Random numbers
and Monte Carlo®
Techniques

(*) any procedure making use of random numbers

M. Peressi - UniTS - Laurea Magistrale in Physics
Laboratory of Computational Physics - Unit I

Random numbers: use

in numerical analysis (to calculate integrals) | J

to simulate and model complex or 5 o o
(%)

L L] L] (

intrinsically random phenomena ‘ ‘ N

\‘/ \oy O/ w N

to generate data encryption keys

Random numbers:

Characteristics and
Generation

Random numbers

A sequence of random numbers 1s a set of
numbers that have nothing to do with the other
numbers 1n the sequence.

... but with a well defined statistical properties, e.g.:

In a uniform distribution of random numbers in
the range [0,1] , every number has the same
chance of turning up.

Note that 0.00001 1s just as likely
as 0.50000

True random numbers generation

& Use some chaotic system. (like balls 1n a
barrel - Lotto 6-49).

Use a process that 1s inherently random:
@ radioactive decay
thermal noise
cosmic ray arrival

Tables of a few million truely random
numbers do exist, but this 1sn't enough for
most applications.

Pseudo random numbers generation
with a computer

“pseudo’” because they are necessarily generated with
deterministic procedures
(the computer is a deterministic apparatus!)

A sequence of computer generated random numbers
is not truly random, since each number is completely
determined from the previous one.

But it may “appear” to be random.

(pseudo)Random numbers generation

These are sequences of numbers generated by
computer algorithms, usally 1n a uniform
distribution 1n the range [0,1].

—

To be precise, the alogrithms gencratutegers
between 0 and M, and return a real value™—"

x,=1 /M

the sequence may “appear” to be random

[Attention: in a code, write: x, =float(I,)/M !!!]

INTEGER
(pseudo)Random numbers generation

many different algorithms...

Two among the simplest (and oldest) algorithms:
- von Neumann
- Linear Congruential Method

(pseudo)random numbers generation
example | - “Middle square” algorithm

(Von Neumann, |1946)
To generate a |0-digit integer sequence:
- take a first one

— - square it

« - take the middle |0 digits of the result

eg. 5772156649°=33317792380594909291

so the next number is given by _T

Also this sequence may “appear” to be random.
Limits of the algorithm:
depending on the initial choice, you can be trapped into short loops:

6100°=37210000
2100°= 4410000
4100°=16810000
8100°=65610000

(pseudo)random numbers generation:
example Il -“Linear congruential method (LCM)”

Lehemer I948 I S

In+1 =(aln+ c) mod n m |

,4)}
N = e — — ———— "~ —— - A

= -

= = = = »#m‘

= J—
—

St’lltlllg value (seed) = I

a, ¢, and m are specially chosen A mod m” is the
remainder
a,¢20 and m>I,ac of the division of

A by m

Limits of the algorithm:

A poor choice for the constants can lead to very
poor sequences.

example: a=c=I =7, m=10

results in the sequence:
7,6,9,0,7,6,9,0,...

oM S —
Inﬂ = (a I, + c) mod m

— = — p—

———— —

—

— Jm—

I

y
5

\
‘ —

QUESTIONS:

- in which interval are the pseudorandom numbers
generated!?

- Can we obtain all the numbers in such interval?

- Is the sequence periodic!

- Which is the period?

- Which is the maximum period?

72? Choice of modulus, m

m should be as large as possible since the period
can never be 1011 ger than m.

One usually chooses m to be near the largest

mteger that can be 1eprese11ted On a 32 bat
machine, thatis 2" = 2x10’.

< Choice of multiplier, a

It was proven by M. Greenberger in 1961
that the sequence will have period m, 1f and
only 1if:

1) ¢ 1s relatively prime to m;
11) a-1 1s a multiple of p, for every prime
p dividing m;
111) a-1 1s a multiple of 4, if m1s a
multiple of 4

More subtle limits, even of some smart algorithms...

