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We investigate the behaviour of population models, specified in stochastic Concurrent 
Constraint Programming (sCCP). In particular, we focus on models from which we can 
define a semantics both in terms of Continuous Time Markov Chains (CTMC) and in terms 
of Stochastic Hybrid Systems, in which some populations are approximated continuously, 
while others are kept discrete. We will prove the correctness of the hybrid semantics 
from the point of view of the limiting behaviour of a sequence of models for increasing 
population size. More specifically, we prove that, under suitable regularity conditions, 
the sequence of CTMC constructed from sCCP programs for increasing population size 
converges to the hybrid system constructed by means of the hybrid semantics. We 
investigate in particular what happens for sCCP models in which some transitions are 
guarded by boolean predicates or in the presence of instantaneous transitions.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Many complex systems, from genetic networks and signal pathways in cells, to epidemic spreading, to telecommunica-
tion systems, can be formally described as Markovian stochastic processes of the class of Markov population models [1]. 
Stochastic Process Algebras (SPA) are a powerful framework for quantitative modelling and analysis of such population pro-
cesses [2]. They have been applied in a wide variety of contexts, including computer systems [2], biological systems [3–5], 
ecological [6] and crowd [7] modelling.

However, their standard semantics, given in terms of Continuous Time Markov Chain (CTMC [8]), suffer from the problem 
of state space explosion, which impedes the use of SPA to analyze models with a large state space. A recent technique 
introduced to tackle this problem is fluid approximation [9], which describes the number of system components by means 
of continuous variables and interprets rates as flows, thus providing a semantics in terms of Ordinary Differential Equations 
(ODE).

The relationship between these two semantics is grounded on the law of large numbers for population processes [10], 
first proved by Kurtz back in the seventies [11]. Applying this theoretical framework to SPA models, one obtains that the 
fluid ODE is the limit of the sequence of CTMC models [12–14], obtained by the standard SPA semantics for increasing 
system size, usually the total number of agents in the system. This also provides a link with a large body of mathematical 
literature on fluid and mean field approximation (see e.g. [1] for a recent review).

These results provide the asymptotic correctness of the fluid semantics and justify the use of ODE to analyze large 
collective SPA models. Fluid approximation is also entering into the analysis phase in a more refined way than just by 
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numerical simulation. For instance, in [15], the authors use fluid approximation for the computation of passage-times, while 
in [16,17] the fluid approximation scheme is used to model check properties of single agents in a large population against 
CSL properties.

Despite the remarkable success of fluid approximation of SPA models, its applicability is restricted to situations in which 
all components are present in large quantities, and all events depend continuously on the number of the different agent 
types. This excludes many interesting situations, essentially all those in which some sub-populations have a fixed and small 
size. This is the case in biological systems, when one considers gene networks, but also in computer systems when one 
models some form of centralized controller. Furthermore, the description of control policies is often simplified by using 
forced (or instantaneous) events, happening as soon as certain condition are met, and more generally guard predicates, 
modulating the set of enabled actions as a function of the global state of the system.

These features of population models are not easily captured in a fluid flow scheme, as they lead naturally to hybrid 
systems, in which discrete and continuous dynamics coexist. To deal with these situations, in [18,19] the authors proposed 
a hybrid semantics for a specific SPA, namely stochastic Concurrent Constraint Programming (sCCP [4]), associating with 
a sCCP model a hybrid system where continuous dynamics is interleaved with discrete Markovian jumps. In [20], also in-
stantaneous transitions are incorporated in the framework. Such a hybrid semantics has been also defined for other process 
algebras, namely PEPA [21] and Bio-PEPA [22]. In this way, one can circumvent the limits of fluid-flow approximation, whilst 
keeping discrete only the portions of the system that cannot be safely described as continuous. Roughly speaking, this hy-
brid semantics works by first identifying a subset of system variables to be approximated continuously, keeping discrete the 
remaining ones. The latter set of variables identifies the discrete skeleton of the hybrid system, while the former defines 
the continuous state space. Then, each activity of agents, corresponding to a transition that modifies the state of the system, 
is classified as continuous, discrete/stochastic, or discrete/instantaneous. The first class of transitions is used to construct 
a vector field giving the continuous dynamics of the hybrid system (in each mode), while the other two transition classes 
define the discrete dynamics. It is worth stressing that such a hybrid approximation is generally applicable to population 
models, SPA offering however a nice formal framework to automatically construct such hybrid limits.

