local field can take
on the values {−4,−2, 0, 2, 4}. The ten classes correspond to these five local field values and the
center spin equal to −1 plus these five local field values and the center spin equal to +1. If we
order these ten classes from 0 to 9, then the class of a spin that is flipped changes by +5 mod 10
and the class of a neighbor changes by the new spin value equal to ±1.
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Figure 15.10: A typical configuration of the planar model on a 24×24 square lattice that has been
quenched from T = ∞ to T = 0 and equilibrated for 200 Monte Carlo steps per spin after the
quench. Note that there are six vortices. The circle around each vortex is a guide to the eye and
is not meant to indicate the size of the vortex.

a. Write a program to implement the n-fold way algorithm for the Ising model on a square lattice
with an applied magnetic field. Check your program by comparing various averages at a few
temperatures with the results from your program using the Metropolis algorithm.

b. Choose the magnetic field B = −0.5 at the temperature T = 1. Begin with an initial configu-
ration of all spins up, and use the n-fold way to estimate how long it takes before the majority
of the spins flip. Do the same simulation using the Metropolis algorithm. Which algorithm is
more efficient?

c. Repeat part (b) for other temperature and field values. For what conditions is the n-fold way
algorithm more efficient than the standard Metropolis algorithm?

d. Repeat part (b) for different values of the magnetic field and plot the number of Monte Carlo
steps needed to flip the spins as a function of 1/|B|, for values of B from 0 to ≈ 3. Average
over at least 10 starting configurations for each field value.
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Project 15.37. The Kosterlitz-Thouless transition

The planar model (also called the x-y model) consists of spins of unit magnitude that can point
in any direction in the x-y plane. The energy or Hamiltonian function of the planar model in zero
magnetic field can be written as

E = −J
∑

i,j=nn(i)

[si,xsj,x + si,ysj,y], (15.90)

where si,x represents the x-component of the spin at the ith site, J measures the strength of the
interaction, and the sum is over all nearest neighbors. We can rewrite (15.90) in a simpler form
by substituting si,x = cos θi and si,y = sin θi. The result is

E = −J
∑

i,j=nn(i)

cos(θi − θj), (15.91)

where θi is the angle that the ith spin makes with the x axis. The most studied case is the
two-dimensional model on a square lattice. In this case the mean magnetization ⟨M⟩ = 0 for all
temperatures T > 0, but nevertheless, there is a phase transition at a nonzero temperature, TKT,
which is known as the Kosterlitz-Thouless (KT) transition. For T ≤ TKT, the spin-spin correlation
function C(r) decreases as a power law; for T > TKT, C(r) decreases exponentially. The power law
decay of C(r) for T ≤ TKT implies that every temperature below TKT acts as if it were a critical
point. We say that the planar model has a line of critical points. In the following, we explore some
of the properties of the planar model and the mechanism that causes the transition.

a. Write a program that uses the Metropolis algorithm to simulate the planar model on a square
lattice using periodic boundary conditions. Because θ and hence the energy of the system is a
continuous variable, it is not possible to store the previously computed values of the Boltzmann
factor for each possible value of ∆E. Instead, of computing e−β∆E for each trial change, it is
faster to set up an array w such that the array element w(j) = e−β∆E , where j is the integer part
of 1000∆E. This procedure leads to an energy resolution of 0.001, which should be sufficient
for most purposes.

b. One way to show that the magnetization ⟨M⟩ vanishes for all T is to compute ⟨θ2⟩, where θ is
the angle that a spin makes with the magnetization M for any given configuration. (Although
the mean magnetization vanishes, M ̸= 0 at any given instant.) Compute ⟨θ2⟩ as a function of
the number of spins N at T = 0.1, and show that ⟨θ2⟩ diverges as lnN . Begin with a 4 × 4
lattice and choose the maximum change in θi to be ∆θmax = 1.0. If necessary, change θmax

so that the acceptance probability is about 40%. If ⟨θ2⟩ diverges, then the fluctuations in the
direction of the spins diverges, which implies that there is no preferred direction for the spins,
and hence the mean magnetization vanishes.

c. Modify your program so that an arrow is drawn at each site to show the orientation of each spin.
You can use the Vector2DFrame to draw a lattice of arrows. Look at a typical configuration
and analyze it visually. Begin with a 32 × 32 lattice with spins pointing in random directions
and do a temperature quench to T = 0.5. (Simply change the value of β in the Boltzmann
probability.) Such a quench should lock-in some long lived, but metastable vortices. A vortex
is a region of the lattice where the spins rotate by at least 2π as your eye moves around a
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closed path (see Figure 15.10). To determine the center of a vortex, choose a group of four
spins that are at the corners of a unit square, and determine whether the spins rotate by ±2π
as your eye goes from one spin to the next in a counterclockwise direction around the square.
Assume that the difference between the direction of two neighboring spins, δθ, is in the range
−π < δθ < π. A total rotation of +2π indicates the existence of a positive vortex, and a change
of −2π indicates a negative vortex. Count the number of positive and negative vortices. Repeat
these observations for several configurations. What can you say about the number of vortices
of each sign?