A popular random number generator was o e
distributed by IBM 1n the 1960°s with the
algorithm:

L. = (65539 x 1) mod 2"
65539=21643: initial seed Ip: odd number

1D distribution Looks okay >
Xi, P(Xi)
2D distribution Still looks okay >

(Xi, Xi+1)

hesults Inom handu: 21 distribution

et
[T o I
[EEnEnE Il FEn FTT

0.75

Problem seen when observed at the right angle!

Random numbers fall mainly in the planes Why? Hint: show that: Xi:2=6Xks+1-9xk

Problems also with other smart algorithms ...

The authors of Numerical Recipies have
admitted that the random number
generators, RAN1 and RAN2 given in the

first edition, are “at best mediocre”.
In their second edition, these are replaced by

ran0, ranl. and ran2, which have much
better properties.

(now 3rd edition, see: http://www.nr.com/)

Possible improvements

One way to improve the behaviour of random
number generators and to increase their period 1s
to modify the algorithm:

[= (axI_, + bxI ,) mod m

Which 1n this case has two 1nitial seeds and can
have a period greater than m.

Tests the “quality” of a

e

random sequence

- uniformity

(look at the histogram, but also check the moments of
the distribution, i.e., <x*>, for k=1, 2, ..)

- correlation

- other more sophisticated
tests

(in particular for cryptographically secure use!)

Many other (pseudo)random
numbers generators

- “Mersenne twister” (Matsumoto and Nishimura, 1997)

The commonly used variant, MT 19937, produces a sequence of 32-bit integers with the following
desirable properties:

|. It has a very long period of 2'9%37 — | (which is necessary but not sufficient to guarantee of
good quality in a random number generator)
2. It passes numerous tests for statistical randomness

true vs pseudo
random number generators

PSEUDO TRUE

efficiency excellent poor

non

determinism | deterministic L
deterministic

periodicity periodic aperiodic

Technicalities to create our own
(pseudo)random number generator

mod ???

Intrinsic procedures in FORTRAN

(see link to Chapman book in my Web page)

Table B-1: Specific and Generic Names for All Fortran 90/95 Intrinsic Procedures

Generic name, keyword(s), Specific name Function type Sec- | Notes
and calling sequence I | tion |
ABS (A) Argument type B.3
ABS(r) Default real
CABS (c) Default real 2
DABS (d) Double Prec.
IABS (i) Default integer
ACHAR(TI) Character(1) B.7
ACOS(X) Argument type B.3
ACOS(r) Default Real
DACOS (d) Double Prec.
ADJUSTL(STRING) Character B.7
ADJUSTR(STRING) Character B.7
AIMAG(Z) AIMAG(c) Real B.3
AINT(A, KIND) Argument type B.3
AINT(r) Default Real
DINT (d) Double Prec.

EXPANDED DESCRIPTION OF FORTRAN 90 /95 INTRINSIC PROCEDURES

Intrinsic procedures in FORTRAN

(see the page from Fortran90/95 for Scientists and Engineers, by S.J. Chapman)

MOD(A,P) Argument type B.3
AMOD(r1,r2) Real
MOD(i,j) Integer
DMOD(d1,d?2) Double Prec.

MODULO (A, P) Argument type B.3

Intrinsic procedures in FORTRAN

MOD (A1,P)
* Elemental function of same kind as its arguments
e Returns the value MOD(A,P) = A - P*INT(A/P) if P = 0. Results are processor
dependent if P = 0.
* Arguments may be Real or Integer; they must be of the same type
* Examples:

| Function |
{:fMOD§§;§T””"”
MOD (-5, 3)

MOD(5,-3) 2
MOD(-5,-3) 2

MODULO (A1,P)

* Elemental function of same kind as its arguments

* Returns the modulo of A with respect to P if P = 0. Results are processor

dependent if P = 0.

* Arguments may be Real or Integer; they must be of the same type
If P > 0, then the function determines the positive difference between A and then
next lowest multiple of P. If P < O, then the function determines the negative
difference between A and then next highest multiple of P.
Results agree with the MOD function for two positive or two negative arguments;
results disagree for arguments of mixed signs.