The advantages of working with a hybrid semantics for SPA are mainly rooted in the speed-up that can be achieved in 
the simulation, as discussed e.g. in [19] and [23]. Moreover, the hybrid semantics put at disposal of the modeller a broader 
set of analysis tools, like transient computation [24] or moment closure techniques [25,26].

While the theory of deterministic approximation of CTMC is well developed, hybrid approximation has attracted much 
less attention. To the author’s knowledge, the preliminary work [27] on which this paper is based was the first attempt to 
prove hybrid convergence results in a formal method setting. There has been some previous work on hybrid limits in [28], 
restricted however to a specific biological example, and in the context of large deviation theory [29], where deterministic 
approximation of models with level variables has been considered (but in this case transitions between mODE are fast, so 
that the discrete dynamics is always at equilibrium in the limit). More recent work is [30], which discusses hybrid limits for 
genetic networks (essentially the class of models considered in [27] with some extensions).

The focus of this paper is to provide a general framework to infer consistence of hybrid semantics of SPA models in 
the light of asymptotic correctness. In doing this, we aimed for generality, proving hybrid limit theorems for a framework 
including instantaneous events, with guards possibly involving model time, random resets, and guards in continuous and 
stochastic transitions. The goal was to identify a broad set of conditions under which convergence holds, potentially usable in 
static analysis algorithmic procedures that check if a given model satisfies the conditions for convergence. We will comment 
on this issue in several points in the paper. To author’s knowledge, this is the first attempt to discuss hybrid approximation 
in such generality.

We will start our presentation recalling sCCP (Section 2.1) and the hybrid semantics (Section 2.3). We will formally 
define it in terms of Piecewise Deterministic Markov Processes (Section 2.4, [31]), a class of Stochastic Hybrid Processes in 
which the continuous dynamics is given in terms of Ordinary Differential Equations, while the discrete dynamics is given 
by forced transitions (firing as soon as their guard becomes true) and by Markovian jumps, firing with state dependent rate. 
The hybrid semantics is defined by introducing an intermediate layer in terms of an automata based description, by the 
so-called Transition-Driven Stochastic Hybrid Automata (TDSHA, Sections 2.2 and 2.5, [18,19]).

After presenting the classic fluid approximation result, recast in our framework (Section 4), we turn our attention to
sCCP models that are converted to TDSHA containing only discrete/stochastic and continuous transitions, with no guards 
and no instantaneous transitions, but allowing random resets (general for discrete/stochastic transitions and restricted for 
continuous ones). In Section 5, we prove a limit theorem under mild consistency conditions on rates and resets, showing 
that the sequence of CTMC associated with a sCCP program, for increasing system size, converges to the limit PDMP in the 
sense of weak convergence. Technically speaking, the appearance of weak convergence instead of convergence in probability, 
in which classic fluid limit theorems are usually stated, depends on the fact that the limit process is stochastic and can have 
discontinuous trajectories.

We then turn our attention to the limit behaviour in the presence of sources of discontinuity, namely instantaneous 
transitions (Section 6) or guards in continuous (Sections 7.2 and 7.1) or discrete/stochastic transitions (Section 7.4).

In all these cases, the situation is more delicate and the conditions for convergence are more complex. Guards in contin-
uous transitions introduce discontinuities in the limit vector fields, requiring us to define the continuous dynamics in terms 
of the so-called piecewise-smooth dynamical systems [32] or, more generally, in terms of differential inclusions [33]. Here, 
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however, we can exploit recent work in this direction [34–36], and the hybrid convergence theorem extends easily, provided 
we can guarantee global existence and uniqueness of the solutions of the discontinuous differential equations.