d. Write a method to determine the existence of a vortex for each 1 × 1 square of the lattice.
Represent the center of the vortices using a different symbol to distinguish between a positive
and a negative vortex. Do a Monte Carlo simulation to compute the mean energy, the specific
heat, and number of vortices in the range from T = 0.5 to T = 1.5 in steps of 0.1. Use the last
configuration at the previous temperature as the first configuration for the next temperature.
Begin at T = 0.5 with all θi = 0. Draw the vortex locations for the last configuration at each
temperature. Use at least 1000 Monte Carlo steps per spin at each temperature to equilibrate,
and at least 5000 Monte Carlo steps per spin for computing the averages. Use an 8 × 8 or
16 × 16 lattice if your computer resources are limited, and larger lattices if you have sufficient
resources. Describe the T dependence of the energy, the specific heat, and the vorticity (equal to
the number of vortices per unit area). Plot the logarithm of the vorticity versus T for T < 1.1.
What can you conclude about the T -dependence of the vorticity? Explain why this form is
reasonable. Describe the vortex configurations. At what temperature do you find a vortex that
appears to be free, that is, a vortex that is not obviously paired with another vortex of opposite
sign?

e. The Kosterlitz-Thouless theory predicts that the susceptibility χ diverges above the transition
as

χ ∼ Aeb/ϵ
ν

, (15.92)

where ϵ is the reduced temperature ϵ = (T − TKT)/TKT, ν = 0.5, and A and b are nonuniversal
constants. Compute χ from the relation (15.21) with M = 0. Assume the exponential form
(15.92) for χ in the range T = 1 and T = 1.2 with ν = 0.7, and find the best values of TKT, A,
and b. (Although theory predicts ν = 0.5, simulations for small systems indicate that ν = 0.7
gives a better fit.) One way to determine TKT, A, and b is to assume a value of TKT and then
do a least squares fit of lnχ to determine A and b. Choose the set of parameters that minimizes
the variance of lnχ. How does your estimated value of TKT compare with the temperature
at which free vortices first appear? At what temperature does the specific heat have a peak?
The Kosterlitz-Thouless theory predicts that the specific heat peak does not occur at TKT.
This prediction has been confirmed by simulations (see Tobochnik and Chester). To obtain
quantitative results, you will need lattices larger than 32× 32.

Project 15.38. The classical Heisenberg model in two dimensions

The energy or Hamiltonian of the classical Heisenberg model is similar to the Ising model and the
planar model, except that the spins can point in any direction in three dimensions. The energy in
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zero external magnetic field is

E = −J
N∑

i,j=nn(i)

si · sj = −J
N∑

i,j=nn(i)

[si,xsj,x + si,ysj,y + si,zsj,z], (15.93)

where s is a classical vector of unit length. The spins have three components, in contrast to the
spins in the Ising model which only have one component, and the spins in the planar model which
have two components.

We will consider the two-dimensional Heisenberg model for which the spins are located on a
two-dimensional lattice. Early simulations and approximate theories led researchers to believe that
there was a continuous phase transition, similar to that found in the Ising model. The Heisenberg
model received more interest after it was related to quark confinement. Lattice models of the inter-
action between quarks, called lattice gauge theories, predict that the confinement of quarks could be
explained if there are no phase transitions in these models. (The lack of a phase transition in these
models implies that the attraction between quarks grows with distance.) The two-dimensional
Heisenberg model is an analog of the four-dimensional models used to model quark-quark inter-
actions. Shenker and Tobochnik used a combination of Monte Carlo and renormalization group
methods to show that this model does not have a phase transition. Subsequent work on lattice
gauge theories showed similar behavior.

