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Moment-Based Methods for Parameter Inference and Experiment
Design for Stochastic Biochemical Reaction Networks

JAKOB RUESS and JOHN LYGEROS, ETH Zurich

Continuous-time Markov chains are commonly used in practice for modeling biochemical reaction networks
in which the inherent randomness of the molecular interactions cannot be ignored. This has motivated recent
research effort into methods for parameter inference and experiment design for such models. The major diffi-
culty is that such methods usually require one to iteratively solve the chemical master equation that governs
the time evolution of the probability distribution of the system. This, however, is rarely possible, and even
approximation techniques remain limited to relatively small and simple systems. An alternative explored
in this article is to base methods on only some low-order moments of the entire probability distribution. We
summarize the theory behind such moment-based methods for parameter inference and experiment design
and provide new case studies where we investigate their performance.
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1. INTRODUCTION

Numerous studies have shown that stochasticity is an inherent feature of biochemical
reaction networks, especially if the molecule counts of some of the reacting chemical
species are low [McAdams and Arkin 1997; Hasty et al. 2000; Samoilov and Arkin
2006]. In some cases, this variability may play an important role; for instance, it may
ensure that a certain fraction of the cells commits to one fate and the rest to some
other fate [Balazsi et al. 2011]. Further examples where the stochasticity fundamen-
tally shapes the dynamics of the system are stochastic switches [Acar et al. 2008] and
systems with noise-induced oscillations [Ko et al. 2010]. In other cases, variability in
the system output may be undesirable and is suppressed as much as possible, for in-
stance, through feedback loops [Raser and O’Shea 2005]. Irrespectively of whether the
variability shapes the dynamics, has to be suppressed, or is just a by-product, it is gen-
erated by the system and carries a signature of the underlying molecular mechanisms.
We can thus hope that by investigating the variability of single-cell measurements, we
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8:2 J. Ruess and J. Lygeros

can gain knowledge about the system. For instance, we can try to estimate the parame-
ters of continuous-time Markov chain (CTMC) models from the measured distribution
of the amount of molecules in a cell population. This is the focus of this article, and in the
following sections, we discuss how parameter inference can be performed in this setting.

An example where the measured cell-to-cell variability adds the crucial piece of infor-
mation to identify all the model parameters is the simplest model of gene expression,
which consists only of messenger RNA and protein. If only the average amount of pro-
tein in the cell population is measured, it is fundamentally impossible to identify all the
reaction rates. If, on the other hand, the variance of the amount of protein is also mea-
sured, this nonidentifiability is resolved [Munsky et al. 2009]. For this simple model,
this is intuitive and relatively easy to see. For larger models, however, which contain
more species and more unknown parameters, it is not as straightforward to determine
what is required for the identification of the parameters. This may depend on which
species are measured and how the measurement time points are chosen. Moreover, as
was shown in Ruess et al. [2013], it is also possible that information about the model
parameters can be gained through planned perturbations of the system, which can, for
instance, be implemented using a microfluidic device [Uhlendorf et al. 2012]. Conse-
quently, it may be essential to carefully design the experiments that are to be performed
to ensure that the resulting measurements contain as much information as possible.

Both parameter inference and experiment design for CTMC models are computation-
ally very difficult [Poovathingal and Gunawan 2010; Lillacci and Khammash 2013]. The
main reason is that methods for these tasks usually require one to iteratively solve
the chemical master equation (CME), which governs the time evolution of the prob-
ability distribution of the system [Gillespie 1992]. Solving the CME analytically is
rarely possible, and approximate methods [Munsky and Khammash 2006; Wolf et al.
2010; Mateescu et al. 2010] are often computationally too expensive. An alternative
is to resort to hybrid stochastic–deterministic descriptions of the system or to approx-
imate only some low-order moments of the stochastic model [Henzinger et al. 2010;
Hasenauer et al. 2014; Hespanha 2008]. Recently, first attempts have been made to
use such reduced descriptions of the system for parameter inference [Mikeev and Wolf
2012; Kügler 2012; Zechner et al. 2012] and experiment design [Ruess et al. 2013].

In this article, we give a comprehensive overview of the theory behind moment-based
methods for parameter inference and experiment design for single-cell distribution
measurements. We start by introducing biochemical reaction networks in Section 2. In
Section 3, we show how equations for the moments of the system can be derived in the
presence of variability in the parameters. These equations form the basis for computing
the likelihood in Section 4 and the Fisher information in Section 5, which are at the
heart of parameter inference and experiment design, respectively. We conclude the
article by studying three biochemical reaction networks in which the moment dynamics
are nonclosed. To the best of our knowledge, moment-based inference for systems with
nonclosed moment dynamics has barely been addressed in the literature [Zechner et al.
2012; Gonzalez et al. 2013], while moment-based experiment design has so far only been
applied to systems where the moment dynamics are closed [Ruess et al. 2013].

2. BIOCHEMICAL REACTION NETWORKS

A biochemical reaction network consists of a set of m distinct chemical species that
can undergo K reactions. Assuming that the system is well mixed, the time evolution
of the number of molecules of the species can be modeled by an m-dimensional CTMC
X(t) = [X1(t) · · · Xm(t)]T , which can take states x = [x1 · · · xm]T in N

m. Note that we
use uppercase letters Xj(t), j = 1, . . . , m to index the different chemical species in or-
der to reserve lowercase letters for indexing cells later. This should not be confused
with exponentiation. Denote by ak(x, θ ) ∈ R

+
0 , k = 1, . . . , K the propensities of the K
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reactions; that is, ak(x, θ )dt is the probability that reaction k takes place in the infinites-
imal time interval [t, t + dt] given that X(t) = x. We assume that the propensities are
given by mass action kinetics with at most bimolecular reactions, which means that
ak(x, θ ) = θkgk(x), k = 1, . . . , K, where θk ∈ R

+
0 , k = 1, . . . , K are reaction rate constants

and the functions gk(x), k = 1, . . . , K are at most quadratic in x and determined by
the model structure. Consequently, the propensities (and also the system dynamics)
are parameterized by θ = [θ1 · · · θK]T . For ease of notation, we will sometimes omit
explicitly stating this dependency on θ and just write ak(x) instead of ak(x, θ ).

The probability p(x, t) := P(X(t) = x) that x i, i = 1, . . . , m molecules of the m species
are present at a certain time point t evolves according to the chemical master equation

ṗ(x, t) = −p(x, t)
K∑

k=1

ak(x) +
K∑

k=1

p(x − νk, t)ak(x − νk), (1)

where νk ∈ Z
m, k = 1, . . . , K are the stoichiometric transition vectors of the K reactions

(if reaction k takes place, the state is updated by νk). According to Equation (1), the time
evolution of the entire probability distribution can be computed by solving a system of
coupled linear ordinary differential equations with one equation for each state x that
can be reached by the CTMC. At a first glance, this may appear to be a simple task.
However, for most systems, the number of states that can be reached by the process
is very large or even infinite, which often makes computing the time evolution of the
probability distribution intractable. In such cases, approximate methods can sometimes
be used (see, e.g., Munsky and Khammash [2006], Wolf et al. [2010], and Hjartarson
et al. [2013]). The idea of these methods is that the number of states that are likely
to be reached by the process may be much smaller than the number of states that can
theoretically be reached and thus the state space can be truncated. However, even if the
state space is truncated, the number of differential equations still grows exponentially
in the number of species, which limits the applicability of such approximate methods to
systems that contain only a few species. Throughout this article, we will refer to such
methods as finite state projection (FSP)-based methods.