The situation with guards for discrete/stochastic transitions and with instantaneous events is even more delicate: subtle 
interactions between the continuous dynamics and the surfaces in which guards can change truth status (called discontinu-
ity or activation surfaces in the paper) can break convergence. We discuss this in detail first for instantaneous transitions 
(Section 6) and then for guards in discrete/stochastic transitions (Section 7.4). In these sections, we identify regularity condi-
tions to control these subtle interactions, extending the convergence also to this setting. However, checking these conditions 
is more complicated, because they essentially impose restrictions on the global interactions between the vector fields and 
the discontinuity surfaces. A way out of this problem, hinted in the conclusions (Section 8) is to increase the randomness in 
the system by adding noise on resets and initial conditions or on the continuous trajectories, i.e. considering hybrid limits 
with continuous dynamics given by Stochastic Differential Equations or Gaussian Processes [37]. In the conclusions we will 
also comment on the applicability of our results to the stationary behaviour of the CTMC. Throughout the paper, starred 
remarks contain more advanced material that can be skipped at a first reading.

2. Preliminaries

In this section, we introduce preliminary concepts needed in the following. We will start in Section 2.1 by presenting
sCCP, the modelling language that will be used in the paper to provide a high level description of populations of interacting 
agents. We will then introduce Transition-Driven Stochastic Hybrid Automata (TDSHA, Section 2.2), a high level formalism to 
model the limit hybrid processes of interest, namely Piecewise Deterministic Markov Processes (PDMP, Section 2.4). Finally, 
we will consider also how to define a hybrid semantics for sCCP by syntactically transforming a sCCP model into a TDSHA 
(Section 2.3) and a TDSHA into a PDMP (Section 2.5).

2.1. Stochastic Concurrent Constraint Programming

We will start by introducing a modelling language suitable to formalize the class of models of interacting agents of in-
terest, and to offer a convenient formal setting to derive different underlying mathematical models, in terms of Continuous 
Time Markov Chains (CTMC), Stochastic Hybrid Systems, and Ordinary Differential Equations. The class of systems we want 
to describe falls within the domain of Markov population models [10], which include epidemic spreading, biochemical intra-
cellular processes, models of cell-to-cell interaction, computer and telecommunication systems, like queues and client/server 
interactions, ecological models, just to cite a few.

The language of our choice is stochastic Concurrent Constraint Programming [4], sCCP, a stochastic extension of CCP [38].
sCCP belongs to the family of stochastic process algebras [39,40], and the variant presented essentially resembles the one 
of [20]. In the following we just sketch the basic notions and the concepts needed in the rest of the paper. More details on 
the language can be found in [41,4,19,20].

sCCP programs are defined by a set of agents interacting asynchronously and exchanging information through a shared 
memory called the constraint store. More precisely, the store contains a set of global variables. Agents can (asynchronously) 
update the value of such variables and test if the current state of the store satisfies a logical predicate. Agents actions are 
thus guarded updates of store variables, and they take some (random) time to happen, specified by a rate, encoding the 
average frequency of the update. In sCCP, rates are functions depending on the current state of the store. Furthermore, 
the version of sCCP considered here allows random updates of store variables, updates firing instantaneously, and variables 
describing the state of the environment, which can take values in an uncountable set.1

2.1.1. Syntax
We start the presentation of sCCP by giving the formal definition of the syntax.

Definition 2.1. A sCCP program is a tuple A = (X, D, Def, A, x0), where

1. The initial network of agents A and the set of definitions Def are given by the following grammar:

Def = ∅ | Def ∪ Def | {C
def= M}

A = 0 | C | A ‖ A
M = π.A | M + M
π = [g(X) → u(X,X′,W)]λ(X) | [g(X) → u(X,X′,W)]∞:p(X)