a. Modify your Ising model program to simulate the Heisenberg model in two dimensions. One
way to do so is to define three arrays, one for each of the three components of the unit spin
vectors. A trial Monte Carlo move consists of randomly changing the direction of a spin, si.
First compute a small vector ∆s = ∆smax(q1, q2, q3), where −1 ≤ qn ≤ 1 is a uniform random
number, and ∆smax is the maximum change of any spin component. If |∆s| > ∆smax, than
compute another ∆s. This latter step is necessary to insure that the change in a spin direction is
symmetrically distributed around the current spin direction. Then let the trial spin equal si+∆s
normalized to a unit vector. The standard Metropolis algorithm can now be used to determine
if the trial spin is accepted. Compute the mean energy, the specific heat, and the susceptibility
as a function of T . Choose lattice sizes of L = 8, 16, 32 and larger if possible and average
over at least 2000 Monte Carlo steps per spin at each temperature. Is there any evidence of a
phase transition? Does the susceptibility appear to diverge at a nonzero temperature? Plot the
logarithm of the susceptibility versus the inverse temperature, and determine the temperature
dependence of the susceptibility in the limit of low temperatures.

b. Use the Lee-Kosterlitz analysis at the specific heat peak to determine if there is a phase tran-
sition.

Project 15.39. Domain growth kinetics

When the Ising model is quenched from a high temperature to very low temperatures, domains of
the ordered low temperature phase typically grow with time as a power law, R ∼ tα, where R is a
measure of the average linear dimension of the domains. A simple measure of the domain size is
the perimeter length of a domain which can be computed from the energy per spin, ϵ, and is given
by

R =
2

2 + ϵ
. (15.94)
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Equation (15.94) can be motivated by the following argument. Imagine a region of N spins made
up of a domain of up spins with a perimeter size, R, embedded in a sea of down spins. The total
energy of this region is −2N + 2R, where for each spin on the perimeter, the energy is increased
by 2 because one of the neighbors of a perimeter spin will be of opposite sign. The energy per spin
is ϵ = −2 + 2R/N . Because N is of order R2, we arrive at the result given in (15.94).

a. Modify your Ising model program so that the initial configuration is random, that is, a typical
high temperature configuration. Write a target class to simulate a quench of the system. The
input parameters should be the lattice size, the quench temperature (use 0.5 initially), the
maximum time (measured in Monte Carlo steps per spin) for each quench, and the number
of Monte Carlo steps between drawing the lattice. Plot ln⟨R⟩ versus ln t after each quench is
finished, where t is measured from the time of the quench.

b. Choose L = 64 and a maximum time of 128mcs. Averages over 10 quenches will give acceptable
results. What value do you obtain for α? Repeat for other temperatures and system sizes. Does
the exponent change? Run for a longer maximum time to check your results.

c. Modify your program to simulate the q-state Potts model. Consider various values of q. Do
your results change? Results for large q and large system sizes are given in Grest et al.

d.∗ Modify your program to simulate a three-dimensional system. How should you modify (15.94)?
Are your results similar?

Project 15.40. Ground state energy of the Ising spin glass

A spin glass is a magnetic system with frozen-in disorder. An example of such a system is the Ising
model with the exchange constant Jij between nearest neighbor spins randomly chosen to be ±1.
The disorder is said to be “frozen-in” because the set of interactions {Jij} does not change with
time. Because the spins cannot arrange themselves so that every pair of spins is in its lowest energy
state, the system exhibits frustration similar to the antiferromagnetic Ising model on a triangular
lattice (see Problem 15.22). Is there a phase transition in the spin glass model, and if so, what
is its nature? The answers to these questions are very difficult to obtain by doing simulations.
One of the difficulties is that we need to do not only an average over the possible configurations
of spins for a given set of {Jij}, but we also need to average over different realizations of the
interactions. Another difficulty is that there are many local minima in the energy (free energy
at finite temperature) as a function of the configurations of spins, and it is very difficult to find
the global minimum. As a result, Monte Carlo simulations typically become stuck in these local
minima or metastable states. Detailed finite size scaling analyses of simulations indicate that there
might be a transition in three dimensions. It is generally accepted that the transition in two
dimensions is at zero temperature. In the following, we will look at some of the properties of an
Ising spin glass on a square lattice at low temperatures.

a. Write a program to apply simulated annealing to an Ising spin glass using the Metropolis algo-
rithm with the temperature fixed at each stage of the annealing schedule (see Problem 15.31a).
Search for the lowest energy configuration for a fixed set of {Jij}. Use at least one other anneal-
ing schedule for the same {Jij} and compare your results. Then find the ground state energy
for at least ten other sets of {Jij}. Use lattice sizes of L = 5 and L = 10. Discuss the nature
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of the ground states you are able to find. Is there much variation in the ground state energy
E0 from one set of {Jij} to another? Theoretical calculations give an average over realizations
of E0/N ≈ −1.4. If you have sufficient computer resources, repeat your computations for the
three-dimensional spin glass.

b. Modify your program to do simulated annealing using the demon algorithm (see Problem 15.31b).
How do your results compare to those that you found in part (a)?