Another way to approximate the time evolution of the probability distribution is by
using Gillespie’s stochastic simulation algorithm (SSA) [Gillespie 1976]. SSA allows
one to draw sample paths from the CTMC. The probability distribution can then be
estimated by extracting the statistics of sufficiently many sample paths. The main
limitation of this approach is that a large number of sample paths might be needed to
obtain accurate approximations of the probability distribution. This often makes SSA
computationally too expensive, at least for iterative use in parameter inference and
experiment design.

If computing the time evolution of the entire probability distribution of the CTMC is
computationally too expensive, an alternative may be to focus only on some low-order
moments. Let μl(t), l = 1, 2, . . . denote vectors containing the uncentered moments of
X(t) of order l, that is,

μ1(t) = [E[X1(t)] · · · E[Xm(t)]],

μ2(t) = [E[X1(t)X1(t)] · · · E[X1(t)Xm(t)] E[X2(t)X2(t)] · · · E[Xm(t)Xm(t)]],

μ3(t) = [E[X1(t)X1(t)X1(t)] E[X1(t)X1(t)X2(t)] · · · E[Xm(t)Xm(t)Xm(t)]],
...

...
...

A system that describes the time evolution of the moments can be derived from the
CME [Engblom 2006] and written as

μ̇∞(t) = Ã(θ )μ∞(t), (2)
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where μ∞(t) = [μ1(t) μ2(t) . . .]T is an infinite vector containing all uncentered moments
of the joint probability distribution of all the species and Ã(θ ) is an infinite matrix
whose entries are (linear) functions of θ that are determined by the model structure.
From the system of Equation (2), we can extract the equations for the moments up to
some order L that evolve according to

μ̇(t) = A(θ )μ(t) + B(θ )μ̄(t), (3)

where μ(t) = [μ1(t) μ2(t) · · ·μL(t)]T is a vector containing the moments of order up to L
of the joint probability distribution of all the species and μ̄(t) is a vector containing mo-
ments of higher order. A(θ ) and B(θ ) are submatrices of Ã(θ ). A(θ ) contains all rows and
columns corresponding to moments of order up to L, whereas B(θ ) contains the terms
that determine how the moments of order up to L depend on higher-order moments.
Under the assumption that the propensities ak(x), k = 1, . . . , K are at most quadratic
in x, μ̄(t) contains only a number of moments of order L + 1 and μ̄(t) is a subvector of
μL+1(t). The time evolution of μ(t) depends on μ̄(t) and the system of moment equations
is nonclosed and cannot be solved, unless B(θ ) consists only of zeros, which is the case
if all the propensities are affine in x. To obtain a closed and solvable system, so-called
moment closure methods can be used, where an approximate system is obtained by
replacing the higher-order moments by some function of the lower-order moments,
that is, μ̄(t) = f (μ(t)) [Singh and Hespanha 2011]. In most moment closure methods,
the function f is chosen in accordance with some assumed distribution (for instance,
Gaussian or log-normal) for which the higher-order moments are uniquely determined
by the lower-order moments [Whittle 1957; Singh and Hespanha 2006], but there also
exist other possibilities such as the method presented in Ruess et al. [2011], where μ̄(t)
is estimated from a small number of SSA runs. The major advantage of approximating
the moments is that the number of moment equations is only polynomial in the number
of species of the reaction network, and thus solving the moment equations may be pos-
sible in cases where approximating the entire probability distribution is intractable.
The disadvantage of moment closure methods is that it is a priori often hard to say
which method will give good approximations for a given system, and for some systems
none of the existing methods leads to good approximations. Further background on
CTMC models in biology and on different methods for their analysis can be found in
the review paper of Goutsias and Jenkinson [2013].

3. EXTRINSIC VARIABILITY AND POPULATION MOMENT DYNAMICS

If the chemical master equation in the form (1) is used to describe the dynamics of
a population of cells, it is implicitly assumed that the dynamics in all of the cells are
governed by exactly the same CTMC. In reality, such an assumption cannot be expected
to hold since even genetically identical cells may differ from each other in terms of cell
size, expression capacity, local growth conditions, and so forth [Elowitz et al. 2002;
Colman-Lerner et al. 2005; Volfson et al. 2005].

One can introduce such extrinsic variability in the form of reaction rates that differ
between the cells. We assume here that the differences between the cells do not change
within the time course of an experiment such that the reaction rates can be modeled by
a constant random vector Z governed by a multidimensional probability distribution
PZ. In principle, it is also possible to consider time-varying extrinsic variability by
allowing the reaction rates to be governed by stochastic processes [Shahrezaei et al.
2008; Ruess et al. 2013]. However, the time evolution of the moments of the chemical
species then depends on the specific form of these stochastic processes, and no results
that are generally valid for any type of time-varying extrinsic variability can be stated.
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Under the assumption of constant extrinsic variability, the propensities are (for fixed
values of x) also constant random variables that are linear in Z. The time evolution
of the probability distribution for a single cell can then be described by a CME that is
conditioned on the realization z of Z in the cell:

ṗ(x, t|z) = −p(x, t|z)
K∑

k=1

ak(x, z) +
K∑

k=1

p(x − νk, t|z)ak(x − νk, z), (4)

where, for cases where only some of the reaction rates vary from cell to cell, the
dependence of the propensities on the rates that are not varying is again omitted in
the notation.

To compute population statistics from this conditional CME, one could take samples
z from PZ and then solve Equation (4) for all the samples [Toni and Tidor 2013]. It
is, however, also possible to directly derive a system of moment equations that allows
one to approximately compute the population moments up to some order L without
having to sample the extrinsic variables. Based on the results in Zechner et al. [2012],
we show how equations for moments up to order 2 can be obtained in the presence of
one variable reaction rate (i.e., we assume that Z is one-dimensional). Equations for
higher-order moments and multiple variable rates can be derived in the same fashion.
Denote by μ(t) the moments of X(t) up to order 2, by μZ = [E[Z] E[Z2]]T the first two
moments of Z, by μX,Z(t) the cross-moments of X(t) and Z of order 2, that is,

μX,Z(t) = [E[X1(t)Z] · · · E[Xm(t)Z]]T ,

and by μ̄(t) the vector containing all moments of the joint distribution of X(t) and Z of
order 3 or higher. Then we can state the following theorem.

THEOREM 3.1. Consider a biochemical reaction network modeled by a CTMC X(t)
where the dynamics depend on the value of a random reaction rate Z ∼ PZ that is
distributed according to PZ and a vector of reaction rates θ̃ that are the same for all the
cells of the population. Then, the moment equations of X(t) up to order 2 can be written
as

μ̇(t) = A(θ̃ )μ(t) + B(θ̃ )μX,Z(t) + C(θ̃ )μZ + D(θ̃)μ̄(t), (5)

μ̇X,Z(t) = E(θ̃)μX,Z(t) + F(θ̃)μZ + G(θ̃ )μ̄(t), (6)

where μ(t) = [μ1(t) μ2(t)]T and μ̄(t) contains moments of the joint distribution of X(t)
and Z of order at most 4, which contain at most two powers of Z. The matrices A(θ̃ ),
B(θ̃ ), C(θ̃ ), D(θ̃ ), E(θ̃ ), F(θ̃ ), and G(θ̃ ) are determined by the model structure.

A proof of this theorem is given in the appendix. We can now invoke some moment
closure technique and replace the third- and fourth-order moments by a function of
the lower-order moments, that is, μ̄(t) = f (μ(t), μX,Z(t), μZ). The resulting approximate
system of population moments will then depend on the reaction rates that are not
varying in the population θ̃ and moments up to order 2 of Z. Consequently, the model is
now parameterized by γ := [θ̃ , μZ] and we can (approximately) compute the moments
μ(t) of X(t) as a function of γ .

