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EXPONENTIAL DISTRIBUTION

DEFINITION

A random variable T : (Ω,S)→ [0,∞] is Exp(λ) iff

Cdf is P(T < t) = 1 − e−λt

Survival probability is P(T > t) = e−λt

Density is fT (t) = λe−λt , t ≥ 0.

The expected value of T is E(T ) =
∫ ∞

0 P(T > t)dt = 1
λ
.

MEMORYLESS PROPERTY

T ∼ Exp(λ) if and only if the following memoryless property holds:

P(T > s + t |T > s) = P(T > t) for all s, t ≥ 0.

In fact
P(T > s + t |T > s) = P(T > s + t)/P(T > s) = e−λ(t+s)eλs = e−λt .
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EXPONENTIAL DISTRIBUTION

DEFINITION

A random variable T : (Ω,S)→ [0,∞] is Exp(λ) iff

Cdf is P(T < t) = 1 − e−λt

Survival probability is P(T > t) = e−λt

Density is fT (t) = λe−λt , t ≥ 0.

The expected value of T is E(T ) =
∫ ∞

0 P(T > t)dt = 1
λ
.

INSTANTANEOUS FIRING PROBABILITY

An exponential distribution with rate λ can be seen as the firing time
of an event who has probability of firing between time t and t + dt
equal to λdt .
Call p(t) = P{T ≥ t}. Then p(t + dt) = p(t) · (1 − λdt),
from which dp(t)

dt = −λp(t), that has solution p(t) = e−λt (as p(0) = 1).
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EXPONENTIAL DISTRIBUTION: RACE CONDITION

THEOREM
Let I be a countable set and let Tk , k ∈ I, be independent random variables,
with Tk ∼ Exp(qk ) and q =

∑
k∈I qk < ∞. Set T = infk Tk . Then this infimum is

obtained at a unique random value K of I, with probability 1. Moreover, T and
K are independent, T ∼ Exp(q) and P(K = k) = qk/q.

PROOF

Set K = k if Tk < Tj for all j , k , K is undefined otherwise. Then

P(K = k and T ≥ t) = P(Tk ≥ t and Tj > Tk for all j , k)

=
∫ ∞

t qk e−qk sP(Tj > s for all j , k)ds
=

∫ ∞
t qk e−qk s ∏

j,k e−qj sds
=

∫ ∞
t qk e−qsds = qk

q e−qt

Computing the marginal distributions for K and T , we obtain the claimed
results. Moreover, their joint distribution turns out to be the product of the
marginals, thus showing that K and T are independent and that
P(K = k for some k) = 1.
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CTMC: DEFINITION

S-VALUED STOCHASTIC PROCESS

Let S be finite or countable. A continuous-time random process
(Xt )t≥0 = {Xt | t ≥ 0}, with values in S, is a family of random variables
Xt : (Ω,S)→ (S,2S) that are right-continuous w.r.t. t .
Therefore, Xt (or X (t)) has cadlag sample paths.
Right continuous processes are determined by their
finite-dimensional distributions.

CONTINUOUS TIME MARKOV CHAIN

A Continuous Time Markov Chain is a right-continuous
continuous-time random process satisfying the memoryless
condition: for each n, ti and si :

P(Xtn = sn | Xt0 = s0, . . . ,Xtn−1 = sn−1) = P(Xtn = sn | Xtn−1 = sn−1).
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CTMC: RACE CONDITION

CTMC AS A GRAPH

A CTMC on a state space S can be seen as a labelled graph. Each
edge takes some time to be crossed, exponentially distributed with
the rate labelling the edge.
In each state, there is a race condition between the different exiting
edges: the fastest is traversed.
The memoryless property follows from that of the exponential
distribution.

Q-MATRIX

A Q-matrix is the |S| × |S| matrix such that:

1 qij ≥ 0, i , j is the rate of the exponential distribution giving the
time needed to go from state si to state sj

2 qii = −
∑

j,i qij is the opposite of the exit rate from state i .