Project 15.41. Zero temperature dynamics of the Ising model

We have seen that various kinetic growth models (Section 13.3) and reaction-diffusion models
(Section 7.8) lead to interesting and nontrivial behavior. Similar behavior can be seen in the zero
temperature dynamics of the Ising model. Consider the one-dimensional Ising model with J > 0
and periodic boundary conditions. The initial orientation of the spins is chosen at random. We
update the configurations by choosing a spin at random and computing the change in energy ∆E.
If ∆E < 0, then flip the spin; else if ∆E = 0, flip the spin with 50% probability. The spin is not
flipped if ∆E > 0. This type of Monte Carlo update is known as Glauber dynamics. How does
this algorithm differ from the Metropolis algorithm at T = 0?

a. A quantity of interest is f(t), the fraction of spins that have not yet flipped at time t. As usual,
the time is measured in terms of Monte Carlo steps per spin. Published results (Derrida et al.)
for N = 105 indicate that f(t) behaves as

f(t) ∼ t−θ, (15.95)

for t ≈ 3 to t ≈ 10, 000. The exact value of θ is 0.375. Verify this result and extend your results
to the one-dimensional q-state Potts model. In the latter model each site is initially given a
random integer between 1 and q. A site is chosen at random and set equal to either of its two
neighbors with equal probability.

b. Another interesting quantity is the probability distribution, Pn(t), that n sites have not yet
flipped as a function of the time t (see Das and Sen). Plot Pn versus n for two times on the
same graph. Discuss the shape of the curves and their differences. Choose L ≥ 100 and t = 50
and 100. Try to fit the curves to a Gaussian distribution. Because the possible values of n are
bounded, fit each side of the maximum of Pn to a Gaussian with different widths. There are a
number of scaling properties that can be investigated. Show that Pn=0(t) scales approximately
as t/L2. Thus, if you compute Pn=0(t) for a number of different times and lengths such that
t/L2 has the same value, you should obtain the same value of Pn=0.

Project 15.42. The inverse power law potential

Consider the inverse power law potential

V (r) = V0 (
σ

r
)n, (15.96)

with V0 > 0. One reason for the interest in potentials of this form is that thermodynamic quan-
tities such as the mean energy E do not depend on V0 and σ separately, but depend on a single
dimensionless parameter, which is defined as (see Project 8.25)

Γ =
V0

kT

σ

a
, (15.97)
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where a is defined in three and two dimensions by 4πa3ρ/3 = 1 and πa2ρ = 1, respectively. The
length a is proportional to the mean distance between particles. A Coulomb interaction corresponds
to n = 1, and a hard sphere system corresponds to n → ∞. What phases do you expect to occur
for arbitrary n?

a. Compare the qualitative features of g(r) for a “soft” potential with n = 4 to a system of hard
disks at the same density.

b. Let n = 12 and compute the mean energy E as a function of Γ for a three-dimensional system
with N = 16, 32, 64, and 128. Does E depend on N? Can you extrapolate your results for the
N -dependence of E to N → ∞? Do you see any evidence of a fluid-solid phase transition? If
so, estimate the value of Γ at which it occurs. What is the nature of the transition if it exists?
What is the symmetry of the ground state?

c. Let n = 4 and determine the symmetry of the ground state. For this value of n, there is a solid-
to-solid phase transition at which the solid changes symmetry. To determine the value of Γ at
which this phase transition exists and the symmetry of the smaller Γ solid phase (see Dubin and
Dewitt), it is necessary to use a Monte Carlo method in which the shape of the simulation cell
changes to accomodate the different symmetry (the Rahman-Parrinello method), an interesting
project. An alternative is to prepare a bcc lattice at Γ =≈ 105 (for example, T = 0.06 and
ρ = 0.95. Then instantaneously change the potential from n = 4 to n = 12; the new value of
Γ is ≈ 4180, and the new stable phase is fcc. The transition can be observed by watching the
evolution of g(r).

Project 15.43. Rare gas clusters

There has been much recent interest in structures that contain many particles, but that are not
macroscopic. An example is the unusual structure of sixty carbon atoms known as a “buckeyball.”
A less unusual structure is a cluster of argon atoms. Questions of interest include the structure
of the clusters, the existence of “magic” numbers of particles for which the cluster is particularly
stable, the temperature dependence of the quantities, and the possibility of different phases. This
latter question has been subject to some controversy, because transitions between different kinds
of behavior in finite systems are not well defined as they are for infinite systems.

a. Write a Monte Carlo program to simulate a three-dimensional system of particles interacting via
the Lennard-Jones potential. Use open boundary conditions, that is, do not enclose the system
in a box. The number of particles N and the temperature T should be input parameters.