4. PARAMETER INFERENCE

4.1. Maximum-Likelihood Estimation

In real applications, it is usually impossible or very hard to measure parameter values
such as reaction rates. The goal of parameter inference is then to estimate the unknown
parameters from the available data, which typically consists of measurements relating
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to the quantities of some of the chemical species. In the following, depending on the
context, we will regard the data either as a random variable Y (to stress its random
nature) or as a realization y of Y (if we refer to specific measurements that have been
collected in an experiment). As an estimator for the model parameters, we consider the
maximum-likelihood estimator (MLE) γ̂ . The MLE can be obtained by solving

γ̂ (y) = arg max
γ

{pY (y, γ )}, (7)

where pY (y, γ ) is the likelihood, that is, the probability of measuring y given that γ are
the model parameters.

For simplicity, we assume that only one species Xi of the reaction network is mea-
sured during some transient dynamics of the system. The time course data we consider
is of the form {Xi

1(ts), . . . , Xi
n(ts), s = 1, . . . , S}, where n is the number of measured

cells, ts, s = 1, . . . , S, are the measurement time points, and all the different measured
molecule counts are statistically independent. We will refer to experiments that give
such data as single-cell population experiments and have flow cytometry as the cur-
rently most common source of such data in mind. In flow cytometry experiments, the
independence of all the measured molecule counts stems from the fact that the cells
are discarded after being measured and consequently two different measurements can
never come from the same cell. Experimental techniques such as time-lapse microscopy
that track individual cells and lead to measurements that are correlated in time are
not considered in this article. Identifying parameters from such data requires one
to evaluate path likelihoods of X(t) [Andreychenko et al. 2011; Zechner et al. 2014],
which cannot be obtained from the moment equations unless further assumptions are
imposed [Komorowski et al. 2011]. In our case, owing to the independence of all the
measured samples, the likelihood factorizes, that is,

pY (y, γ ) =
S∏

s=1

n∏
j=1

P
(
Xi

j (ts) = xi
j(ts)|γ

)
=

S∏
s=1

n∏
j=1

pi(xi
j(ts), ts|γ

)
,

where pi(·, ts|γ ) is the distribution of species i at time point ts, given that γ are the
model parameters. For models where no extrinsic variability is present, pi(·, ts|γ ) can be
computed by solving the CME. This makes computing the MLE theoretically possible.
Practically, however, approximating the solution of the CME to sufficient accuracy may
be computationally too expensive for solving Equation (7) in reasonable time. Further,
if extrinsic variability is present in the model, the only way to evaluate the likelihood
is through extensive simulation using SSA, and for most systems this will not lead to
a tractable optimization problem in Equation (7).

4.2. Moment-Based Inference

A more tractable optimization problem can be obtained if moments of the measured
samples are taken as measurements instead of the entire samples. Throughout this
article, we take only two moments, namely, sample mean and sample variance, as
our measurements. Higher-order moments could be included in a similar way, but
evaluating the cost function of the resulting optimization problem would be computa-
tionally more expensive.

Let SM := {SM(t1), . . . , SM(tS)}, SM(ts) := 1
n

∑n
j=1 Xi

j (ts), s = 1, . . . , S be the sample
means and SV := {SV (t1), . . . , SV (tS)}, SV (ts) := 1

n−1

∑n
j=1 (Xi

j (ts)
2 − SM(ts)2), s = 1, . . . , S
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be the sample variances at the different measurement time points. Then, we can con-
sider all the sample means and variances SJ := {SJ(t1), . . . , SJ(tS)}, where SJ(ts) =
[SM(ts) SV (ts)]T , s = 1, . . . , S, as our new data Y .

THEOREM 4.1. Let s ∈ {1, . . . , S}. Given model parameters γ , denote by μi
1(ts) the mean

and by μi
l(ts), l = 2, . . . , 4 the centered moments of order l of pi(·, ts|γ ), the distribution

of the ith species at time ts. If the size of the measured sample n is sufficiently large, the
distribution of SJ(ts) is approximately a normal distribution pJ(·, ts|γ ) = N (μ(ts), �(ts)),
where

μ(ts) = [μi
1(ts) μi

2(ts)]T and (8)

�(ts) = 1
n

[
μi

2(ts) μi
3(ts)

μi
3(ts) μi

4(ts) − n−3
n−1

(
μi

2(ts)
)2

]
. (9)

A proof of this theorem is given in the appendix.

Remark 4.2. Note that we have switched to using mean and centered moments of
order 2, . . . , 4. Previously, we used uncentered moments since these are more conve-
nient for deriving the moment equations. The centered moments up to any order L are
uniquely determined by the uncentered moments up to order L, and we can therefore
solve the moment equations for the uncentered moments and subsequently convert
them into centered moments.

Remark 4.3. A sufficiently large sample size n is required, because then approximate
normality of SJ(ts) follows from the central limit theorem. How large the sample size
needs to be in a specific situation depends on how irregular the distribution pi(·, ts|γ ) is.
In practice, a surprisingly small sample size is often already sufficient (in the order of 10
to at most 30 samples for the distribution of SM(ts), possibly some more for SJ(ts)). It can
be safely assumed that flow cytometry, which can provide measurements of thousands
of cells or even more, will always lead to large enough sample sizes. In general, if this
assumption is in question, it can be verified by first determining the distribution of
the sample moments using bootstrapping and then testing it for normality (see, for
instance, Zechner et al. [2012]). The hidden assumption that the same number of cells
n is measured at each time point only serves to simplify the notation and can directly
be replaced by a more realistic scenario where the number of measured cells differs
between the time points.

COROLLARY 4.4. Taking SJ as the data, the likelihood is a product of two-variate
normal distributions that are parameterized by the first four moments of the underlying
process:

pY (y, γ ) =
S∏

s=1

P(SJ(ts) = sJ(ts) | γ )

=
S∏

s=1

pJ(sJ(ts), ts | γ ),

where pJ(·, ts|γ ) = N (μ(ts), �(ts)) is given by Theorem 4.1.

PROOF. This is a direct consequence of the independence of the samples at different
time points and Theorem 4.1.

This likelihood can be computed from the first four moments, which can be approx-
imated through moment closure from the moment equations. Consequently, we can
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Table I. Advantages and Disadvantages of Different Approaches

Moment Based FSP Based SSA Based
Computational cost low varies high
Scalability in species number high low high
Scalability in molecule numbers high low low
Complexity high medium low
Tolerates extrinsic variability yes no yes
Tolerates non-mass-action kinetics varies yes yes

maximize the likelihood and compute the MLE without having to compute the entire
solution of the CME. The downside of this approach is that the higher-order moments
of the data are not used for the inference, leading to information loss (unless sam-
ple means and variances form jointly sufficient statistics). Further, moment closure
methods are approximate methods that do not give error guarantees. Consequently,
the computed MLE will contain errors of unknown size and should be validated a pos-
teriori. This can, for instance, be done by stochastically simulating the system with
the inferred maximum-likelihood parameters. The simulation results can then be com-
pared, on the one hand, to moment closure approximations to evaluate the accuracy of
the used moment closure method and, on the other hand, to the measured data to check
whether the inferred parameters are really in agreement with the measured data.

4.3. Comparison to Other Methods

As already discussed, a number of methods for parameter inference have been proposed
lately. None of these methods is universally applicable, and which method is the most
suitable for a given situation strongly depends on the considered reaction network. The
aim of this section is to give a brief qualitative comparison of the strengths and weak-
nesses of approaches that are based on stochastic simulation (SSA) [Poovathingal and
Gunawan 2010; Lillacci and Khammash 2013], finite state projection (FSP) [Munsky
et al. 2009; Andreychenko et al. 2011], and the moment equations [Zechner et al. 2012;
Kügler 2012], respectively.