Therefore, each row of the Q-matrix sums up to zero.
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A SIMPLE EXAMPLE: THE MOOD CHAIN
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JUMP CHAIN AND HOLDING TIMES

FACTORIZING EACH JUMP
In each state i , we have a race condition between k transitions, each
exponentially distributed with rate qij . Hence, the time spent is T = inf Tij .
By the properties of the exponential distribution, we know that T has rate
qi =

∑
j qij , and that the transition that fires is independent from T and the

next state j is chosen with probability qij/qi .

JUMP CHAIN AND HOLDING TIMES

We can therefore factorize X (t) into

a DTMC Yn, with probability matrix Π, defined by πij =
qij
−qii

, if i , j , and
πii = 0;

a sequence of jump times τn, where τn is the time of the n-th jump.
Letting qi the jump rate from state si , then Tn = τn − τn−1, the n-th
holding time, is distributed exponentially with rate qYn .

Yn and each Ti are independent.

Hence X (t) = Yn for τn ≤ t < τn+1.
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A SIMPLE EXAMPLE: THE MOOD CHAIN
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CHAPMAN-KOLMOGOROV EQUATIONS

Let Pij(t) = P{X (t) = sj | X (0) = si }. Then

Pij(t + s) = P{X (t + s) = sj | X (0) = si }

=
∑

k

P{X (t + s) = sj ,X (t) = sk | X (0) = si }

=
∑

k

P{X (s) = sj | X (0) = sk }P{X (t) = sk | X (0) = si }

=
∑

k

Pik (s)Pkj(t).

Hence P(t), as a matrix, satisfies

P(t + s) = P(t)P(s) = P(s)P(t),

which is the semigroup property, also known as
Chapman-Kolmogorov equations.
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KOLMOGOROV EQUATIONS

Using properties of the exponential, we can compute P(dt):
Pij(dt) = qijdt , for i , j ;
Pii(dt) = 1 −

∑
j,i qijdt = 1 + qiidt

Hence P(dt) = I + Qdt
From the CK equations: P(t + dt) = P(t) + P(t)Qdt , from which

dP(t)
dt

= P(t)Q,

which is the forward Kolmogorov equation.
Using CK the other way round: P(t + dt) = P(t) + QP(t)dt , so

dP(t)
dt

= QP(t),

which is the backward Kolmogorov equation.
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A SIMPLE EXAMPLE: THE MOOD CHAIN
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A SIMPLE EXAMPLE: THE MOOD CHAIN
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POISSON PROCESS: DEFINITION

A Poisson process Nλ(0, t) with rate λ is a process that counts
how many times an exponential distribution with rate λ has fired
from time 0 to time t .

0 1 2 3 . . .λ λ λ λ

It can be seen as a CTMC on the state space S = N, with rate
matrix Q given by qi ,i+1 = λ, and zero elsewhere.
It’s a very common process. For instance, it is the simplest
model of job arrivals in a queue.
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POISSON PROCESS: BASIC PROPERTIES

POISSON RANDOM VARIABLE

A Poisson r.v. Y(λ) with rate λ (Y(λ) ∼ Poisson(λ)) is a r.v. on N with
probability distribution P{Y(λ) = n} = e−λλn

n! .
Its generating function is G(z) = E[zY(λ)] = eλ(z−1).

POISSON PROCESS DISTRIBUTION

The distribution of Nλ(0, t) is Poisson(λt).

We show that Gt (z) = E[zN(0,t)] = eλt(z−1).
By the Markov property, N(0, t + s) = N(0, t) +N(t , s), and the two
processes on the right are independent.
Then Gt+dt (z) = E[zN(0,t)]E[zN(t ,t+dt)]. But E[zN(t ,t+dt)] = (1 − λdt)z0 + λdtz1,
hence Gt+dt (z) = Gt (z) + λ(z − 1)Gt (z)dt , and so

dGt (z)

dt
= λ(z − 1)Gt (z),

which has solution Gt (z) = eλt(z−1), as Nλ(0,0) = 0 with probability 1.
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INVARIANT MEASURES AND STEADY STATE

INVARIANT MEASURE

Consider a CTMC with rate matrix Q and finite state space S.
An invariant measure for the CTMC is a probability distribution
π satisfying

πQ = 0.