* Examples: mod or modulo
) S LU —Eplnation ive the same result
8 O) R R D 5is2upfrom3 | &lYE
MODULO(-5,3) | 1 -5 is 1 up from -6 if acting on Positive
MODULO(5,-3) -1 5is 1 down from 6 .
MODULO(-5,-3) 2 75 is 2 down from -3 Integers

Modulus operator in C++

the language provides a built-in mechanism, the modulus operator ('%').
Example:

01 #include <iostream>
02 using namespace std;

03

04 intmain()

05 {

06 intM = 8;

07 inta = 5;

08 intc = 3;

09 intX = 1;

10 int i;

11 for(i=0; i<8; i++)
12 {

13 X =(a* X+ c) % M;
14 cout << X << # 4o
15 }

16 return 0;

17 }

Intrinsic pseudorandom numbers generators

We could create our own random number generator
using “mod” intrinsic function, but it is much better to use
directly the (smart) intrinsic procedures provided by the
compilers to generate random numbers,
in general: real, with uniform distribution in [0;]

Es. :
in Fortran90: subroutine random_number()

;
| 1

in fortran/7: function drand48()
in Pascal: function Random

in C: function rand
it -— ___.[::..-

Intrinsic pseudorandom numbers generator
in FORTRAN

the name of the produced output has to be specified

~

RANDOM_NUMBER (HARVEST) Subroutine

RANDOM_SEED(SIZE, PUT, GET) Subroutine

Here (Chapman’s book): ARGUMENTS in ltalic are optional
(in other books, optional arguments are in square brackets [])

RANDOM NUMBER(HARVEST) B

* Returns pseudo-random number(s) from a uniform distribution in the range 0 <
HARVEST < 1. HARVEST may be either a scalar or an array. Ifit is an array, then a
separate random number will be returned in each element of the array.

* Arguments:

Keyword Type Description
HARVEST Real Holds random numbers.

May be scalar or array.

RANDOM SEED(SIZE PUTGET) -

* Performs three functions: (1) restarts the pseudo-random number generator used
by subroutine RANDOM_NUMBER, (2) gets information about the generator, and (3)
puts a new seed into the generator.

* Arguments:

Keyword Type Intent Description

SIZE Integer ouT Number of integers used to
hold the seed (n)

PUT Integer(m) IN Set the seed to the value in
PUT. Note that m = n.

GET Integer(m) OUT Get the current value of the

seed. Note that m = n.
* SIZE is an Integer, and PUT and GET are Integer arrays. All arguments are
optional, and at most one can be specified in any given call.
* Functions: L
If no argument is spe01ﬁed the call to RANDOM SEED restarts it v\‘\ always from
'\\:7 random number generator. i ; the same
2. If STZE is specitied, then the subroutine returns the number ol Integers used
by the generator to hold the seed. seed !!!
3. If GET 1s specified, then the current random generator seed is returned to the
user. The integer array associated with keyword GET must be at least as
long as SIZE.
4. If PUT is specified, then the value in the integer array associated with
keyword PUT is set into the generator as a new seed. The integer array
associated with keyword PUT must be at least as long as SIZE.

warning: but on
INFIS computers

Intrinsic pseudorandom numbers generator
in FORTRAN

subroutine random_number(x) :

- the argument x can be either a scalar or a N-
dimensional array

- the result is one or N real pseudorandom numbers
uniformly distributed between 0 and 1

subroutine random_seed([size][put] [get])

- algorithm is deterministic: the sequence can be
controlled by initialization: array of “size” (*) integers
(seed): different seeds -> different sequences

- syntax:

call random_seed(put=seed) to put seed,

call random_seed(get=seed) to get its value

(*): it depends on the compiler (gfortran, g95, ifort, ...)
and on the machine architecture

Intrinsic pseudorandom numbers generator
in FORTRAN

Further notes:

subroutine random_number(x) :
- you can call it directly, without a previous call to
random_seed

subroutine random_seed([size][put] [get])

- all the arguments are optional; i.e., you may also call it as:
call random_seed()

The call without arguments corresponds to different actions,
according to the compiler implementation and is processor
dependent!!! check on your computer!