2. X is the set of stream variables of the store (with global scope). A variable X ∈ X takes values in DX . Variables are 
divided into two classes: model or system variables whose domain DX has to be a countable subset of R (usually the 

1 Readers familiar with CCP will find a more detailed discussion of how sCCP fits within the CCP family of languages in Remark 2.2. A quick comparison 
with standard approaches to describe population models can instead be found in Remark 2.1.
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integers), and environment variables, whose domain can be the whole R. The state space of the model is therefore 
D = ∏

X∈X DX ;
3. x0 ∈D is the initial value of store variables.

System variables usually describe the number of individuals of a given population, like the number of molecules in 
a biochemical mixture or the number of jobs waiting in a queue. Environment variables, on the other hand, are useful 
to describe properties of the “environment”, like the temperature of a biochemical system, or the value of a controllable 
parameter that may change at run-time. Examples of the use of environment variables will be given in Section 5.

In the previous definition, C is a component name, which is used for recursive agent definition. Each component corre-
sponds to a summation M , i.e. to an agent that can perform one or more basic actions, then behaving like an agent network 
A, itself a parallel composition of zero or more components. A basic action π (called throughout the paper also event or 
transition) is a guarded update of (some of the) store variables. In particular:

• the guard g(X) is a quantifier-free first order formula whose atoms are inequality predicates on variables X;
• the update u(X, X′, W) is a predicate on X, X′ , a conjunction of atomic updates of the form 

∧
X∈X X ′ = r(X, W), where X ′

denotes variable X after the update. Here r is a function with values in DX , and can depend on the store variables X
and on a random vector W in Rh (for some h > 0), which can also depend on the current state of variables X. Updates 
will be referred to also as resets.

• The rate function λ : D → R≥0 is the (state dependent) rate of the exponential distribution associated with π , which 
specifies the stochastic duration of π ;

• if, instead of λ, an action π is labelled by ∞ : p(X), it is an instantaneous action. In this case, p : D → R≥0 is the weight
function associated with the action.

Updates can be seen as (random) functions from D to itself, and they can be very general. However, in the following we 
will need to restrict them in order to define the fluid semantics. An atomic reset is a constant increment update if it is of the 
form X ′ = X + k, with k ∈R such that X ′ ∈DX whenever X ∈DX (usually X, k ∈ Z) and it is a random increment update if it 
is of the form X ′ = X + μ, with μ a random number, such that |μ| has finite expectation. An update is a constant/random 
increment if all its atomic updates are so.

Example 2.1. We introduce now a simple example that will be used for illustrative purposes throughout the paper. We 
will consider a simple client-server system, consisting of a population of clients which request a service and, after having 
obtained an answer, process it for some time before asking for another service, in a loop. The servers, instead, reply to 
clients’ request at a fixed rate. We ignore any internal behaviour of servers, for simplicity. However, servers can break down 
and need some time to be repaired. We can model such system in sCCP by using 4 variables, two counting the number of 
clients requesting a service (Xr ) and processing data (Xt ), and two modelling the number of idle servers ready to reply to a 
request (Xi ) and the number of broken servers (Xb). The initial network is then client ‖ server, with initial conditions 
Xr = Xb = 0, Xt = N1, and Xi = N2. The client and server agents are defined as follows (∗ stands for true):