b. Find the ground state energy E0 as a function of N . For each value of N begin with a random
initial configuration and accept any trial displacement that lowers the energy. Repeat for at
least ten different initial configurations. Plot E0/N versus N for N = 2 to 20 and describe the
qualitative dependence of E0/N on N . Is there any evidence of magic numbers, that is, value(s)
of N for which E0/N is a minimum? For each value of N save the final configuration. Plot the
positions of the atoms. Does the cluster look like a part of a crystalline solid?

c. Repeat part (b) using simulated annealing. The initial temperature should be sufficiently low
so that the particles do not move far away from each other. Slowly lower the temperature
according to some annealing schedule. Are your results for E0/N lower than those you obtained
in part (b)?
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d. To gain more insight into the structure of the clusters, compute the mean number of neighbors
per particle for each value of N . What is a reasonable criteria for two particles to be neighbors?
Also compute the mean distance between each pair of particles. Plot both quantities as a
function of N , and compare their dependence on N with your plot of E0/N .

e. Do you find any evidence for a “melting” transition? Begin with the configuration that has
the minimum value of E0/N and slowly increase the temperature T . Compute the energy per
particle and the mean square displacement of the particles from their initial positions. Plot
your results for these quantities versus T .

Project 15.44. The hard disks fluid-solid transition

Although we have mentioned (see Section 15.10) that there is much evidence for a fluid-solid
transition in a hard disk system, the nature of the transition still is a problem of current research.
In this project we follow the work of Lee and Strandburg and apply the constant pressure Monte
Carlo method (see Section 15.12) and the Lee-Kosterlitz method (see Section 15.11) to investigate
the nature of the transition. Consider N = L2 hard disks of diameter σ = 1 in a two-dimensional
box of volume V =

√
3L2v/2 with periodic boundary conditions. The quantity v ≥ 1 is the reduced

volume and is related to the density ρ by ρ = N/V = 2/(
√
3v); v = 1 corresponds to maximum

packing. The aspect ratio of 2/
√
3 is used to match the perfect triangular lattice. Do a constant

pressure (actually constant p∗ = P/kT ) Monte Carlo simulation. The trial displacement of each
disk is implemented as discussed in Section 15.10. Lee and Strandburg find that a maximum
displacement of 0.09 gives a 45% acceptance probability. The other type of move is a random
isotropic change of the volume of the system. If the change of the volume leads to an overlap of
the disks, the change is rejected. Otherwise, if the trial volume Ṽ is less than the current volume
V , the change is accepted. A larger trial volume is accepted with probability

e−p∗(Ṽ−V )+N ln Ṽ /V ). (15.98)

Volume changes are attempted 40–200 times for each set of individual disk moves. The quantity of
interest is N(v), the distribution of the reduced volume v. Because we need to store information
about N(v) in an array, it is convenient to discretize the volume in advance and choose the mesh
size so that the acceptance probability for changing the volume by one unit is 40–50%. Do a Monte
Carlo simulation of the hard disk system for L = 10 (N = 100) and p∗ = 7.30. Published results
are for 107 Monte Carlo steps. To apply the Lee-Kosterlitz method, smooth lnN(v) by fitting it to
an eighth-order polynomial. Then extrapolate lnN(v) using the histogram method to determine
p∗c(L = 10), the pressure at which the two peaks of N(v) are of equal height. What is the value of
the free energy barrier ∆F? If sufficient computer resources are available, compute ∆F for larger
L (published results are for L = 10, 12, 14, 16, and 20) and determine if ∆F depends on L. Can
you reach any conclusions about the nature of the transition?

Project 15.45. Vacancy mediated dynamics in binary alloys

When a binary alloy is rapidly quenched from a high temperature to a low temperature unstable
state, a pattern of domain formation called spinodal decomposition takes place as the two metals
in the alloy separate. This process is of much interest experimentally. Lifshitz and Slyozov have
predicted that at long times, the linear domain size increases with time as R ∼ t1/3. This result
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is independent of the dimension for d ≥ 2, and has been verified experimentally and in computer
simulations. The behavior is modified for binary fluids due to hydrodynamic effects.

Most of the computer simulations of this growth process have been based on the Ising model
with spin exchange dynamics. In this model there is an A or B atom (spin up or spin down) at
each site, where A and B represent different metals. The energy of interaction between atoms
on two neighboring sites is −J if the two atoms are the same type and +J if they are different.
Monte Carlo moves are made by exchanging unlike atoms. (The number of A and B atoms must be
conserved.) A typical simulation begins with an equilibrated system at high temperatures. Then
the temperature is changed instantaneously to a low temperature below the critical temperature
Tc. If there are equal numbers of A and B atoms on the lattice, then spinodal decomposition
occurs. If you watch a visualization of the evolution of the system, you will see wavy-like domains
of each type of atom thickening with time.