If Q is irreducible (has a strongly connected graph), then it has
a unique invariant measure.

STEADY STATE BEHAVIOUR

Consider an irreducible CTMC with rate matrix Q and finite
state space S, and let π be its invariant probability distribution.
Then, for each si , sj ∈ S,

lim
t→∞

Pij(t) = πj .

Notice that aperiodicity is not required. Why?
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EXAMPLE: BIRTH-DEATH PROCESS

A birth-death process is a CTMC on S = N with birth rate λi
(from i to i + 1) and death rate µi (from i to i − 1).

0 1 2 3 . . .

λ0 λ1 λ2 λ3

µ1 µ2 µ3 µ4

To derive the steady state π, we can use the fact that the net
flow along each cut must be zero (why?):

πiλi = πi+1µi+1

Hence we get:

πk =
k−1∏
i=0

λi

µi+1
π0; π0 =

1 +
∞∑

k=1

k−1∏
i=0

λi

µi+1


−1
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EXAMPLE: BIRTH-DEATH PROCESS

Consider a birth-death process with constant birth rate λ and
constant death rate µ. It is the model of an M/M/∞ queue.

0 1 2 3 . . .

λ λ λ λ

µ µ µ µ

πk =

(
λ

µ

)k

π0; π0 =

1 +
∞∑

k=1

(
λ

µ

)k
−1

If λ ≥ µ, then π0 = 0 = πk . No state is positive recurrent,
there is no invariant measure. The chain escapes to
infinity.

If λ < µ, then π0 = 1−λ/µ
2−λ/µ and πk =

(
λ
µ

)k 1−λ/µ
2−λ/µ
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EXAMPLE: BIRTH-DEATH PROCESS

If λ < µ, then π0 = 1−λ/µ
2−λ/µ and πk =

(
λ
µ

)k 1−λ/µ
2−λ/µ

Assume λ = 1, µ = 2.

0: 1
3 1: 1

6 2: 1
12 3: 1

24
. . .

1 1 1 1

2 2 2 2
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MATRIX EXPONENTIAL

The solution of the forward Kolmogorov equation dP(t)
dt = P(t)Q,

for a generic CTMC, can be given in terms of the matrix
exponential

P(t) = eQt =
∞∑

n=0

tnQn

n!
.

However, numerical computation of the series expansion is
numerically unstable.



PRELIMINARIES CTMC PCTMC SIMULATION 25 / 54

UNIFORMIZATION

A more efficient strategy is to solve the uniformized CTMC.
Let λ ≥ maxi {−qii }.
Then one considers a CTMC with jump chain Y (n) with matrix

Π = I +
1
λ

Q,

and uniform exit rate λ.
The number of fires of this CTMC up to time t is a Poisson
process Nλ(0, t), and so

X (t) = YN(0,t) = YY(λt).

It follows that

P(t) =
∞∑

n=0

e−λt (λt)n

n!
Πn,

which can be truncated above (and below) by bounding the
Poisson r.v.



PRELIMINARIES CTMC PCTMC SIMULATION 26 / 54

A SIMPLE EXAMPLE: THE MOOD CHAIN
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TIME-INHOMOGENEOUS EXPONENTIAL

DEFINITION

A exponential random variable T ∼ Exp(λ) has time inhomogeneous rate iff
λ = λ(t) is a function λ : [0,∞[→ R+.

Cumulative rate is Λ(t) =
∫ t

0 λ(s)ds

Cdf is P(T < t) = 1 − e−Λ(t)

Survival probability is P(T > t) = e−Λ(t)

INVERSION METHOD

One can simulate unidimensional random variables by sampling a uniform r.v.
U ∈ [0,1], and then finding t∗ such that t∗ = inft P(T ≤ t) = U.
For a time-inhomogeneous Exp(λ(t)), one has to solve e−Λ(t) = U, iff
Λ(t) = − log U = ξ, with ξ ∼ Exp(1).
If λ is constant, then Λ(t) = λt , and one has t = − 1

λ
log(U).