client
def= [∗ → X ′

r = Xr − 1 ∧ X ′
t = Xt + 1]min{kr Xr ,ks Xi}.client +

[∗ → X ′
r = Xr + 1 ∧ X ′

t = Xt − 1]kt Xt.client

server
def= [∗ → X ′

i = Xi − 1 ∧ X ′
b = Xb + 1]kb Xi.server

+ [∗ → X ′
i = Xi + 1 ∧ X ′

b = Xb − 1]k f Xb.server

Note in the previous code how the rate at which information is processed by clients corresponds to the global rate of 
observing an agent finishing its processing activity. The parameters kr , ks , kt , kb , k f are the per-agent rates of the basic 
actions, respectively of request, service, processing, breakdown, and repair. Observe also that we defined the service rate as 
the minimum between the total request rate of clients and the total service rate of servers. This use of minimum is consis-
tent with the bounded capacity interpretation of queueing theory and of the stochastic process algebra PEPA [2]. This global 
interaction-based modelling style is typical of sCCP, see [4] for a discussion in the context of systems biology. Furthermore, 
although we want to keep all variables ≥ 0, we are not using any guard in the transitions. However, non-negativity is 
automatically ensured by rates, which, by being equal to zero, disallow transitions that would make one variable negative.

Remark∗ 2.1. Population models are often described by the formalism of chemical reaction networks or in terms of Markov 
transition classes [1]. sCCP, as presented here, can be seen as a generalization of these simple languages, by allowing a wider 
gamma of constructs allowing more complex models to be easily expressed. In particular, basic population formalisms allow 
only constant increment updates, usually have no guards, have no instantaneous transitions and no environmental variables. 
Furthermore, in contrast with chemical reaction networks and Markov transition classes, sCCP is an agent based formalism, 
in which agents can have different internal states. This simplifies the model description as well as the definition of the 
hybrid semantics.
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Remark∗ 2.2. Classically, CCP-like languages [38] consider a store whose state is given by a collection of constraints on 
global and local variables. Each variable has an associated domain, which can be refined by the addition of new constraints. 
This results in a monotonic evolution of the store which is very convenient to model information refinement and has nice 
properties to formally reason about programs. In the context of population models, however, we usually need a simpler 
notion of variable, allowing us to count how many instances of a certain agent type are in the system. These variables “a là 
Von Neumann” can be formally defined within a classic CCP scheme as stream variables, which are lists of values that can be 
updated by appending new values at the end of the list, see [4] for further details. While the full version of the language 
[4] consider a general constraint store and general update predicates, the restricted version of sCCP presented here (with 
simple updates and no local variables) is sufficiently expressive, compact, and especially easy to manipulate for population 
processes, in particular for what concerns the definition of the fluid [13] and the hybrid semantics [18,19]. Differently from 
[13,19], in this paper we consider also instantaneous transitions, random resets, and environment variables, as done in [20].

2.1.2. Stochastic semantics of sCCP programs
In order to simplify the definition of the fluid and hybrid semantics, we will work with a restricted subclass of sCCP

programs, that we will call flat. A flat sCCP program satisfies the following two additional restrictions: (a) each component 
C is of the form C = π1.C + . . . + πh.C , i.e. it always calls itself recursively, and (b) the initial network A is the parallel 
composition of all components, i.e. A =‖C∈Def C . Note that the client-server model of Example 2.1 is flat.

The requirement of being flat is not a real restriction, as each sCCP program respecting Definition 2.1 can be turned 
into an equivalent flat one, by adding fresh variables counting how many copies of each component C are in parallel in the 
system. Guards, resets, rates and priorities have to be modified to update consistently these new variables (see Appendix B
for an example).

In the following definitions, we will always suppose to be working with flat sCCP models, possibly obtained by applying 
the flattening recipe. Given a (flat) sCCP model A = (X, D, Def, A, x0), we will denote by actions(C) the set of stochastic 
actions of a component C and by actioni(C) the set of its instantaneous actions. We will use the following notation:

• For an action π ∈ actions(C) ∪ actioni(C), we denote by guard[π ](X) or Gπ (X) its guard.
• For an action π ∈ actions(C) ∪ actioni(C), we denote by reset[π ](X, W) or rπ (X, W) its update function (so that X′ =

rπ (X, W)).
• For an action π ∈ actions(C) ∪ actioni(C), if π has a constant increment update, we will denote the increment vector 

by kπ (so that X′ = X + kπ ), while if π has a random increment update, we will denote it by μπ . We also let νπ be 
either kπ or μπ .