The growth of the domains is very slow if we use spin exchange dynamics. We will see that if
simulations are performed with vacancy mediated dynamics, the scaling behavior begins at much
earlier times. Because of the large energy barriers that prevent real metallic atoms from exchanging
position, it is likely that spinodal decomposition in real alloys also occurs with vacancy mediated
dynamics. We can do a realistic simulation by including just one vacancy because the number of
vacancies in a real alloy also is very small. In this case the only possible Monte Carlo move on a
square lattice is to exchange the vacancy with one of its four neighboring atoms. To implement
this algorithm, you will need an array to keep track of which type of atom is at each lattice site
and variables to keep track of the location of the single vacancy. The simulation will run very
fast because there is little bookkeeping and all the possible trial moves are potentially good ones.
In contrast, in standard spin exchange dynamics, it is necessary to either waste computer time
checking for unlike nearest-neighbor atoms or keep track of where they are.

The major quantity of interest is the growth of the domain size R. One way to determine R
is to measure the pair correlation function, C(r) = ⟨sisj⟩, where r = |ri − rj |, and si = 1 for an
A atom and si = −1 for a B atom. The first zero in C(r) is a measure of the domain size. An
alternative measure of the domain size is the quantity R = 2/(⟨E⟩/N + 2), where ⟨E⟩/N is the
average energy per site and N is the number of sites (see Project 15.39). The quantity R is a rough
measure of the length of the perimeter of a domain and is proportional to the domain size.

a. Write a program to simulate vacancy mediated dynamics. The initial state consists of the
random placement of A and B atoms (half of the sites have A and half B atoms); one vacancy
replaces one of the atoms. Explain why this configuration corresponds to infinite temperature.
Choose a square lattice with L ≥ 50.

b. Instantaneously quench the system by running the Metropolis algorithm at a temperature of
T = Tc/2 ≈ 1.13. You should first look at the lattice after every attempted move of the vacancy
to see the effect of vacancy dynamics. After you are satisfied that your program is working
correctly and that you understand the algorithm, speed up the simulation by only collecting
data and showing the lattice at times equal to t = 2n where n = 1, 2, 3 . . .Measure the domain
size using either the energy or C(r) as a function of time averaged over many different initial
configurations quenches.

c. At what time does the logR versus log t plot become linear? Do both measures of the domain
size give the same results? Does the behavior change for different quench temperatures? Try
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0.2Tc and 0.7Tc. A log-log plot of the domain size versus time should give the exponent 1/3.

d. Repeat the measurements in three dimensions. Do you obtain the same exponent?

Project 15.46. Heat flow using the demon algorithm

In our applications of the demon algorithm one demon shared its energy equally with all the spins.
As a result the spins all attained the same mean energy of interaction. Many interesting questions
arise when the system is not spatially uniform and is in a nonequilibrium but time-independent
(steady) state.

Let us consider heat flow in a one-dimensional Ising model. Suppose that instead of all the
sites sharing energy with one demon, each site has its own demon. We can study the flow of heat
by requiring the demons at the boundary spins to satisfy different conditions than the demons at
the other spins. The demon at spin 0 adds energy to the system by flipping this spin so that it is
in its highest energy state, that is, in the opposite direction of spin 1. The demon at spin N − 1
removes energy from the system by flipping spin N − 1 so that it is in its lowest energy state, that
is, in the same direction as spin N − 2. As a result, energy flows from site 0 to site N − 1 via
the demons associated with the intermediate sites. In order that energy not build up at the “hot”
end of the Ising chain, we require that spin 0 can only add energy to the system if spin N − 1
simultaneously removes energy from the system. Because the demons at the two ends of the lattice
satisfy different conditions than the other demons, we do not use periodic boundary conditions.

The temperature is determined by the generalization of the relation (15.10), that is, the tem-
perature at site i is related to the mean energy of the demon at site i. To control the temperature
gradient, we can update the end spins at a different rate than the other spins. The maximum
temperature gradient occurs if we update the end spins after every update of an internal spin. A
smaller temperature gradient occurs if we update the end spins less frequently. The temperature
gradient between any two spins can be determined from the temperature profile, the spatial de-
pendence of the temperature. The energy flow can be determined by computing the magnitude of
the energy per unit time that enters the lattice at site 0.

