
Exercises Lecture V
Numerical Integration in 1D

1. Equispaced points: comparison trapezoidal-Simpson rules
Consider the definite integral :

I =

∫ 1

0

ex dx = e− 1 = 1.718282 . . .

(a) Write a code (e.g. int.f90) to calculate the integral using the (1)
trapezoidal rule or (2) the Simpson rule. In general, we indicate with
Fn the estimate of the integral from x0 to xn using a discretisation in

n intervals (even for the Simpson algorithm) of width h =
xn − x0

n
.

Therefore:∫ xn

x0

f(x)dx = F trapn +O(h2) = FSimpsonn +O(h4)

where

F trapn = h

[
1

2
f0 + f1 + . . .+ fn−1 +

1

2
fn

]
and

FSimpsonn = h

[
1

3
f0 +

4

3
f1 +

2

3
f2 +

4

3
f3 + . . .+

+
4

3
fn−3 +

2

3
fn−2 +

4

3
fn−1 +

1

3
fn

]
(b) Which is the dependence on n of the error ∆n = Fn − I ? You can

choose n = 2k (with k = 2, . . . 8, at least) in order to have equispaced
points when doing a log-log plot. You should find ∆n ≈ 1/n2 for the
trapezoidal rule and ∆n ≈ 1/n4 for the Simpson rule.

1

2. Monte Carlo method:
generic sample mean and importance sampling

(a) Write a code to compute the numerical estimate Fn of I =
∫ 1

0
e−x

2

dx =
√
π
2 erf(1) ≈ 0.746824 with the MC sample mean method using a set
{xi} of n random points uniformly distributed in [0,1]:

Fn =
1

n

n∑
i=1

f(xi)

(b) Write a code (a different one, or, better, a unique code with an
option) to compute Fn using the importance sampling with a set
{xi} of points generated according to the distribution p(x) = Ae−x

(Notice that erf is an intrinsic fortran function; useful to compare the
numerical result with the true value). Remind that in the importance
sampling approach:∫ b

a

f(x)dx =

〈
f(x)

p(x)

〉∫ b

a

p(x)dx ≈ 1

n

n∑
i=1

f(xi)

p(xi)

∫ b

a

p(x)dx = Fn

with p(x) which approximates the behaviour of f(x), and the average
is calculated over the random points {xi} with distribution p(x).
Notes: pay attention to:
- the normalization of p(x);
- the exponential distribution: expdev provides random numbers x

distributed in [0,+∞[; here we need x in [0,1] . . .

(c) Compare the efficiency of the two sampling methods (uniform and
importance sampling) for the estimate of the integral by calculating
the following quantities: Fn, σn = (< f2i > − < fi >

2)1/2, σn/
√
n,

where fi = f(xi) in the first case, and fi = f(xi)
p(xi)

∫ b
a
p(x)dx in the

second case (make a log-log plot of the error as a function of n: what
do you see?).

3. MC Method: acceptance-rejection

Using the acceptance-rejection method, calculate π = 4I with I =
∫ 1

0

√
1− x2dx.

The numerical estimate of the integral is Fn =
ns
n

where ns is the num-

ber of points under the curve f(x) =
√

1− x2, and n the total number
of points generated. An example is given in pi.f90. Estimate the error
associated, i.e. the difference between Fn and the true value. Discuss the
dependence of the error on n.
(Notice that many points are needed to see the n−1/2 behavior, which can
be hidden by stochastic fluctuations; it is easier to see it by averaging
over many results (obtained from random numbers sequences with differ-
ent seeds))

2

4. MC method–sample mean (generic);
error analysis using the “average of the averages” and the “block
average” NOTE: THIS EXERCISE IS VERY IMPORTANT !!!

(a) Write a code to estimate the same integral of previous exercise, π =

4I with I =
∫ 1

0

√
1− x2dx, using the MC method of sample mean

with uniformly distributed random points. Evaluate the error ∆n =
Fn − I for n=102, 103, 104: it should have a 1/

√
n behaviour.

(b) Choose in particulat n = 104 and consider the corresponding error
∆n. Calculate σ2

n =< f2 > − < f >2. You should recognize that
σn CANNOT BE CONSIDERED A GOOD ESTIMATE OF THE
ERROR (it’s much larger than the actual error. . .)