The general advantages and disadvantages of the different approaches are summa-
rized in Table I. The main advantage of approaches based on SSA is that they are
always applicable and straightforward to use. The drawback is that this generality
comes at the price of a possibly prohibitively large computational cost. This tends to
be especially severe in cases where some species are present in large amounts such
that the reaction propensities are large and simulating a trajectory of the system is
expensive because many reactions take place. If in addition to this some other species
are present in low amounts such that rare events are important and SSA estimates
converge slowly, SSA-based approaches are often infeasible with the currently avail-
able computational power. Approaches based on FSP are generally very useful for small
systems but scale badly in both the number of species and the amounts of molecules of
each individual species that are present in the system. Besides this, FSP can only be
used if all random variables that play a role for the system have a discrete state space.
This means that FSP-based approaches are not applicable if extrinsic variability is in-
cluded in the form of continuous distributions on the reaction rates. Consequently, such
approaches can only be used in a very limited number of cases. The main advantage
of moment-based approaches is that they scale very well in the number of molecules
(the computational cost does not depend at all on how large the molecule counts are)
and reasonably well in the number of different chemical species. Besides this, there
are cases where the moments can be computed exactly but only approximations or
estimates of the entire distribution are available (for instance, the example considered
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in Section 6.3). Clearly, in such cases moment-based approaches should be used. The
disadvantages of moment-based methods are that often a lot of expertise is required to
derive and solve the moment equations and that in some cases moment closure will fail
to provide good approximations. Furthermore, contrary to approaches based on FSP or
SSA, it is often difficult to determine a priori whether a moment-based approach will
be successful.

5. EXPERIMENT DESIGN

5.1. The Fisher Information

The first thing we need to design experiments is a way of judging the quality of an
experiment. If we are interested in estimating the model parameters γ , a good ex-
periment should be one that allows us to estimate γ to high precision. Regarding the
data as a random variable Y , estimators of the parameters are also random variables
and the quality of the estimators can be characterized in terms of their variances.
The Cramér-Rao inequality tells us that the variance of no unbiased estimator can be
smaller than the inverse of the Fisher information. Consequently, the Fisher informa-
tion determines the precision to which the model parameters can at best be estimated
in a given experimental setting and therefore provides a way to judge the quality of
an experiment. When there is more than one unknown parameter, the Fisher informa-
tion is a positive semidefinite matrix whose size is equal to the number of unknown
parameters and its elements are given by

(IY (γ ))k,l = E

[(
∂

∂γk
log pY (y; γ )

)(
∂

∂γl
log pY (y; γ )

)]
. (10)

The expectation in Equation (10) is taken over all possible realizations of the data and
consequently IY (γ ) does not depend on any measurements and can be used to evaluate
the quality of different experiments before they are performed. However, IY (γ ) is a
local measure and depends on the true parameters γ , which are unknown. In practice,
the Fisher information is often evaluated at some initial estimates of the parameters
in the hope that this will lead to an information matrix that is close to the true one
[Hagen et al. 2013]. Alternatively, it was proposed to evaluate IY (γ ) at several values,
sampled from a prior distribution on the parameters, and to take averages of the
results [Pronzato and Walter 1985; Ruess et al. 2013]. While such an approach can be
expected to be more robust with respect to uncertainty in the parameters, it leads to
a large increase in the computational cost. Here, we evaluate the Fisher information
at some fixed initial estimates without taking the uncertainty of these estimates into
account. In the following, we show how IY (γ ) can be computed if either the entire
sample or the sample moments are taken as measurements. As in the previous section,
we assume for simplicity that only species Xi is measured in n cells.

THEOREM 5.1. Consider a biochemical reaction network modeled by a CTMC that is
parameterized by γ = [γ1 · · · γR]T . Assume that data Y = {Y (ts), s = 1, . . . , S}, where
Y (ts) = {Xi

1(ts), . . . , Xi
n(ts)}, s = 1, . . . , S can be obtained from an experiment. Then, the

Fisher information is given by

IY (γ ) =
S∑

s=1

IY (ts)(γ ), where (11)

(
IY (ts)(γ )

)
k,l = n

∑
{xi∈N|pi (xi ,ts|γ )�=0}

∂pi (xi ,ts|γ )
∂γk

∂pi (xi ,ts|γ )
∂γl

pi(xi, ts|γ )
. (12)
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PROOF. The first equality follows from the fact that the samples at different time
points are independent, because the joint Fisher information matrix of independent
random variables is equal to the sum of the Fisher information matrices of the individ-
ual random variables. The second equation follows directly from the definition of the
Fisher information and the discrete nature of the likelihood:(

IXi
1(ts)(γ )

)
k,l = E

[(
∂

∂γk
log pi(xi, ts|γ )

)(
∂

∂γl
log pi(xi, ts|γ )

)]
=

∑
{xi∈N|pi (xi ,ts|γ )�=0}

pi(xi, ts|γ ) · 1
pi(xi, ts|γ )2

∂pi(xi, ts|γ )
∂γk

· ∂pi(xi, ts|γ )
∂γl

=
∑

{xi∈N|pi (xi ,ts|γ )�=0}

∂pi (xi ,ts|γ )
∂γk

∂pi (xi ,ts|γ )
∂γl

pi(xi, ts|γ )
,

where IXi
1(ts)(γ ) is the Fisher information of Xi

1(ts). The theorem follows because
Xi

1(ts), . . . , Xi
n(ts) are i.i.d. and therefore IY (ts)(γ ) = n · IXi

1(ts)(γ ).

THEOREM 5.2. Consider a biochemical reaction network modeled by a CTMC that
is parameterized by γ = [γ1 · · · γR]T . Assume that data Y = SJ = {SJ(t1), . . . , SJ(tS)}
consisting of the first two moments of the samples Y (ts), s = 1, . . . , S can be obtained
from an experiment with a sufficiently large number n of measured cells. Then, the
Fisher information is up to a term that is constant in n given by

IY (γ ) =
S∑

s=1

ISJ (ts)(γ ), where (13)(
ISJ (ts)(γ )

)
k,l

≈ n
∂μi

1(ts)
∂γk

∂μi
1(ts)

∂γl

μi
2(ts)

+ n

(
μi

2(ts)
∂μi

2(ts)
∂γk

− ∂μi
1(ts)

∂γk
μi

3(ts)
) (

μi
2(ts)

∂μi
2(ts)

∂γl
− ∂μi

1(ts)
∂γl

μi
3(ts)

)
(
μi

2(ts)
)2

(
μi

4(ts) − (
μi

2(ts)
)2
)

− μi
2(ts)

(
μi

3(ts)
)2

. (14)

PROOF. The first equality in Theorem 5.2 again follows from the independence of
the measurements at different time points. To show the second approximate equality,
first note that SJ(ts) has approximately a Gaussian distribution SJ(ts) ∼ N (μ(ts), �(ts))
according to Theorem 4.1. We can then make use of the fact that for Gaussian random
variables, the expression for the Fisher information simplifies [Komorowski et al. 2011]
and we obtain(

ISJ (ts)(γ )
)

k,l = ∂μ(ts)T

∂γk
�(ts)−1 ∂μ(ts)

∂γl
+ 1

2
tr

(
�(ts)−1 ∂�(ts)

∂γk
�(ts)−1 ∂�(ts)

∂γl

)
. (15)

Substituting Equations (8) and (9) into Equation (15), we obtain after some basic
calculations that the first term in Equation (15) is given by

∂μ(ts)T

∂γk
�(ts)−1 ∂μ(ts)

∂γl

≈ n
∂μi

1(ts)
∂γk

∂μi
1(ts)

∂γl

μi
2(ts)

+ n

(
μi

2(ts)
∂μi

2(ts)
∂γk

− ∂μi
1(ts)

∂γk
μi

3(ts)
) (

μi
2(ts)

∂μi
2(ts)

∂γl
− ∂μi

1(ts)
∂γl

μi
3(ts)

)
(
μi

2

(
ts
))2(

μi
4(ts) − (

μi
2

(
ts
))2) − μi

2(ts)
(
μi

3(ts)
)2 .
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The theorem follows because the second term is approximately constant in the sample
size n and thus the information is dominated by the first term for sufficiently large
n.