To implement this procedure we modify IsingDemon by converting the variables demonEnergy
and demonEnergyAccumulator to arrays. We do the usual updating procedure for spins 1 through
N − 2 and visit spins 0 and N − 1 at regular intervals denoted by timeToAddEnergy. The class
ManyDemons can be downloaded from the ch15 directory.

a. Write a target class that inputs the number of spins, N , and the initial energy of the system,
outputs the number of Monte Carlo steps per spin and the energy added to the system at the
high temperature boundary, and plots the temperature as a function of position.

b. As a check on ManyDemons, modify the class so that all the demons are equivalent, that is,
impose periodic boundary conditions and do not use method boundarySpins. Compute the
mean energy of the demon at each site and use (15.10) to define a local site temperature. Use
N ≥ 52 and run for about 10000mcs. Is the local temperature approximately uniform? How
do your results compare with the single demon case?

c. In ManyDemons the energy is added to the system at site 0 and is removed at siteN−1. Determine
the mean demon energy for each site and obtain the corresponding local temperature and the
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mean energy of the system. Draw the temperature profile by plotting the temperature as a
function of site number. The temperature gradient is the difference in temperature from site
N − 2 to site 1 divided by the distance between them. (The distance between neighboring sites
is unity.) Because of local temperature fluctuations and edge effects, the temperature gradient
should be estimated by fitting the temperature profile in the middle of the lattice to a straight
line. Reasonable choices for the parameters are N = 52 and timeToAddEnergy = 1. Run for at
least 10000mcs.

d. The heat flux Q is the energy flow per unit length per unit time. The energy flow is the amount
of energy that demon 0 adds to the system at site 0. The time is conveniently measured in
terms of Monte Carlo steps per spin. Determine Q for the parameters used in part (c).

e. If the temperature gradient ∂T/∂x is not too large, the heat flux Q is proportional to ∂T/∂x.
We can determine the thermal conductivity κ by the relation

Q = −κ
∂T

∂x
. (15.99)

Use your results for ∂T/∂x and Q to estimate κ.

f. Determine Q, the temperature profile, and the mean temperature for different values of time-
ToAddEnergy. Is the temperature profile linear for all values of timeToAddEnergy? If the
temperature profile is linear, estimate ∂T/∂x and determine κ. Does κ depend on the mean
temperature?

Note that by using many demons we were able to compute a temperature profile by using an
algorithm that manipulates only integer numbers. The conventional approach is to solve a heat
equation similar in form to the diffusion equation. Now we use the same idea to compute the
magnetization profile when the end spins of the lattice are fixed.

g. Modify ManyDemons by not calling method boundarySpins. Also, constrain spins 0 and N − 1
to be +1 and −1 respectively. Estimate the magnetization profile by plotting the mean value
of the spin at each site versus the site number. Choose N = 22 and mcs ≥ 1000. How do your
results vary as you increase N?

h. Compute the mean demon energy and hence the local temperature at each site. Does the system
have a uniform temperature even though the magnetization is not uniform? Is the system in
thermal equilibrium?

i. The effect of the constraint on the end spins is easier to observe in two and three dimensions
than in one dimension. Write a program for a two-dimensional Ising model on a L× L square
lattice. Constrain the spins at site (i, j) to be +1 and −1 for i = 0 and i = L− 1 respectively.
Use periodic boundary conditions in the y direction. How do your results compare with the
one-dimensional case?

j. Remove the periodic boundary condition in the y direction and constrain all the boundary spins
from i = 0 to (L/2) − 1 to be +1 and the other boundary spins to be −1. Choose an initial
configuration where all the spins on the left half of the system are +1 and the others are −1. Do
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the simulation and draw a configuration of the spins once the system has reached equilibrium.
Draw a line between each pair of spins of opposite sign. Describe the curve separating the +1
spins from the −1 spins. Begin with L = 20 and determine what happens as L is increased.

Appendix 15A: Relation of the Mean Demon Energy to the
Temperature

We know that the energy of the demon, Ed, is constrained to be positive and that the probability
for the demon to have energy Ed is proportional to e−Ed/kT . Hence in general, ⟨Ed⟩ is given by

⟨Ed⟩ =
∑

Ed
Ed e−Ed/kT

∑
Ed

e−Ed/kT
, (15.100)

where the summations in (15.100) are over the possible values of Ed. If an Ising spin is flipped in
zero magnetic field, the minimum nonzero decrease in energy of the system is 4J (see Figure 15.11).
Hence the possible energies of the demon are 0, 4J , 8J , 12J , . . . We write x = 4J/kT and perform
the summations in (15.100). The result is

⟨Ed/kT ⟩ =
0 + xe−x + 2xe−2x + . . .

1 + e−x + e−2x + . . .
=

x

ex − 1
. (15.101)

The form (15.10) can be obtained by solving (15.101) for T in terms of Ed. Convince yourself
that the relation (15.101) is independent of dimension for lattices with an even number of nearest
neighbors.