(c) In order to improve the error estimate, apply the following two dif-
ferent methods of variance reduction: 1) “average of the averages”:
do m =10 runs with n points each, and consider the average of the
averages and its standard deviation:

σ2
m =< M2 > − < M >2

where

< M >=
1

m

m∑
α=1

Mα e < M2 >=
1

m

m∑
α=1

M2
α

and Mα is the average of each run. You should recognize that σm is
a good estimate of the error associated to each measurement (=each
run) and σm ≈ σn/

√
n is the error associated to the average over the

different runs.

(d) 2) Divide now the n = 10, 000 points into 10 subsets. Consider the
averages fs within the individual subsets and the standard deviation
if the average over the subsets:

σ2
s =< f2s > − < fs >

2 .

You should notice that σs/
√
s ≈ σm.

3

!CCC

! int.f90:

! integrates f(x)=exp(x) in the interval [vmin,vamx]=[0,1]

! using trapezoidal and Simpson rule

!ccc

module intmod

public :: f, trapez, simpson

contains

! function to be integrated

!

function f(x)

implicit none

real :: f

real, intent(in) :: x

f = exp(x)

return

end function f

! trapezoidal rule

!

function trapez(i, min, max)

implicit none

real :: trapez

integer, intent(in) :: i

real, intent(in) :: min, max

integer :: n

real :: x, interval

trapez = 0.

interval= ((max-min) / (i-1))

! sum over the internal points (extrema excluded)

do n = 2, i-1

x = interval * (n-1)

trapez = trapez + f(x) * interval

end do

! add extrema

trapez = trapez + 0.5 * (f(min)+f(max)) * interval

return

end function trapez

! Simpson rule

!

function simpson(i, min, max)

implicit none

real :: simpson

4

integer, intent(in) :: i

real, intent(in) :: min, max

integer :: n

real :: x, interval

simpson = 0.

interval = ((max-min) / (i-1))

! loop EVEN points

do n = 2, i-1, 2

x = interval * (n-1)

simpson = simpson + 4*f(x)

end do

! loop ODD points

do n = 3, i-1, 2

x = interval * (n-1)

simpson = simpson + 2*f(x)

end do

! add extrema

simpson = simpson + f(min)+f(max)

simpson = simpson * interval/3

return

end function simpson

end module intmod

program int

use intmod

!

! variable declaration

! accuracy limit

! min and max in x

!

implicit none

real :: r1, r2, theo, vmin, vmax

integer :: i, n

! exact value

vmin = 0.0

vmax = 1.0

theo = exp(vmax)-exp(vmin)

print*,’ exact value =’,theo

open(unit=7,file=’int-tra-sim.dat’,status=’unknown’)

!

write(7,*)"# N, interval, exact, Trap-exact, Simpson-exact"

do i = 2,8

n = 2**i

r1 = trapez(n+1, vmin, vmax)

r1 = (r1-theo)

5

r2 = simpson(n+1, vmin, vmax)

r2 = (r2-theo)

write(7,’(i4,4(2x,f10.6))’) n, 1./n, theo, r1, r2

end do

close(7)

print*,’ data saved in int-tra-sim.dat (|diff from exact value|)’

stop

end program int

!cc

!c pi.f90: Calculates pi using MC

!cc

Program pi

Implicit none

integer, dimension(:), allocatable :: seed

real, dimension(2) :: rnd

Real :: area, x, y

Integer :: i, max, pigr, sizer

call random_seed(sizer)

allocate(seed(sizer)

print*,’ enter max number of points=’

read*, max

print*,’ enter seed (or type /) >’

read*, seed

call random_seed(put=seed)

! open data file, initializations

Open(7, File=’pigr.dat’, Status=’Replace’)

pigr=0

! points generated within a square of side 2

! count how many fall within the circle x*x+y*y <= 1;

Do i=1, max

call random_number(rnd)

x = rnd(1)*2-1

y = rnd(2)*2-1

If ((x*x + y*y) <= 1) then

pigr = pigr+1

Endif

area = 4.0 * pigr/Real(i)

if (mod(i,10)==0) Write(7,*) i, abs(acos(-1.)-area) !write every 10 points

end do

Close(7)

Stop ’data saved in pigr.dat ’

End program pi

6