5.2. Optimal Design

With the formulae of the previous subsection, we can compute the Fisher information
matrix for given experiments before they are performed. If we consider a set of possible
experiments E , the goal of experiment design is to find the most informative experiment
e∗ ∈ E . An experiment in E could, for instance, involve selecting a set of measurement
times as well as one of many possible perturbations that can be applied to a cell culture
(e.g., nutrient shifts [Menolascina et al. 2011], stress signals [Uhlendorf et al. 2012], or
light [Milias-Argeitis et al. 2011]). To optimize the informativeness of the experiment,
we first need to summarize the information encoded in the Fisher information matrix
in a scalar. There are multiple ways in which this can be done [Franceschini and
Macchietto 2008]. Arguably, the most common is to take the determinant, giving rise
to so-called D-optimality. The determinant can be thought of as a measure of the inverse
of the volume of a confidence region for the parameter estimates. Other possibilities
are the trace of the inverse of the Fisher information (A-optimality corresponding to
the sum of the variances of the marginal distributions of the parameter estimators) or
the minimal eigenvalue (E-optimality corresponding to the information about the least
identifiable parameter combination). Also of interest for biological application may be
Ds-optimality where the parameter vector can be divided into parameters of interest
and nuisance parameters [Hunter et al. 1969; Walter and Pronzato 1990]. Here, we
use the determinant and aim at solving the optimization problem

e∗ = arg max
e∈E

{det I(γ, e)}. (16)

Computing the information of the entire sample using Theorem 5.1 requires a marginal
of the solution of the CME and its derivatives with respect to the model parameters.
This makes evaluating the cost function in the experiment design optimization problem
(16) even harder than computing the likelihood in Equation (7). If we use Theorem 5.2
instead to compute the information, we need to compute the moments up to order
4 and the parameter sensitivities of the moments up to order 2 to evaluate the cost
function. These can again be approximated using moment closure and some solver for
ordinary differential equations that also returns sensitivities such as CVODES of the
SUNDIALS toolbox [Hindmarsh et al. 2005]. How well sensitivities of the moments
can be approximated with moment closure methods has not yet been studied much in
the literature. First attempts have been made in Ale et al. [2013]. We will study some
further cases in the next section.

6. CASE STUDIES

In this section, we demonstrate the use of the theory outlined previously in three
case studies. The goal of the first case study is to test how well sensitivities can be
approximated using moment closure and to investigate how approximation errors in the
moments and the sensitivities propagate to the computation of the Fisher information.
The second case study is intended to demonstrate how moment-based inference can
be practically implemented in a situation that is not directly compliant with moment
closure techniques. Finally, as a third case study, we consider an example where the
initial distribution is unknown and that also includes extrinsic variability.

6.1. A Model of Transient Gene Expression

As a first case study, we consider a model of transient gene expression, which was
studied in Zechner et al. [2012] and Ruess and Lygeros [2013]. The moment dynamics
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of this system are nonclosed and moment closure is required to approximate the infor-
mation. We choose the parameters in this example such that it is possible to accurately
approximate the entire probability distribution using finite state projection [Munsky
and Khammash 2006]. Consequently, the true information can be computed up to a
small error and we can evaluate the quality of our moment-closure-based approximate
results. In Zechner et al. [2012], moment closure was used for parameter inference
for this model, whereas in Ruess and Lygeros [2013], it was shown that the first two
moments contain sufficient information for identifying all the parameters. Here, we in-
vestigate how much information can be gained by optimally placing the measurement
times. The model consists of four species, a transcription factor TF, the gene Goff, the
gene with bound transcription factor Gon, and the produced protein P and the following
reactions:

As parameters, we take the same values as in Ruess and Lygeros [2013], that is,
a = 0.15, b = 0.008, c = 0.01, and d = 0.4. We assume that initially the gene is in the
off state, that is, Goff = 1, Gon = 0, and that no protein molecules and 20 TF-molecules
are present. Further, we assume that the amount of protein can be measured by flow
cytometry at several time points, which can be either equally spaced or placed optimally
as part of the experiment design; specific examples are provided later. In Figure 1(A)
we see that, even though the moment equations are not closed, second-order low-
dispersion moment closure (setting third-centered moments to zero) approximates the
time evolution of the moments up to order 2 rather well. Figure 1(B), however, shows
that two of the four sensitivities of the variance are not approximated well. On the
contrary, if we use a fourth-order closure and set the fifth-centered moments to zero,
the moments up to order 4 and the sensitivities of the moments up to order 2 are all
approximated very well. This shows that if sensitivities are to be approximated in ad-
dition to moments, a higher-order closure might be required. Note that to compute the
information using Theorem 5.2, we need the moments up to order 4. Consequently,
we would anyway have to use a fourth-order closure, unless we impose the addi-
tional assumption that the marginal distribution of the measured species has some
form for which the third and fourth moments are uniquely determined by mean and
variance.

In Figure 1(C) and 1(D) 95% confidence regions for pairs of parameters computed
from the approximated information matrix are compared to the true ones. Thereby, we
assumed that measurements are taken at equally spaced time points t = 25, t = 50, t =
75, and t = 100. The confidence regions computed with the fourth-order closure (red)
agree very well with the true ones (blue), while the second-order closure coupled with
the additional assumption that the measured protein has a Gaussian distribution leads
to somewhat inaccurate results (green). To test whether this inaccuracy is a result of
the additional Gaussian assumption or of the poorly approximated sensitivities, we also
consider a fictitious scenario where we approximate the sensitivities with the second-
order closure but assume that the correct third and fourth moments of the protein are
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Fig. 1. (A) Mean and centered moments of the protein up to order 2 approximated with second-order low-
dispersion moment closure (green) and up to order 4 approximated with fourth-order low-dispersion moment
closure (red) are compared to moments computed from the solution of the CME, which was approximated
using finite state projection with a very large truncation (blue). In cases where certain colors are not visible,
the approximations agree perfectly with the solution obtained by finite state projection. (B) Approximated
sensitivities of the protein mean and variance with the same color coding as above. (C,D) Approximated
95% confidence regions for pairs of parameters with the same color coding as above. The confidence regions
corresponding to the second-order closure were computed, on the one hand, with the assumption that the
measured protein has a Gaussian distribution (green) and, on the other hand, with the assumption that the
true third and fourth moments are known (cyan).

available. The results (cyan) suggest that the wrong orientation of the confidence re-
gions stems from poorly approximated sensitivities, whereas the Gaussian assumption
influences the size of the confidence regions.

To investigate how much information can be gained by placing the measurements
at optimal time points, we proceed as in Ruess et al. [2013]. Starting with one mea-
surement fixed at the final time of the experiment t = 100, we grid the time axis and
sequentially place the next measurement at the time point where it yields maximal
information under the constraint that it is at least five time units apart from all the
previous measurements. Figure 2 shows the resulting measurement times and the
decrease of the confidence regions if the optimal measurement times are used instead
of equally spaced measurement times. It can be seen that the previously rather large
confidence regions shrink significantly. The determinant of the Fisher information in-
creases by a factor of approximately 5.7 when the measurement times are placed using
this greedy heuristic.
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Fig. 2. (A) Optimal placement of the measurement times at N time points. The different lines correspond to
N = 2, 3, 4 measurements. On each line, the blue circles correspond to the N − 1 measurement time points
that were already placed, and the red circle corresponds to the best choice for the Nth measurement time
point. (B,C) 95% confidence regions for pairs of parameters resulting from equally spaced (blue) and greedily
placed (red) measurement times.