If the magnetic field is nonzero, the possible values of the demon energy are 0, 2H, 4J −
2H, 4J + 2H, · · · . If J is a multiple of H, then the result is the same as before with 4J replaced
by 2H, because the possible energy values for the demon are multiples of 2H. If the ratio 4J/2H
is irrational, then the demon can take on a continuum of values, and thus ⟨Ed⟩ = kT . The other
possibility is that 4J/2H = m/n, where m and n are prime positive integers that have no common
factors (other than 1). In this case it can be shown that (see Mak)

kT/J =
4/m

ln(1 + 4J/m⟨Ed⟩)
. (15.102)

Surprisingly, (15.102) does not depend on n. Test these relations for H ̸= 0 by choosing values of
J and H and computing the sums in (15.100) directly.

Appendix 15B: Fluctuations in the Canonical Ensemble

We first obtain the relation of the constant volume heat capacity CV to the energy fluctuations in
the canonical ensemble. We write CV as

CV =
∂⟨E⟩
∂T

= − 1

kT 2

∂⟨E⟩
∂β

. (15.103)
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ΔE = -8J

ΔE = -4J

ΔE = 0

ΔE = 4J

ΔE = 8J

Figure 15.11: The five possible transitions of the Ising model on the square lattice with spin flip
dynamics.

From (15.11) we have

⟨E⟩ = − ∂

∂β
lnZ, (15.104)

and

∂⟨E⟩
∂β

= − 1

Z2

∂Z

∂β

∑

s

Es e
−βEs − 1

Z

∑

s

E2
s e

−βEs (15.105)

= ⟨E⟩2 − ⟨E2⟩. (15.106)

The relation (15.19) follows from (15.103) and (15.106). Note that the heat capacity is at constant
volume because the partial derivatives were performed with the energy levels Es kept constant. The
corresponding quantity for a magnetic system is the heat capacity at constant external magnetic
field.

The relation of the magnetic susceptibility χ to the fluctuations of the magnetization M can
be obtained in a similar way. We assume that the energy can be written as

Es = E0,s −HMs, (15.107)

where E0,s is the energy of interaction of the spins in the absence of a magnetic field, H is the
external applied field, and Ms is the magnetization in the s state. The mean magnetization is
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# spins up g(E,M) Energy Magnetization
4 1 −8 4
3 4 0 2
2 4 0 0
2 2 8 0
1 4 0 −2
0 1 −8 −4

Table 15.2: The energy and magnetization of the 24 states of the zero field Ising model on the 2×2
square lattice. The quantity g(E,M) is the number of microstates with the same energy.

given by

⟨M⟩ = 1

Z

∑
Ms e

−βEs . (15.108)

Because ∂Es/∂H = −Ms, we have

∂Z

∂H
=

∑

s

βMs e
−βEs . (15.109)

Hence we obtain

⟨M⟩ = 1

β

∂

∂H
lnZ. (15.110)

If we use (15.108) and (15.110), we find

∂⟨M⟩
∂H

= − 1

Z2

∂Z

∂H

∑

s

Ms e
−βEs +

1

Z

∑

s

βM2
s e−βEs (15.111)

= −β⟨M⟩2 + β⟨M2⟩. (15.112)

The relation (15.21) for the zero field susceptibility follows from (15.112) and the definition (15.20).

Appendix 15C: Exact Enumeration of the 2× 2 Ising Model

Because the number of possible states or configurations of the Ising model increases as 2N , we can
enumerate the possible configurations only for small N . As an example, we calculate the various
quantities of interest for a 2×2 Ising model on the square lattice with periodic boundary conditions.
In Table 15.2 we group the sixteen states according to their total energy and magnetization.

We can compute all the quantities of interest using Table 15.2. The partition function is given
by

Z = 2 e8βJ + 12 + 2 e−8βJ . (15.113)

If we use (15.104) and (15.113), we find

⟨E⟩ = − ∂

∂β
lnZ = − 1

Z

[
2(8)e8βJ + 2(−8)e−8βJ

]
. (15.114)
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Because the other quantities of interest can be found in a similar manner, we only give the results:

⟨E2⟩ = 1

Z

[
(2× 64) e8βJ + (2× 64) e−8βJ

]
(15.115)

⟨M⟩ = 1

Z
(0) = 0 (15.116)

⟨|M |⟩ = 1

Z

[
(2× 4) e8βJ + 8× 2

]
(15.117)

⟨M2⟩ = 1

Z

[
(2× 16) e8βJ + 8× 4

]
. (15.118)

The dependence of C and χ on βJ can be found by using (15.114) and (15.115) and (15.116) and
(15.118) respectively.
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