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Determinism and predictability
Deterministic chaos and absolute chaos
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Determinism

Determinism indicates that every event is
determined by a chain of prior occurrences.

Pierre Simon de Laplace (1749-1827) strongly believed in causal
determinism:

“We ought to regard the present state of the universe as the effect of its
antecedent state and as the cause of the state that is to follow. An
intelligence knowing all the forces acting in nature at a given instant, as well
as the momentary positions of all things in the universe, would be able to
comprehend in one single formula the motions of the largest bodies as well
as the lightest atoms in the world, provided that its intellect were sufficiently
powerful to subject all data to analysis; to it nothing would be uncertain, the

future as well as the past would be present to its eyes."
(from: "Essai philosophique sur les probabilites”)
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Predictability

Determinism * predictability
The world could be highly predictable, in some senses, and
yet not deterministic; and it could be deterministic yet
highly unpredictable...

Determinism: related to the nature of the physical system

Predictability: related to what we can do (observe, analyze, calculate);
to predict something we need:

- knowledge of initial conditions

- capability of solving exactly the equation of evolution
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Chaos and determinism

a system is chaotic if its trajectory through
the configuration space is sensitively

dependent on the initial conditions, that is, if
very small causes can produce large effects

(in meteorology: "butterfly effect”)
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In the last few decades, physicists have become aware
that even the systems studied by classical mechanics can
behave in an intrinsically unpredictable manner. Although
such a system may be perfectly deterministic in principle,
its behavior is completely unpredictable in practice. This
phenomenon was called deterministic chaos.
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Deterministic chaos
is not randomness

Deterministic chaos is not the same as absolute
chaos. Absolute chaos or randomness is when you
don't know nothing at all of what will be the next

value: it can be any value!

Another important difference is that for deterministic
chaos we have a simple law that will produce all the
values in the “attractor”. Instead for randomness there is
no known recipe to produce past and future values.
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Chaos and determinism:
logistic map;
Mandelbrot function and fractals
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Chaos and determinism

Deterministic chaos described by
intrinsically NON LINEAR equations.
E.g., dynamics of population:

Tpai1 = 4rx,(1 —x,)

x,, 18 the ratio of the population in the nth generation to a reference population.

WHICH DYNAMICAL BEHAVIOR!?
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The logistic map

realistic model in which the population is bounded

rescale the population by letting P, = (a/b)x,

Tpi1 = axn(l —x,)

define the parameter » = a/4 and obtain

Tnai1 = f(zn) =4rx, (1 —x,)

e f is called a one-dimensional map

e The sequence of values xg, x1, x2, --- is called the trajectory or the orbit.

e =¥ is a fixed point if x,.1 =z, = 2%, ie., f(z*) =a*
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The logistic map

Tpi1 = 4dra, (1 —x,)
0<z<1; 0<r<1 (¥

(*): condition (f(x))maz <1 = r <1; z¥=fixed point <1 = r >0

1.0 1.0
examples of
convergent
trajectories: X X

0.5 0.5 L

0.0 adoceooeocooooos 0.0 I

0 15 . 30 0 15, 30
() (b)
r=0.2 and zog = 0.6 r = 0.7 and o = 0.1.

( stable fixed point is 2 = 0) initial transient behavior
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Fixed points

fixed-point|condition is given by f(z*)=z*

Tpi1 = 4dre, (1 —x,)

1
» _—_— i o —1_
.Cl?l all 332 47“

stable fixed point
or sufficiently small r, the iterated values of x converge

to x = 0 independently of the value of xg

if for almost all xy near the fixed point, the trajectories diverge from it

It can be demonstrated that:

r” = 0 is stable for 0 <r < 1/4

1 1
“=1-— — isstable for - e
T 4. isstablefor - <7< (< 1)

(condition zJ > 0)
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The logistic map

Tpi1 = 4dra, (1 —x,)
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The logistic map

Tpi1 = 4drz, (1 —x,)
zoom on the bifurcation diagram
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Bifurcation diagram of the logistic map. For each value of r, the iterated values of
x, are plotted after the first 1000 iterations are discarded. Note the transition from periodic to
chaotic behavior and the narrow windows of periodic behavior within the region of chaos.
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The logistic map

Tpnt1 =4rT,(1 —x,) =P y(r)=4drz(l —x)
1 ' Y ' ' y'(x=0) =4r

y(X)

0.8

Graphical interpretation of the logistic map:
intersection with the diagonal (non trivial solution) for 1/4 <7 <1
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The logistic map

Tpi1 = 4dre, (1 —x,) = y(z)=4rz(l —x)