On INFIS: you restart always from the same seed, chosen
by the computer

Intrinsic pseudorandom numbers generator
in C++

real pseudorandom numbers uniformly distributed between

O and 1:
temp = rand();

A number between 0 and 50:
int rnd = int((double(rand())/RAND_MAX)*50);
where RAND_MAX is an implementation defined constant.

Also in c++ the sequence can be controlled by initialization:

srand (time(NULL));

Some programs:

on

$/home/peressi/comp-phys/ll-random-uniform/f90
or on moodle2.units.it

random_1c.f90
rantest_intrinsic.f90
rantest_intrinsic_with seed.f90
rantestbis_intrinsic.f90

INIT _RANDOM _ SEED.f90
nrdemo_ran.f90

Exercise I:
Linear Congruent Method: periodicity

25000

‘random.257.25.1.25000.dat’ -
x 0, a,c, m ”
20000 |-
A A
A \ A
15000 - / .
10000 | // \ \
/ ! !

5000 |- /

| y

0 ' | |

° > 10 15 20

How to determine the period “automatically’?
Is it enough to check when a generated number
is equal to the initial seed? NO. You be NEVER go back to the seed...

A possible algorithm:

- create a sequence of m+| numbers

(you don’t need more! why?)

- don’t start from the first one, that could be in a
transient part of the sequence, but from the last
one, which is for sure in the periodic part

- compare all the numbers with the last one, starting
from the second to the last and going back by |

- you get the period!

Exercise 2:
test of uniformity of the pseudorandom sequence

r(n), n=| , data is our random number sequence between 0 and |

(b) Do a histogram with the sequence generated above and plot it using
for instance gnuplot with the command w[ith] boxes. Is the di-
stribution unzform?

Hint: to do the histogram, divide the range into a gitven number of
channels of width Ar, then calculate how many points fall in each

chﬂ.n n E E] 'rl Jf ﬂ 'r' _. Results from Randu: 1D distribution
integer, dimension(20) :: histog
histog = 0

do n = 1, ndata
i = int(r(n)/delta_r) + 1 (NN EEE
histog(i) = histog(i) + 1 <= counts the number of points falling
end do between i*delta_r and (i+1)*delta_r
and assign them to the “i+1” channel

what is int() ? similar intrinsic functions?! how to choose!

AINT(A[,KIND])

- Real elemental function

- Returns A truncated to a whole number. AINT(A) is the largest integer which is smaller
than |A|, with the sign of A. For example, AINT(3.7) is 3.0, and AINT(-3.7) is -3.0.

- Argument A is Real; optional argument KIND is Integer

ANINT(A[,KIND])

- Real elemental function

- Returns the nearest whole number to A. For example, ANINT(3.7) is 4.0, and AINT(-3.7) is
-4.0.

- Argument A is Real; optional argument KIND is Integer

FLOOR(A,KIND)

- Integer elemental function

- Returns the largest integer < A. For example, FLOOR(3.7) is 3, and FLOOR(-3.7) is -4.
- Argument A is Real of any kind; optional argument KIND is Integer

- Argument KIND is only available in Fortran 95

INT(A[,KIND])

- Integer elemental function

- This function truncates A and converts it into an integer. If A is complex, only the real
part is converted. If A is integer, this function changes the kind only.

- A is numeric; optional argument KIND is Integer.

NINT(A[,KIND])

- Integer elemental function

- Returns the nearest integer to the real value A.
- A'is Real

what is int() ? similar intrinsic functions?! how to choose!

AINT(A[,KIND])

- Real elemental function

- Returns A truncated to a whole number. AINT(A) is the largest integer which is smaller
than |A|, with the sign of A. For example, AINT(3.7) is 3.0, and AINT(-3.7) is -3.0.

- Argument A is Real; optional argument KIND is Integer

ANINT(A[,KIND])

- Real elemental function

- Returns the nearest whole number to A. For example, ANINT(3.7) is 4.0, and AINT(-3.7) is
-4.0.