6.2. A Two-Gene Network

As a second case study, we consider a system of two interacting genes that constitute a
negative feedback loop. The reactions of the system are given as follows:

The two genes G1 and G2 can be either in a state where protein is produced, G1
on and

G2
on, or in a state where no protein production is possible, G1

off and G2
off. The produced

proteins P1 and P2 mediate the switching of the genes between the on and off states
such that G2 can only be switched on if P1 is present and G1 can only be switched
off if P2 is present. We assume that initially the genes are switched off and that no
protein molecules are present. This leads to dynamics where at first the gene G1 is
switched on. The following production of P1 enables gene G2 to switch on, resulting in
production of P2, which leads to the gene G1 being switched off again. We assume that
the parameters are given by c1 = 0.1, c2 = 0.01, c3 = 10, c4 = 0.005, c5 = 0.1, c6 = 10
and that the degradation rates are known and equal to d = 0.1. This would be the case,
for example, if both proteins are very stable and degradation is determined purely by
the known dilution rate. The remaining parameters are considered to be unknown and
need to be estimated from measurements. Figure 3(A) shows an example of a possible
trajectory of the system for the parameter values given earlier.

ACM Transactions on Modeling and Computer Simulation, Vol. 25, No. 2, Article 8, Publication date: February 2015.



Moment-Based Methods for Parameter Inference and Experiment Design 8:15

Fig. 3. (A) Trajectories of the two proteins P1 (blue) and P2 (green) for a single realization of the system. (B)
First three moments of protein P1 computed using 50,000 SSA trajectories (blue) and moment closure (red)
where a third-order derivative matching closure was used.

The first thing to note about this system is that there are conservation laws. Since
each of the genes can only be either on or off Gi

off + Gi
on = 1, i = 1, 2 at all times.

Consequently, the system can be simplified such that only one of the gene states is left
as a species for each of the genes. Accordingly, we eliminate the species Gi

off, i = 1, 2
from the model. The next thing to note is that the remaining gene states Gi

on, i = 1, 2
are Bernoulli distributed for all time points (with time varying parameters) and hence
(Gi

on)2 = Gi
on, i = 1, 2. This means that the moment equations can be simplified by

replacing all the moments, which include squares or higher powers of one of the gene
states by lower-order moments. Note, however, that this does not eliminate all the
higher-order cross-moments and the resulting system of moment equations will still
be nonclosed. Consequently, to perform moment-based inference or experiment design,
we need to choose a closure method. It is a priori unclear which of the existing closure
methods is most suitable. At first glance, unfortunately, most common closure methods
appear to be rather ill-suited for this problem. A Gaussian closure might fail because
the molecule counts of all the species can become very low and thus the distributions
can become highly skewed. The use of derivative matching is known to be problematic
if molecule counts are likely to become zero [Hespanha 2008].

To test whether some closure method can nevertheless be applied, we randomly
sampled five parameter sets from an assumed prior distribution and evaluated zero-
cumulant, low-dispersion, and derivative matching moment closure (all up to fourth
order and implemented with the StochDyn toolbox [Hespanha 2006]) by comparing the
approximated moments to results from 10,000 SSA runs. For derivative matching, since
it involves divisions by moments that are initially zero, we set all the initial moments
to very small values. For all closure orders, zero-cumulant and low-dispersion moment
closure produced good approximations for only one (and sometimes a second) of the
parameter sets and either lead to inaccurate results or even unstable systems for the
remaining parameter sets. Derivative matching provided the best approximations and
the third-order closure resulted in reasonably good approximations for all parameter
sets. Fourth order derivative matching was only applicable if the initial moments
were set to values far from zero. This, however, resulted in a large approximation
error in the early transient dynamics. Consequently, we decided to rely on third-order
derivative matching. Figure 3 shows that this leads to good approximations for the
true parameters that were not part of the tested parameter sets.

Since the third-order closure does not return fourth-order moments, we need a fur-
ther assumption if we want to compute the information according to Theorem 5.2 (for
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Fig. 4. 95% confidence regions, computed using the true parameters, for the pairs c1 − c3 (A) and c1 − c4
(B) for the scenarios where time course data of P1 and the stationary mean of P2 (blue) and time course data
of P2 and the stationary mean of P1 (red) are measured. The crosses show the true parameters (black) and
the parameters that were estimated from simulated data using moment-based inference (blue and red).

performing moment-based inference, no further assumption is required if the third
and fourth moments of the measured species are computed from the data as in Zechner
et al. [2012]). Specifically, we require the fourth moments of the marginal distributions
of the species P1 and P2 because these will in the following be the measured species. We
verified on the test parameter sets that the assumption that the marginal distributions
of the proteins are such that μi

4 = 3(μi
2)2 leads to reasonable agreement with the sim-

ulation results. Note that the moments of the marginal distributions of P1 and P2 are
not required to close the moment equations and hence this is an additional assumption
that is independent of the closure assumption.

Having chosen the closure method, we can start with moment-based inference. We
assume that the amount of either P1 or P2 can be measured in 10,000 cells by flow
cytometry at the fixed times t1 = 10, . . . , t10 = 100. According to the information com-
puted using Theorem 5.2, neither means and variances of P1 nor means and variances
of P2 alone provide sufficient information to accurately estimate all the parameters. On
the contrary, a scenario where time course data of P1 is measured and subsequently
only the average amount of P2 is quantified at the end of the experiment leads to
satisfactory results (see Figure 4).

To verify these results, we simulated data using stochastic simulation and performed
moment-based inference for the different measurement scenarios. We randomly initial-
ized the Markov chain Monte Carlo (MCMC) algorithm, which was used in Zechner
et al. [2012], at 100 different starting points and recorded the parameters that attained
the highest likelihood in each run. For the scenarios where only one of the proteins
is measured, the resulting parameters differed significantly between the runs. This
appears to be because for these scenarios, the likelihood seems to have a multitude
of separated local maxima, which all lead to similar agreement of model predictions
and data. Furthermore, the parameters that lead to the highest likelihood among
all the 100 runs differed significantly from the true parameters. On the contrary, if
in addition to measurements of the time course of one of the proteins the mean of
the other protein at the end of the experiment is measured, the situation improves
significantly, especially if time course data of P1 and the steady-state mean of P2
are measured. In this case, the MCMC algorithm consistently converges to parame-
ters close to the true ones, which indicates that only a small region of high likelihood
around the true parameters is left. This is in agreement with the predicted information
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Table II. Estimated Parameters for the Different Measurement Scenarios

Measured time course of: P1 P2 P1 P2
and stationary mean of: - - P2 P1 True Values

c1 0.0947 0.1427 0.0988 0.0802 0.1
c2 0.0028 0.0061 0.0083 0.0052 0.01
c3 10.0632 41.4386 9.8558 8.2390 10
c4 0.0070 0.0007 0.0052 0.0061 0.005
c5 0.0633 0.1320 0.0541 0.1623 0.1
c6 19.3029 11.2129 7.4606 11.7167 10

values and the tight confidence regions shown in Figure 4. It should be noted, how-
ever, that only some of the parameters that attained the highest likelihood among
the 100 MCMC runs (shown in Table II and as crosses in Figure 4) fall into the 95%
confidence regions in Figure 4. This stems from the approximation error of moment
closure, which leads, on the one hand, to only approximate confidence regions and, on
the other hand, to the result that, even in a noise-free scenario, the true parameters
do not coincide with the maximum of the approximated likelihood. Strictly speaking,
we should also note that the confidence regions correspond to a Gaussian distribu-
tion with the inverse of the Fisher information as covariance matrix, which is, for
the finite sample sizes considered here, not necessarily the true distribution of the
estimators.