• For an action π ∈ actions(C), we denote by rate[π ] or λπ its rate function.
• For an action π ∈ actioni(C), we denote by weight[π ] or pπ its weight function.

A sCCP program with all transitions stochastic can be given a standard semantics in terms of Continuous Time Markov 
Chains, in the classical Structural Operational Semantics style, along the lines of [4]. For a flat sCCP model, the derivation 
of the labelled transition system (LTS) is particularly simple. First, the state space of CTMC corresponds to the domain D of 
the sCCP variables. Secondly, each stochastic action π ∈ actions(C) of a component C defines a set of edges in the LTS. In 
particular, if in a point x it holds that Gπ (x) is true and P{rπ (x, W) = y} = py > 0, then we have a transition from x to y
with rate pyλπ (x). As customary, the rates of the edges of the LTS connecting the same pair of nODE are summed up to get 
the corresponding rate in the CTMC. Instantaneous transitions, on the other hand, can be dealt with in the standard way as 
in [42], by partitioning states of D into vanishing (in which there is an active instantaneous transition) and non-vanishing 
(in which there is no active instantaneous transition), and removing vanishing states in the LTS, solving probabilistically any 
non-deterministic choice between instantaneous transitions with probability proportional to their weight. We will indicate 
by X(t) the state at time t of the CTMC associated with a sCCP program A with variables X.

If all transitions of a sCCP program are stochastic and have constant increment updates, they can be interpreted as flows, 
and a fluid semantics can be defined [13]. However, to properly deal with random resets and instantaneous transitions, it 
is more convenient to consider a more general semantics for sCCP, in terms of Stochastic Hybrid Automata [18–20]. This 
approach will also allow us to partition variables and transitions into discrete and continuous, so that only a portion of the 
state space will be approximated as fluid.

2.2. Transition-driven Stochastic Hybrid Automata

Transition-Driven Stochastic Hybrid Automata (TDSHA [18,19]) describe stochastic hybrid systems in the style of hybrid au-
tomata. The emphasis of TDSHA is on transitions which, as always in hybrid automata, can be either discrete (corresponding 
to jumps) or continuous (representing flows acting on system variables). Discrete transitions can be of two kinds: either 
stochastic, happening at random jump times (exponentially distributed), or instantaneous, happening as soon as their guard 
becomes true.

TDSHA will be used in this paper, as in previous works [18,19], as a convenient formalism “wrapping” the more 
mathematical characterization of stochastic hybrid systems given by the class of stochastic processes known as Piecewise 
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Deterministic Markov Process (PDMP). Thus, in order to define the hybrid semantics of a sCCP program, we will first convert 
it to an intermediate TDSHA and then convert the latter to a PDMP.

Definition 2.2. A Transition-Driven Stochastic Hybrid Automaton (TDSHA) is a tuple T = (Z, Q , Y, TC, TD, TS, init), where:

• Z = {Z1, . . . , Zk} is the set of discrete variables, taking values in the countable set Q ⊂ R
k . Each value q ∈ Q , q =

(z1, . . . , zk) is a control mode of the automaton.
• Y = {Y1, . . . , Yn} is a set of real valued system variables, taking values in Rn . We let X = Z ∪ Y be the vector of TDSHA 

variables, of size m = k + n.2

• TC is the multi-set3 of continuous transitions or flows, containing tuples η = (k, f ), where k is a real vector of size m
(identically zero on components corresponding to Z), and f : Q ×R

n → R is a piecewise continuous function for each 
fixed q ∈ Q (usually, but not necessarily, Lipschitz continuous4). We will denote them by νη , and fη , respectively.