In general, one can either integrate λ(t) or the equivalent ODE dΛ(t)
dt = λ(t),

and check for the root of Λ(t) + log(U) along the solution.
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TIME-INHOMOGENEOUS POISSON PROCESS

A time-inhomogeneous Poisson process Nλ(0, t), λ = λ(t), is a
Poisson process with time-varying rate.

0 1 2 3 . . .
λ(t) λ(t) λ(t) λ(t)

It can be shown (same generating function argument as above)
that the distribution of Nλ(0, t) is Poisson(Λ(t)), i.e. it is the r.v.

Y(Λ(t)) = Y

(∫ t

0
λ(s)ds

)
.
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TIME-INHOMOGENEOUS CTMC

TIME-INHOMOGENEOUS CTMC
In general, if the rate matrix Q of a CTMC depends on time,
Q = Q(t), then the CTMC is time inhomogeneous.
The probability semigroup depends now also on the initial time:
Pij(t1, t2) = P{X (t2) = sj | X (t1) = si }.

FORWARD KOLMOGOROV EQUATION

∂P(t1, t2)

∂t2
= P(t1, t2)Q(t2)

BACKWARD KOLMOGOROV EQUATION

∂P(t1, t2)

∂t1
= −Q(t1)P(t1, t2)
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POPULATION PROCESSES

SIR epidemics model
single individual

S

RI

kIXI/N

kR

kS

Consider a CTMC model of a
population epidemics in which
each of N individuals can be in
one of three states: susceptible
(S), infected (I), and recovered
(R);

Infection rate depends on the
density of infected individuals;

The CTMC for N agents has 3N

states (if we distinguish the
individuals) or (N + 1)2 states (if
we just count them): it’s
impossible to write down the Q
matrix explicitly.

We need a better description of
population CTMCs.



PRELIMINARIES CTMC PCTMC SIMULATION 33 / 54

POPULATION CTMC

A population CTMC model is a tuple X = (X,D,T ,x0), where:
1 X — vector of variables counting how many individuals in

each state.
2 D =

∏
i Di — (countable) state space.

3 x0 ∈ D—initial state.
4 ηi ∈ T — global transitions, ηi = (a, φ(X),v, r(X))

1 a — event name (optional).
2 φ(X) — guard.
3 v ∈ Rn — update vector (from X to X + v)
4 r : D → R≥0 — rate function.
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EXAMPLE: SIR EPIDEMICS

S

RI

inf

rec

susc

Three variables: XS,XI ,XR.
State space:
D = {(n1,n2,n3) | n1 + n2 + n3 =
N} ⊂ {0, . . . ,N}3.

Transitions:

(inf ,>, (−1,1,0)kI
XI
N XS)

(rec,>, (0,−1,1), kRXI)

(susc,>, (1,0,−1), kSXR)
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EXAMPLE: SIR EPIDEMICS

S
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susc

N = 100, kI = 1, kR = 0.05, kS = 0.01
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EXAMPLE: SIR EPIDEMICS
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MASTER EQUATION

The Kolmogorov equation in the context of Population
Processes is often know as master equation.

There is one equation per state x ∈ D, for the probability mass
P(x, t), which considers the inflow and outflow of probability at
time t .

dP(x, t)
dt

=
∑
η∈T

rη(x − vη)P(x − vη, t) −
∑
η∈T

rη(x)P(x, t)
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POISSON REPRESENTATION

Population CTMC admit a simple description in terms of Poisson
processes.
Essentially, we introduce variables Rη(t) counting how many times
each transition η has fired up to time t . Hence we can write:

X (t) = X (0) +
∑
η∈T

vηRη(t).

It turns out that Rη(t) is a time-inhomogeneous Poisson process with
cumulative rate

∫ t
0 rη(X (s))ds, independent from the other Rη′ .

Hence, let Nη be independent Poisson processes. For each t ≥ 0:

X (t) = X (0) +
∑
η∈T

vηNη

(∫ t

0
rη(X (s))ds

)
.