To summarize this example, we can say that successful identification of the model
parameters using the moments is possible but requires careful a priori tests of the
different closure methods. This may seem to be a daunting task at first glance, but
all our a priori investigations could be automated and completed within minutes. In
general, there is no guarantee that testing the closure methods on some randomly
sampled parameters is sufficient to predict the performance of the methods for the
true parameters. However, our results suggest that, at least to some extent, the per-
formance of closure methods is determined by the model structure. Consequently, an
automated a priori closure checking procedure seems to be reasonable. The additional
computational cost of our a priori investigations is more than compensated for in the
following parameter inference where we evaluated the likelihood using the moment
equations close to 1 million times, a task that would have been infeasible using, for
instance, stochastic simulation.

6.3. Gene Expression with Extrinsic Variability

As a third case study, we consider a simple two-stage model of gene expression that
does not include any promoter states. The objective of this case study is twofold. On the
one hand, it serves as an example that also includes extrinsic variability; on the other
hand, we also include unknown initial distributions of the species and investigate how
well parameters of these distributions can be identified. The network we consider is
given by the following reactions:
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Fig. 5. 95% confidence regions, computed using the true parameters, for the pairs c1 − λM (A) and μz − Vz
(B) for equally spaced (blue) and optimally placed (red) measurements. The green ellipses are obtained when
all measurements are placed at the earliest possible time points under the constraint that they are all two
time units apart from each other.

Z is an extrinsic variable that could, for instance, represent variability in the number of
ribosomes. We assume that Z has a log-normal distribution with unknown parameters,
that M(0) and P(0) have unknown Poisson distributions, and that M(0) and P(0) are
independent from each other and from Z. We further assume that c1 = 3, c2 = 0.1, c4 =
0.1, λM := E[M(0)] = 10, λP := E[P(0)] = 100, μz := E[Z] = 3, and Vz := Var(Z) = 0.9
and that P can be measured in 10,000 cells at t = 0 and at 10 point in the time interval
(0, 50]. λP can then be obtained from the measurement at t = 0 and does not have to be
included as an unknown parameter. Consequently, there are six unknown parameters,
γ = [c1 c2 c4 μz Vz λM]T .

It is easy to see that this example is equivalent to a reaction network where the third
reaction is replaced by

M + Z
1

−−−−−→ M + Z + P

and the extrinsic variable Z is included as a third species. Since this is a bimolecular
reaction, the moment equations are nonclosed. It turns out, however, that it is never-
theless possible to derive an exact and closed system of equations for moments up to
any desired order L. This requires including some selected moments up to order 2L− 1
in the equations and using the fact that M(t) and Z are independent for all t ∈ [0, 50].
We are interested in the moments up to order 4, and this requires including six mo-
ments of order 5, three moments of order 6, and one moment of order 7 in the equations
(a MATLAB script for solving these moment equations is available upon request).

It is intuitively clear that at least some of the measurements should be placed at
very early time points, because otherwise the influence of the initial condition on the
measurements will be too small for a successful identification of λM. However, since λM
is only one of the unknown parameters, it is not clear how many of the measurements
should be placed at early time points. We investigated this by optimally placing the
measurement times under the assumption that all measurements have to be at least
two time units apart from each other. We found that it is best to place seven of the mea-
surements at early time points, three at late time points, and none at intermediate time
points. The information obtained with the optimal measurement times is visualized in
Figure 5. Besides this, we also computed the information that is obtained if the mea-
surements are placed either equally spaced in (0, 50] or all at very early time points.
Figure 5 shows that in all measurement scenarios, the resulting confidence regions are
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very tight, which indicates that optimal placement of the measurements is not really
necessary here. This is because we chose a rather large number of measurements. The
situation would be different if fewer measurements were available.

To test moment-based inference, we simulated data using stochastic simulation.
Since the optimal measurement times were obtained with the true parameters and
would not be available in a realistic situation, we assumed that the measurements
are taken at equally spaced time points. As in the previous example, we performed
the parameter identification using an MCMC algorithm, which we initialized at 10
random starting points. The parameters that attained the highest likelihood in all the
runs are given by c1 = 2.9230, c2 = 0.1026, c4 = 0.0971, μz = 3.0700, Vz = 0.9912, and
λM = 9.3630. They agree almost perfectly with the true values, which confirms that
equally spaced measurement times are sufficient here.

Concluding this example, we can say that in principle it is possible to jointly identify
unknown reaction rates, extrinsic parameters, and initial conditions. However, the
example we used to demonstrate this contains only one unknown parameter λM for
the initial condition and only one additional parameter Vz, which stems from extrinsic
variability. It should not come as a surprise that for larger models that contain unknown
initial conditions for multiple hidden species and possibly also variability in multiple
reaction rates, the data we considered in this article will not be informative enough to
identify all parameters. In such cases, a successful identification of the parameters will
require multiple experiments in different conditions [Zechner et al. 2012] and possibly
also adding measurements obtained with different experimental technologies such as
fluorescence microscopy.

As a final note, we would like to point out that we chose Poisson distributions for
the initial conditions of the species and a log-normal distribution for Z because this
is possibly the most reasonable choice from a biological perspective. Changing these
distributions would not change anything about the moment equations and the fact that
the moments of this reaction network can be computed exactly. Only the number of
unknown parameters and how these parameters enter the moment equations would
change. Consequently, we could equally well choose other, for instance, bimodal, dis-
tributions according to some parameterization and identify the parameters of these
distributions from moments of P.

7. CONCLUSIONS

The interplay of mathematical modeling and experimentation is at the heart of the
field of systems biology, yet for stochastic biochemical reaction networks, mathematical
modeling in practice has remained limited to rather small systems. The major limiting
factor is that the chemical master equation is intractable for all but the simplest
systems. While it is foreseeable that more efficient simulation methods and improved
numerical approximation techniques will provide some progress on that front, it also
has to be expected that the advancement of biological measurement techniques will lead
to the need for ever more complex models; for instance, mass cytometry can already
now produce data that is so plentiful that it is way out of the scope of the existing
approaches for stochastic modeling.

Instead of trying to develop better numerical approximation techniques, we devel-
oped methods that avoid the chemical master equation altogether and resort to the
moment equations instead. This bypasses the previously limiting step and enables
stochastic modeling for larger systems. Our approach raises the need for an accurate
moment closure method that may or may not be available for a given system. This
makes the study and development of moment closure methods an alternative future
direction for advancing stochastic modeling of biochemical reaction networks. For in-
stance, guarantees on the performance of a closure method for the unknown true model
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parameters, given its performance for a set of sampled parameters, would be useful.
Our numerical results suggest that the performance of a closure method for sampled
parameters can indeed be an indicator of the performance for the true parameters
and thus that closure methods can be tested a priori to ensure that an appropriate
method is used in the parameter inference. Other possible future research directions
are to extend the framework to delayed CTMCs [Guet et al. 2012] and to consider the
problem of model selection to also be able to address cases where the model structure
(i.e., which species and reactions are present) is not known.

Finally, more effort should be dedicated to investigating parameter identifiability.
Whether or not the parameters can be identified from available data obviously de-
pends on the data and the number of unknown parameters but may also depend on the
true values of the parameters. Intuitively, we cannot hope to recover very fast switching
rates between promoter states from measurements of comparably slow protein dynam-
ics, whereas slow promoter switching might pose no problem. This shows that the local
nature of the Fisher information may be a weakness: if we compute the information
only locally at imprecise initial parameter estimates when we design experiments, we
may overlook identifiability problems. A second drawback of the presented theory is
that the moment equations do not allow one to compute path likelihoods of the CTMC
and therefore cannot be used for parameter inference when data from experiments
such as fluorescence microscopy, in which individual cells are tracked in time, is avail-
able. Such data usually contains smaller numbers of measured cells compared to flow
cytometry but has the advantage that time correlations are also included. Whether or
not this additional information outweighs the smaller sample sizes is unclear, but it
has to be expected that there exist situations in which time correlation information will
be necessary to identify all parameters. So far this question has only been addressed
for one specific example under a Gaussian approximation of the CTMC [Komorowski
et al. 2011] and it would be of interest to investigate it further.