/
. y' (x =0) =4r
/
i /
¥
y //
J il
//
0.5 1 \\&i (z1, f(21))
N
i (x1,~ f(z0), f(w0)) (zo, f(x0))
r = 0.7
0.0 | | | CU() — 0.9
0.0 0.5 L0 10

X

Graphical representation of the iteration of the logistic map

the graphical solution converges to the fixed point x* ~ 0.643

Note: the graphical intersection between y(x) and the diagonal gives the fixed point, but it is not
sufficient to determine whether it is stable or unstable
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The logistic map

Numerics:

for a given parameter r:

- for a given Xo, iterate the map and plot the trajectory (n, Xn);
- verify whether it converges and, in case, to which value(s)

- verify numerically if the analytically predicted fixed points
X1", X2" are stable or unstable fixed points
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Another famous example

other equations intrinsically NON LINEAR can show a
chaotic behavior for certain values of the parameters.

E.s.
quadratic recurrence equation
MandEIbrOt fLI I‘ICtiOI‘I (in general in the complex field):

Z(ntl) = Z(n)2 + C with C constant (also negative)
andn=0,1,2,...

Start with an initial value Z(0), then calculate:
Z(1) = Z(0)2 + C

then:

Z(2) =7(1)? + C

etc etc ...
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http://mathworld.wolfram.com/QuadraticRecurrenceEquation.html
http://mathworld.wolfram.com/QuadraticRecurrenceEquation.html

Some examples in the real field

Z(n+1) =Z(n)¢ + C n Z1(n)
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Some examples in the real field
Z(n+l)=Z(n)?+ C
Previous example: C = 0.2 and Z(0) = 0 => Convergence to Z*= 0.2764

In general:
Fixing Z(0) = O:

For 0<C<= 0.25 : convergence to a fixed point, solution of z=272+C
(attractor)

For C<~ -0.75 : convergence with damped oscillation
For C~-0.76 : bifurcation (two-values attractor)
Decreasing C: further bifurcations

Further decreasing, at C~-1.42: chaotic behavior

(infinite points of attraction; and very small change of Z(0)=> very
different behavior of the sequence - “butterfly effect”)
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Some examples in the
Z(n+1) =Z(n)? + C

Chaotic sequence at C = -1.7:

The values of the sequence do not repeat
However they are within a certain range

Range including all points of the series:
chaotic attractor or strange attractor
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“The” Mandelbrot set

the set of those points C in the
complex plane for which the
“evolution” of Z(0)=0 under iteration of
Z(n) remains “bounded”, i.e., |Z(n)| never
diverges as n grows.

The Mandelbrot set can be plotted: in practice, a
maximum number of iterations nmax and a maximum
value of |Z|=rmax=2 is considered (it can be
demonstrated that if there is a |Z,|>2, then the
sequence diverges)

one-color plots: black pixel: C is in the Mandelbrot set (|Z| remains
limited)/ white: C is NOT

=> FRACTAL CHARACTERISTICS

http://mathworld.wolfram.com/MandelbrotSet.html
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“The” Mandelbrot set

the set of those points C in the
complex plane for which the
“evolution” of Z(0)=0 under iteration of
Z(n) remains “bounded”, i.e., |Z(n)| never
diverges as n grows.

The Mandelbrot set can be plotted: in practice, a
maximum number of iterations nmax and a maximum
value of |Z|=rmax=2 is considered (it can be
demonstrated that if there is a |Z,|>2, then the
sequence diverges)

one-color plots: black pixel: C is in the Mandelbrot set (|Z| remains
limited)/ white: C is NOT

multicolor plots: C points are colored according to the number of
iterations n<nmax required to have |Zn|>rmax

=> FRACTAL CHARACTERISTICS

http://mathworld.wolfram.com/MandelbrotSet.html
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Measuring chaos

important characteristic of chaos
sensitivity to initial conditions

our ability to make numerical predictions is limited

%> The difference between two trajectories may diverge
exponentially :

Ax,| = |Axg] e

Lyapunov exponent
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Measuring chaos
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The Lyapunov exponent
as a function of the
control parameter r

for the logistic map

Tpai1 = 4rz, (1 —x,)

Logistic map: bifurcation diagram
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Measuring chaos

A PROBLEM in a numerical approach:

ROUNDOFF:

small initial errors are exponentially amplified in time;
after some (?) iterations the trajectories can diverge!