Equivalently, let Yη be independent Poisson r.v. It holds:

X (t) = X (0) +
∑
η∈T

vηYη

(∫ t

0
rη(X (s))ds

)
.
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SIMULATING A POPULATION CTMC

Population CTMC have generally a complex dynamics and
state space which is too large for

1 Solving the CTMC analytically
2 Performing numerical computations like solution of the

Kolmogorov equation, transient analysis by uniformization,
or computation of steady state.

Therefore, one can resort to statistical tools.
One samples a (large) set of trajectories from the distribution
induced by the CTMC in the space of traces (cadlag functions),
and then uses statistical methods to extract information about
the process from these samples.
We will review some simulation algorithms, exploiting the
different characterizations of (population) CTMCs.
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DIRECT METHOD

RACE CONDITION CHARACTERIZATION OF A PCTMC
In each state x, the m transitions in T compete in a race
condition: the fastest wins and is executed.

DIRECT METHOD

At each step, with current state x and current time t
1 sample m uniform r.v. Uη;
2 compute Tη = − 1

rη(x)
log(Uη);

3 find η̄ = argminη∈TTη;
4 execute transition η̄ updating the current state from x to

x + vη and current time to t + Tη.
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STOCHASTIC SIMULATION ALGORITHM

JUMP CHAIN AND HOLDING TIMES

We can improve the previous simulation by using the characterization
with Jump Chain and Holding Times, which for population CTMC
reads:

HOLDING TIME r(x) =
∑
η∈T rη(x)

JUMP CHAIN P(η | x) =
rη(x)

r(x)

SSA
At each step, with current state x and current time t

1 sample the next transition η from the jump chain;

2 sample the holding time from an Exp(r(x));

3 update current state and current time.

This method in biochemistry and system biology is also known as
Gillespie Algorithm.
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EXAMPLE: SIR EPIDEMICS

S

RI

inf

rec

susc

TIME DELAY

Exponential with rate
1.6 + 0.1 = 1.7.

N = 10, kI = 1, kR = 0.05, kS = 0.01
XS(0) = 8, XI(0) = 2, XR(0) = 0.

STEP 0: RATES OF TRANSITIONS

INFECTION: 1
10 · 8 · 2 = 1.6

RECOVERY: 0.05 · 2 = 0.1
IMMUNITY LOSS: 0

NEXT STATE

XS(0) = 7, XI(0) = 3, XR(0) = 0 with prob.
1.6

1.6+0.1 = 0.9412
XS(0) = 8, XI(0) = 1, XR(0) = 1 with prob.

1.6
1.6+0.1 = 0.0588



PRELIMINARIES CTMC PCTMC SIMULATION 44 / 54

EXAMPLE: SIR EPIDEMICS

S

RI

inf

rec

susc

TIME DELAY

Exponential with rate
1.6 + 0.1 = 1.7.

N = 10, kI = 1, kR = 0.05, kS = 0.01
XS(0) = 8, XI(0) = 2, XR(0) = 0.

STEP 0: RATES OF TRANSITIONS

INFECTION: 1
10 · 8 · 2 = 1.6

RECOVERY: 0.05 · 2 = 0.1
IMMUNITY LOSS: 0

NEXT STATE

XS(0) = 7, XI(0) = 3, XR(0) = 0 with prob.
1.6

1.6+0.1 = 0.9412
XS(0) = 8, XI(0) = 1, XR(0) = 1 with prob.

1.6
1.6+0.1 = 0.0588



OUTLINE

1 PRELIMINARIES
Exponential Distribution

2 CONTINUOUS TIME MARKOV CHAINS
Main concepts
Poisson Process
Time-inhomogeneous rates

3 POPULATION CONTINUOUS TIME MARKOV CHAINS

4 SIMULATION
SSA
Next Reaction Method
τ-leaping



PRELIMINARIES CTMC PCTMC SIMULATION 46 / 54

NEXT REACTION METHOD/GIBSON-BRUCK (SKETCH)

Consider a single η transition in a time interval [0, t ] in
which it never fires.
As other transitions may fire, its rate rη(X(s)) is a
time-dependent function.
Therefore, we can sample the firing time of η using the
inversion method for time-inhomogeneous exponential
distribution, solving for t

Λη(t) =

∫ t

0
rη(X(s))ds = ξ ∼ Exp(1).
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NEXT REACTION METHOD/GIBSON-BRUCK (SKETCH)

time0 t0

s0 t1

λ0

λ1

Start at time 0, and suppose the rate of η is λ0. Assuming it does
not change in time, the firing time would be t0 = 1

λ0
ξ ∼ Exp(λ0).