• TD is the multi-set of discrete or instantaneous transitions, whose elements are tuples η = (G, R, p), where: p : Q ×R
n →

R≥0 is a weight function used to resolve non-determinism between two or more active transitions, G is the guard, 
a quantifier-free first-order formula with free variables among X, and R is the reset, a conjunction of atoms of the form 
X ′ = r(X, W), where r : Q ×R

n ×R
h → R, is the reset function of X , depending on variables X as well as on a random 

vector W in Rh . Note that the guard can depend on discrete variables, and the reset can change the value of discrete 
variables Z. In the following, we will interpret the reset as a vector of k +n functions, R : Q ×R

n ×R
h → Q ×R

n , equal 
to X ′ = r(X, W) in the component corresponding to X if X ′ = r(X, W), and equal to the identity function for all those 
variables X unchanged by the reset. The elements of a tuple η are indicated by Gη , rη , and pη , respectively.

• TS is the multi-set of stochastic transitions, whose elements are tuples η = (G, R, λ), where G and R are as for transi-
tions in TD, while λ : Q ×R

n → R
+ is a function giving the state-dependent rate of the transition. Such a function is 

indicated by λη .
• init = (z0, y0) ∈ Q ×R

n is the initial state of the system.

A TDSHA has three types of transitions. Continuous transitions represent flows. For each η ∈ TC, fη specifies the intensity
(absolute value) of the flow, while νη is a vector encoding the effect of the flow on each variable Y ∈ Y or Z ∈ Z. This effect 
can be an increase, if the entry for a variable is positive, a decrease if it is negative, or null if it is zero. In particular, it is null 
for all variables in Z (see also Section 2.5). Instantaneous transitions η ∈ TD, instead, are executed as soon as their guard Gη

becomes true. When they fire, they can reset both discrete and continuous variables, according to the reset policy rη , which 
can be either deterministic or random. Weight pη is used to resolve probabilistically the simultaneous activation of two or 
more instantaneous transitions, by choosing one of them with probability proportional to pη . Finally, stochastic transitions 
η ∈ TS happen at a specific rate λη , given that their guard Gη is true and they can change system variables according to 
reset rη . Rates define a random race in continuous time, giving the delay for the next spontaneous jump.

The dynamics of TDSHA will be defined in terms of PDMP, see Section 2.5 or [18,19] for a more detailed discussion.

Remark∗ 2.3. In this paper, we consider a slight variant of TDSHA, in which discrete modes of the automaton are described 
implicitly by a set of discrete variables (variables taking values in a discrete set), rather than as an explicit set. This syntactic 
variant is similar to the one used in [21], and is introduced in order to simplify the mapping from flat sCCP models.

Composition of TDSHA We consider now an operation to combine two TDSHA with the same vectors of discrete and contin-
uous variables, by taking the union of their transition multi-sets. Given two TDSHA T1 = (Z, Q , Y, TC1, TD1, TS1, init) and 
T2 = (Z, Q , Y, TC2, TD2, TS2, init), agreeing on discrete and continuous variables and on the initial state, their composition 
T = T1 
 T2 is simply T = (Z, Q , Y, TC1 ∪TC2, TD1 ∪TD2, TS1 ∪TS2, init), where the union symbol ∪ refers to union of 
multi-sets.

2.3. From sCCP to TDSHA

In this section we recall the definition of the semantics for sCCP in terms of TDSHA [19]. We will assume to work with 
flat sCCP models, so that we can ignore the structure of agents and focus our attention on system variables. In this respect, 
this approach differs from the one of [19], but it provides a more homogeneous treatment.

The mapping proceeds in three steps. First we will partition variables into discrete and continuous. Then, we will convert 
each component into a TDSHA, and finally we will combine these TDSHA by the composition construction defined in the 
previous section.

The first step is to consider a flat sCCP model A = (X, D, Def, A, x0), and partition its set of variables X. Recall that 
variables X are divided into model variables Xm and environment variables Xe . Model variables Xm are partitioned into two 

2 Notation: the time derivative of Y j is denoted by Ẏ j , while the value of Y j after a change of mode is indicated by Y ′
j .