APPENDIX

Proof of Theorem 3.1

PROOF. Multiplying both sides of Equation (4) by the ith component xi of the state
vector x, summing over all states x ∈ N

m, and integrating over all possible values of Z
with respect to the probability measure PZ yields∫ ∑

x∈Nm

d
dt

p(x, t|z)xidPZ =
∫ ∑

x∈Nm

K∑
k=1

[
p(x − νk, t|z)ak(x − νk, z)xi − p(x, t|z)ak(x, z)xi]dPZ.

The left-hand side is then the time derivative of the marginal mean of Xi, whereas the
right-hand side can be simplified by a change of variables as follows:

d
dt

E[Xi(t)] =
∫ K∑

k=1

∑
x∈Nm

[
p(x, t|z)ak(x, z)(xi + νki ) − p(x, t|z)ak(x, z)xi]dPZ

=
K∑

k=1

νki

∫ ∑
x∈Nm

p(x, t|z)ak(x, z)dPZ =
K∑

k=1

νki E[ak(X(t), Z)],

where νki is the ith component of νk. Since the propensities are at most quadratic in
X and linear in Z, this can give moments of order 3 or less where the cross-moments
contain at most one power of Z.
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Multiplying both sides of Equation (4) by xix j instead of xi and performing the same
calculations yields the time derivatives of the second-order moments:

d
dt

E[Xi(t)Xj(t)]

=
∫ K∑

k=1

∑
x∈Nm

[
p(x, t|z)ak(x, z)(xi + νki )(x

j + νkj ) − p(x, t|z)ak(x, z)xix j]dPZ

=
K∑

k=1

(
νki E[Xj(t)ak(X(t), Z)] + νkj E[Xi(t)ak(X(t), Z)] + νki νkj E[ak(X(t), Z)]

)
.

Here, with the same reasoning as earlier, the first two terms in the sum can give
moments of order 4 or less while the third term gives moments of order 3 or less where
for all terms the cross-moments contain at most one power of Z.

The time derivatives of the cross-moments E[Xi(t)Z] can be obtained with the same
calculations as earlier by multiplying both sides of Equation (4) by xiz:

d
dt

E[Xi(t)Z] =
∫ K∑

k=1

∑
x∈X

[
p(x, t|z)ak(x, z)(xi + νki )z − p(x, t|z)ak(x, z)xiz

]
dPZ

=
K∑

k=1

νki E[Zak(X(t), Z)].

This can give moments of order up to 4 where for all terms the cross-moments contain
at most two powers of Z, which concludes the proof.

Proof of Theorem 4.1

PROOF. If the number of measured cells n is large enough, approximate normality of
SJ(ts) is a direct consequence of the central limit theorem. E

[
SJ(ts)

] = [μi
1(ts) μi

2(ts)]T

is trivial. It remains to be shown that the covariance matrix of SJ(ts) is given by
Equation (9). To this end, assume without loss of generality that μi

1(ts) = 0 (else a
shifted version of Xi(ts) can be considered). For ease of notation throughout the proof,
we will write Xj instead of Xi

j(ts).
The top left entry of �(ts) is the variance of SM(ts). Consequently, we have to show

that Var(SM(ts)) = 1
nμi

2(ts).

Var(SM(ts)) = E
[
SM(ts)2] = E

⎡⎢⎣
⎛⎝1

n

n∑
j=1

Xj

⎞⎠2
⎤⎥⎦ = 1

n2 E

⎡⎣ n∑
j=1

X2
j +

∑
h�= j

XhXj

⎤⎦ = 1
n

μi
2(ts).

Thereby, the last equality holds because

E

⎡⎣∑
h�= j

XhXj

⎤⎦ =
∑
h�= j

E[XhXj] =
∑
h�= j

E[Xh]E[Xj] =
∑
h�= j

μi
1(ts)2 = 0,

where we used that Xj, j = 1, . . . , n are i.i.d. with mean μi
1(ts) = 0.
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The off-diagonal entry of �(ts) is the covariance of SM(ts) and SV (ts). Consequently,
we have to show that Cov(SM(ts), SV (ts)) = 1

nμi
3(ts).

Cov(SM(ts), SV (ts)) = E[SM(ts)SV (ts)]

= 1
n(n − 1)

E

⎡⎣⎛⎝ n∑
j=1

Xj

⎞⎠⎛⎝ n∑
j=1

X2
j

⎞⎠ − 1
n

⎛⎝ n∑
j=1

Xj

⎞⎠⎛⎝ n∑
j=1

X2
j +

n∑
h�= j

XhXj

⎞⎠⎤⎦
= 1

n − 1
μi

3(ts) − 1
n(n − 1)

μi
3(ts) = 1

n
μi

3(ts),

where we used the same arguments as earlier.
The bottom right entry of �(ts) is the variance of SV (ts). Consequently, we have to

show that Var(SV (ts)) = 1
n(μi

4(ts) − n−3
n−1

(
μi

2(ts)
)2).

E
[
SV (ts)2]

= 1
(n − 1)2

⎛⎜⎜⎜⎜⎜⎜⎝E

⎡⎢⎣
⎛⎝ n∑

j=1

X2
j

⎞⎠2
⎤⎥⎦

︸ ︷︷ ︸
Term 1

− 2
n

E

⎡⎢⎣
⎛⎝ n∑

j=1

X2
j

⎞⎠⎛⎝ n∑
j=1

Xj

⎞⎠2
⎤⎥⎦

︸ ︷︷ ︸
Term 2

+ 1
n2 E

⎡⎢⎣
⎛⎝ n∑

j=1

Xj

⎞⎠4
⎤⎥⎦

︸ ︷︷ ︸
Term 3

⎞⎟⎟⎟⎟⎟⎟⎠

Term 1 = E

⎡⎣ n∑
j=1

X4
j +

∑
h�= j

X2
hX2

j

⎤⎦ = nμi
4(ts) + n(n − 1)

(
μi

2(ts)
)2

,

Term 2 = 2
n

E

⎡⎣⎛⎝ n∑
j=1

X2
j

⎞⎠⎛⎝ n∑
j=1

X2
j +

∑
h�= j

XhXj

⎞⎠⎤⎦ = 2
n

E

⎡⎣ n∑
j=1

X4
j +

∑
h�= j

X2
hX2

j

⎤⎦
= 2μi

4(ts) + 2(n − 1)
(
μi

2(ts)
)2

,

Term 3 = 1
n2 E

⎡⎢⎣
⎛⎝ n∑

j=1

X2
j +

∑
h�= j

XhXj

⎞⎠2
⎤⎥⎦ = 1

n2 E

⎡⎣ n∑
j=1

X4
j +

∑
h�= j

X2
hX2

j + 2
∑
h�= j

X2
hX2

j

⎤⎦
= 1

n
μi

4(ts) + 3(n − 1)
n

(
μi

2(ts)
)2

.

It follows that

Var(SV (ts)) = E[SV (ts)2] − E[SV (ts)]2

= n2 − 2n + 1
(n − 1)2n

μi
4(ts) + n2 − 2n + 3

(n − 1)n
(
μi

2(ts)
)2 − (

μi
2(ts)

)2

= 1
n

(
μi

4(ts) − n − 3
n − 1

(
μi

2(ts)
)2
)

.
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