Now, suppose at time s0 another event η′ fires, and this changes
the rate of η to λ1.

Then the firing time of η would be found by solving
λ0s0 + λ1(t1 − s0) = ξ, from which

t1 = s0 +
λ0

λ1

(
1
λ0
ξ − s0

)
= s0 +

λ0

λ1
(t0 − s0).

This is the update formula of Gibson-Bruck algorithm (can be
easily generalized to n intermediate events by induction).
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NEXT REACTION METHOD/GIBSON-BRUCK (SKETCH)

time0 s0 t1

λ0

λ1

NEXT REACTION METHOD

At each step, with current state x and current time t

1 execute transition η with smallest time;

2 update rates and firing times of other transitions;

3 sample a new firing time for η.

the algorithm uses a priority queue and a dependency graph to speed
up operations.
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EXAMPLE: SIR EPIDEMICS

S

RI

inf

rec

susc

N = 10, kI = 1, kR = 0.05, kS = 0.01
XS(0) = 8, XI(0) = 2, XR(0) = 0.

STEP 1: RATES OF TRANSITIONS

INFECTION: 1
10 · 8 · 2 = 1.6

RECOVERY: 0.05 · 2 = 0.1
IMMUNITY LOSS: 0

STEP 2: COMPUTE FIRING TIMES

INFECTION: 1
1.6 · 0.2228 = 0.1392

RECOVERY: 1
0.1 · 1.9527 = 19.5273

IMMUNITY LOSS: 1
0 · 0 = ∞
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EXAMPLE: SIR EPIDEMICS

S

RI

inf

rec

susc

N = 10, kI = 1, kR = 0.05, kS = 0.01
XS(0.1392) = 7, XI(0.1392) = 3,
XR(0.1392) = 0.

STEP 1: RATES OF TRANSITIONS

INFECTION: 1
10 · 7 · 3 = 2.1

RECOVERY: 0.05 · 3 = 0.15
IMMUNITY LOSS: 0

STEP 2: REEVALUATE FIRING TIMES

INFECTION: 1
2.1 · 3.3323 = 1.5868

RECOVERY: 0.1392 + 0.1
0.15 · (19.5273 − 0.1392)

= 13.0646
IMMUNITY LOSS: ∞



OUTLINE

1 PRELIMINARIES
Exponential Distribution

2 CONTINUOUS TIME MARKOV CHAINS
Main concepts
Poisson Process
Time-inhomogeneous rates

3 POPULATION CONTINUOUS TIME MARKOV CHAINS

4 SIMULATION
SSA
Next Reaction Method
τ-leaping



PRELIMINARIES CTMC PCTMC SIMULATION 52 / 54

τ-LEAPING (SKETCH)

Consider the Poisson representation of a population CTMC at
time τ

X (τ) = X (0) +
∑
η∈T

vηYη
(∫ τ

0
rη(X (s))ds

)
.

If τ is sufficiently small, we may assume that the rates rη(X (s))
are approximately constant in [0, τ] and equal to aη.
Then

∫ t
0 rη(X (s))ds ≈ aητ, hence

X (τ) ≈ X (0) +
∑
η∈T

vηYη
(
aητ

)
.
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τ-LEAPING (SKETCH)

τ-LEAPING

At each step, with current state x and current time t
1 choose τ;
2 for each η, sample nη from the Poisson r.v. Yη

(
aητ

)
;

3 update x to x +
∑
η vηnη and time to t + τ.

CHOICE OF τ: LEAPING CONDITION

The choice of τ is an art:
it has to be small for rates to be approximately constant in
[t , t + τ];
it has to be as large as possible to make Yη(aητ) large to
gain in computational efficiency;
one has to avoid the generation of negative populations.
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