- Argument A is Real; optional argument KIND is Integer

FLOOR(A,KIND)

- Integer elemental function

- Returns the largest integer < A. For example, FLOOR(3.7) is 3, and FLOOR(-3.7) is -4.
- Argument A is Real of any kind; optional argument KIND is Integer

- Argument KIND is only available in Fortran 95

INT(A[,KIND])

- Integer elemental function

- This function truncates A and converts it into an integer. If A is complex, only the real
part is converted. If A is integer, this function changes the kind only.

- A is numeric; optional argument KIND is Integer.

NINT(A[,KIND])

- Integer elemental function

- Returns the nearest integer to the real value A.
- A'is Real

Exercise 2:
intrinsic random number generator - test correlations

i=1,2,3...

("“22'—1, 7“2@)

(ﬂfz', yz)

(obsolete: fortran 77)

Testing a Random Number Generator
drandd8

s Freet P UTRE ER T
R Band
[+ t+ .m.mi.+&.+ .nI..t..ﬂ_. +i o
— i o
> =

How many numbers! How many pairs!?

but...
correlations with the LCM generator with M=256

(24, 9:) = (r2i—1,72) 1 =1,2,3....

Testing a Random Number Generator

Yo

200.0

+
+ + *
100.0 | + +++t 7 .

0.0 1 " 1 "
0.0 100.0 200.0 X

How many numbers! How many pairs!?

Exercise 3:
intrinsic random number generator - test uniformity

Test of unifornity for intrinsic randon nunber generator using <x>, different seeds

0 1 1 1 1
“fort.8” u {log{#$1)):{log{%$2)) +
K WK fort,1” u {log{¥1)):{log($2)) =
3 K"‘éﬁ'vyﬁ%.\,w) fort,2” u (log{($1)):{log{$2)) *
-2 IF o = WP : £F{x)

-~ 7, Oy > -
e 3 3
B .
. . g oy "n .
F A ' .
-4 - . s o .
N :
1Y gl ’
\ — $4a b -y
& v
5 .

. &K
Pay v i3
v X R ;
-6 N IR b, Y % -
o 7 - ; w4
: e 5
A
NS
~

log{deviation of§{<{x>)

log{N}

Exercise 3:
intrinsic random number generator - test uniformity

Test of unifornity for intrinsic randon nunber generator

“fort.1” u {log{(#1)):{log{$2))
ol 77 u {log{($1)):{log{($3))
L T i 77 u (log{($1)):{log{$4))
1 B 4 o o fix)

log{deviation of{ <x>"k} :

1
N
@

log{N)

Exercise 4:
use of the seed

integer, dimension(:), allocatable :: seed
Integer ::sizer

call random_seed(sizer)
| the result depends of the machine architecture!

allocate(seed(sizer))

Check how random_seed() works both with gfortran and g95...
Do you want to force the seed initialization but not “by hands’?

Exercise 5 (optional):
how to change the seed using the
computer clock

SUBROUTINE init_random_seed
INTEGER :: i, nseed, clock
INTEGER, DIMENSION(:), ALLOCATABLE :: seed

CALL RANDOM_SEED(size = nseed)
ALLOCATE(seed(nseed))
CALL SYSTEM_CLOCK(clock)

seed =clock/2 +37*(/(i-1,i=1,n)/)
CALL RANDOM_SEED(PUT = seed)

DEALLOCATE(seed)
END SUBROUTINE

Exercise 6 - optional

nrdemo_ran.f90

_

module ran module
implicit none
public :: ran func
contains

é)
FUNCTION ran func(idum) result(ran)

END FUNCTION ran_ func
\ J

end module ran module

program demo
use ran module
implicit none
integer :: i,idum
real :: X
print*, "idum (<0) = "
read*, idum
x =ran_ func(idum)

end program demo

Data input / output

you can:
prepare an input datafile (say, in.dat)

then:
$./a.out < in.dat

Also the output can be redirected:
$./a.out > out.dat

