Numbers
representation with
computers,
errors and uncertainties

iIn computations

M. Peressi - UniTS - Laurea Magistrale in Physics
Laboratory of Computational Physics - Unit | - part I

Number representation
in a given basis

A real number in basis 10:

If b is the basis, the string: _

Another example: integer number, basis 2:

Number representation
In a computer

- the microscopic unit of memory is the BIT=(0, 1)

1 BYTE = 1B =8 BITS
1K = 1IKB=2"BYTES=1024 BYTES

- BIT=(0,1) => binary form for number representation

- the representation of a number in a computer is
characterized by the numbers of bits used to store it

- fixed point or floating point representation
(for integers) (for reals)

Fixed point representation
for integers

(1001), =1-2°+0-2°+0-2' +1-2° = (9)
2 10

- With N bits, typically the first one is reserved to the
sign: N-1| bits available =>

it is possible to represent numbers with absolute value
in [0, 2N-1-1]

If you try to go beyond: OVERFLOW
(i_min_max.f90)

Fixed point representation
for integers
On INFIS: the result is [-23!,23!-17; why?

E R
ol 11 LT 1] 4 (23042294 420)= 231
1lo]o ololo| =23, NOT +23! NOT 0
0lo]o o lo|o]| thisisO
1]1]1 1| 1|1 |_ (230+229+“+20)= _(23|_|)

(23! ~ 2x109)

Floating point representation
for real numbers

X ot = (= 1)’ e mantissa e b\\“" fi ~ias

SIgn significant exponent
figures of of the

the number;

number basis b=2

- Typically: expfld = 8-bit integer (goes from [0,255])

bias = 128 (or 127) => expfid-bias goes from -128 to +127 (or from -127 to +128) ;

23 bits reserved for the mantissa => tot 32 bits
mantissa=my 27 +m, 27 +...myy - 27 (m; NOT 0!)

- precision: 2-23 ~= 6-7 decimal figures

- range : ~ -10-3% - |0*38

examples of floating point
representation for real numbers

;— =0 0111 1111 1000 0000 0000 0000 0000 000
J’ Expfld=127
Expldf-bias=0 (here: bias=127)

segno

6 =0 1000 0010 1100 0000 0000 0000 0000 000

segno Ezpﬂd=1_3{}
Expldf-bias =3

the smallest: (if mantissa is in the normalized form, i.e., first number =/= 0)
0 0000 0000 {1HOO 0000 0000 0000 0000 000 =27 =29x107"

the largest:
O 1111 1111 1111 1111 1111 1111 1111 111=2"*=34x10"*

single and double precision

For double precision:

- Typically: expfld = | |-bit integer (goes from [0,2047])
bias = 1023 => expfld-bias goes from -1023 to +1024 ;
52 bits reserved for the mantissa => tot 64 bits

- precision: 2->2~= |5-16 decimal figures
- range : ~ -10-322 - | 0*308

If you try to go beyond these limits (see rs(d) under_over.f90):
UNDERFLOW (too small) and OVERFLOW (too large)

Roundoff errors

7+1.0x107 =1
Single precision representation:
7=0 1000 0010 1110 OOOO OO0OO 0000 0000 000

107°=0 0110 0000 1101 0110 1011 1111 1001 010
(here: bias=127)
Exponents are different! Make them equal before operating on the
mantissas: increase the smallest exponent, but at the same time reduce

the corresponding mantissa:

X2 (e, +linexpfield) 2 (right hand-side shift of the bits) (bits lost)
107 =0 0110 0001 0110 1011 0101 1111 1100 101 (0)

=0 0110 0010 0011 0101 1010 1111 1110 OlO (10)

s 7+10x107° =7 !

Machine precision

The smallest number that,added to | represented in the machine,
does not change it:

E, T lc = }c
£=10" single precision

£=10"" double precision

Note: IT IS NOT the smallest representable
number!

See also: intrinsic function epsilon(x)

Source of errors in numerical computing

® Human

® Random (e.g. electrical fluctuations)

PY Roundoff 2[%}—%= 2x0.3333333 -0.6666667 = -0.0000001 =0.
® Truncation ‘*’=§%E i%“‘*ﬂx*”}

Mainly ROUNDOFF
due to the finite representation of numbers
In a computer

An example of roundoff+truncation
Numerical derivatives

Calculate the derivative of:

f(z) = sin(x) in z = 1

We call: fo=[f(x), i =f(z+h),efa=flx—h).
We can use several algorithms:

Fz) ~ 2 ;hf L (=Smm)
flay~ 200 (= h)
flay~ 22t

Make numerical experiments with h and progressively reduce it ...

An example of roundoff+truncation
Numerical derivatives

e
fas fas-exact f’sin e)f I; ot f’simm

f,simm -
exact

I'_ds (numenca) - esatta [scals g g)

0.497364 |-0.042938 |0.581441 (0.041138 |0.539402 |-0.000900 &
0.536087 |-0.004215 |0.544497 (0.004195 |0.540294 |-0.000009 .
0.538200 [-0.002102 |0.542398 [0.002095 |0.540302 |[0.000000
0.539930 [-0.000372 |0.540688 [0.000386 |0.540323 |(0.000021 §

0)100]0}5) | 0.540081 |[-0.000221 |0.540482 (0.000180 |0.540310 |[0.000007 § 0

0)10[0/05] 0.540334 |[0.000032 [0.540154 |-0.000148 |0.540384 (0.000082 ’
0.539602 |-0.000701 |0.538240 (-0.002063 |0.540321 |0.000019 .
0.508436 |-0.031866 |0.519472 |[-0.020830 |0.527957 |[-0.012345 0 : «

- The symmetric algorithm is the best

- By reducing h down to ~10* the numerical error
decreases, but further reduction of h does not
improve the result, or better, the result is even worse!

Why?! roundoff error

Other possible sources of errors
due to roundoff

- subtraction between very large numbers (°0-00)
(see examples: exp-bad.f90)

expressions analytically equivalent
can be NOT numerically equivalent!

> (-1) "

n + 1
@ BAD!
N 25 —1 N o2n for large N:
— Z + Z subtraction between

/ 2n n=1 2n +wlarge numbers (c0-0)

How does your computer make a calculation?

/2= 0! WRONG
since this operation is done within the INTEGERS
1./2=122 0511 CORRECT

since 2 is promoted to REAL and the operation is
done within the REALS

in $/home/peressi/comp-phys/I-basics/f90:

deriv.f90; d strano.f90

exp-good.dp.f90 ; exp-good.f90
i_min_max.f90

rd _under_ over.f90 ;rs _under_ over.f90
rs_limit.f90 ; rd_limit.f90

strano.f90

testl-subr-funct.f90 ; test2-subr-funct.f90
test factorial.f90