How to calculate A?
FIT over several trajectories

Wednesday, 6 June 18
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Chaos in classical billiards
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Billiards

MODEL BILLIARDS

(conservation of energy law,
reflection law of geometric optics)

calculate trajectories
(which depend on:
shape of the billiard;
initial position and velocity)

29



Billiards

Circular billiards support regular (periodic or non - periodic)
trajectories, but in any case hon - ergodic.

(note also:

conservation of angular momentum, incidence angle constant)

In phase space (q(t),p(t)):
limited region (a line: g(t) varies, p(t) constant)
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Billiards

Also elliptical billiards support regular trajectories:

The convolution of a trajectory can be: ellipse, hyperbole, regular polygon
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Billiards

Rectangular billiards also support regular (periodic or non -
periodic) trajectories, which in this case can be also ergodic
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Billiards

B

4

In a rectangular/square/elliptic billiards the trajectories are regular but also
stable, i.e. changing the initial conditions, they remain close each other
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Billiards

In a rectangular/square/elliptic billiards the trajectories are regular but also
stable, i.e. changing the initial conditions, they remain close each other

By inserting a circle in a rectangular or square billiard, chaotic
trajectories, strongly dependent on the initial conditions, are

generated
(“dynamical billiard” or “Sinai billiard”, 1963)

Wednesday, 6 June 18
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2014 Abel Prize

from the Norwegian Academy of Science and Letters
awarded to the mathematical physicist Yakov Sinai

(now Princeton University, New Jersey).

for his “fundamental contributions to dynamical systems,
ergodic theory, and mathematical physics”

http://www.abelprize.no/
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Billiards

Stadium (Bunimovich) billiard has a geometry simpler
than Sinai billiard, also resulting in chaotic trajectories

GF L ﬂ>
(a)

. (a) Geometry of the stadium billiard model. (b) Geometry of the Sinai billiard model.

- L -

(b)
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NON Ergodicity
of circular

billiards
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Billiards

Ergodicity
of chaotic
billiards
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Conservation of the energy,

but in some cases (stable trajectories):
- another physical constant
(e.g.angular momentum in case of circular billiards;
“projection” of the kinetic energy along x and along y in
rectangular billiards)

- no physical constant for stadium billiards
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our model

point-like spheres

no friction:
forces normal to the boundaries

perfectly elastic collisions:
energy conservation: [V’| = |v|

Wednesday, 6 June 18
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the algorithm

given X,Y,vx,vy attimet

calculate :

time to the next collision

the position of collision

velocity after the collision (reflection)

Iterate N times (N collisions)
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collision time

Calculation of time to the next collision:
-t -

X(t) = X0 + vxt /< \
y(t) = yo + vyt \_ /’

boundaries: f(x,y)=0 : (e.g.: yo+ vytc=0)

at the collision time tc:

f(X(tc) (tc)) (XO + vy 1, Yo+ Vy tc) 0
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collision point

(half) circular boundary: equation:
[X(tc) - Xc]* + [y (tc) - ye]* = 1

l.e.:
(Xo+ Vxtc- Xc)* + (Yo+ Vytc-yc)? = 1

=> (0, 1 o 2 solutions:

(0 sol.) no collision

(1 sol.) collision (tangent line)

(2 sol.) collision (consider only the larger tc)
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velocity after collision

For reflection off of a circular boundary:
(x-%c )2 +y? = 1

Vix = (¥2 - (X-Xc)?) Vx - 2 (X - Xc)y Vy
Vy = -2 (X-Xo) Y Vx + ((X - Xc)* - y?) Vy

(valid if vy +w?=1)

Wednesday, 6 June 18
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Lyapunov exponent
Dynamics is chaotic:

start with two particles with almost identical positions
and/or momenta (varying by say 107°); compute the
difference As of the two phase space trajectories as a
function of the number of reflections n, where:

Asn — \/|r1,n — r2,n‘2 - |p1,n — P2.n

Lyapunov exponent can be calculated by a semilog plot
of As versus n (of course, consider only the initial part,
since As is limited!)

2

- L dependence?

- role of single/double precision?
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Some programes:

on
$/home/peressi/comp-phys/Xlll-chaos/
or on moodle2

map.f90
billiard.f90

and

b| I Ial‘d i2.Zi P (material in java, from the Lab activity with

High School students, with G. Pastore)

Wednesday, 6 June 18
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Billiards

possibility of observing "Quantum Chaos":
delocalization of the wavefunction in chaotic billiards
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Billiards

possibility of observing "Quantum Chaos"

Iron on Copper (111)
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https://www.ictp.it/about-ictp/media-centre/news/2018/6/

yorke-interview.aspx
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