3 Multi-sets are needed to take into account the proper multiplicity of transitions.
4 A function f : Rm →R is Lipschitz continuous if and only if there is a constant L > 0, such that ‖ f (x1) − f (x2)‖ ≤ L‖x1 − x2‖.
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subsets: Xd , to be kept discrete, and Xc , to be approximated continuously. Hence X = Xd ∪ Xc ∪ Xe . How to perform this 
choice depends on the specificity of a given model: some guidelines will be discussed in Remarks 2.4 and 5.1. We stress 
here the double nature of environment variables: they will be treated like discrete variables in terms of the way they can 
be updated, but as continuous variables for what concerns their domain, i.e. they are part of the continuous state space of 
the TDSHA.

Once variables have been partitioned, we will process each component C ∈ Def separately, subdividing its stochastic 
actions actions(C) into two subsets: disc(C), those to be maintained discrete, and cont(C), those to be treated continuously. 
This choice confers an additional degree of freedom to the mapping, but has to satisfy the following constraint:

Assumption 1. Continuous transitions must have a constant increment update or a random increment update, i.e. rπ =
X + νπ . Furthermore, their reset cannot modify any discrete or environment variable, i.e. νπ [X] = 0, for each X ∈ Xd ∪ Xe .

We will now sketch the main ideas behind the definition of the TDSHA associated with a component C .

Continuous transition. With each π ∈ cont(C), we associate η ∈ TC with rate function fη(X) = I{Gπ (X)} · λπ (X), where I{·}
is the indicator function of the predicate Gπ (X), equal to 1 if Gπ (X) is true, and to zero if it is false. The update vector 
is kπ , if π has a constant increment update. If π has random increment μπ , we define the update vector as E[μπ ], 
the expected value of the random vector μπ .5

Stochastic transitions. Stochastic transitions are defined in a very simple way: guards, resets, and rates are copied from the 
sCCP action π ∈ disc(C).

Instantaneous transitions. Instantaneous transitions are generated from sCCP instantaneous actions π ∈ actioni(C), by copy-
ing guards, resets and priorities.

We can define formally the TDSHA of a sCCP component as follows:

Definition 2.3. Let A = (X, D, Def, A, x0) be a flat sCCP program and (Xd, Xc, Xe) be a partition of the variables X. Let C
be a component, with stochastic actions actions(C) partitioned into disc(C) ∪ cont(C), in agreement with Assumption 1. The 
TDSHA associated with C is T (C, disc(C), cont(C)) = (Z, Q , Y, TC, TD, TS, init), where

• Z is equal to Xd , while Y = Xc ∪ Xe . Q is the domain of Xd in A, and init = x0 .
• With each π ∈ cont(C) with constant increment reset rπ = X + kπ , we associate η = (kπ , fη) ∈ TC, where fη(X) =

I{Gπ (X)} · λπ (X).
• With each π ∈ cont(C) with random increment reset rπ = X + μπ , we associate η = (E[μπ ], fη) ∈ TC, where fη is 

defined as above.
• With each π ∈ disc(C) we associate η = (Gπ (X), rπ (X), λπ (X)) ∈ TS.
• With each π ∈ actioni(C) we associate η = (Gπ (X), rπ (X), pπ (X)) ∈ TD.

Finally, the TDSHA of the whole sCCP program is obtained by taking the composition of the TDSHA of each component, 
as follows:

Definition 2.4. Let A = (X, D, Def, A, x0) be a flat sCCP program and (Xd, Xc, Xe) be a partition of variables X. The TDSHA 
T (A) associated with A is

T (A) =
⊎

C∈Def

T (C,disc(C), cont(C)).

Example. Recall the sCCP program of Example 2.1. We consider a partition of variables such that all client variables are con-
tinuous, i.e. Xr and Xt , and all server variables are discrete, i.e. Xi and Xb . This describes a situation in which there are few 
servers that have to satisfy the requests of many clients. Consequently, we consider all client transitions as continuous 
and all server transitions as discrete. The client component will be mapped to a TDSHA with the following continuous 
transitions: (−er + et , min{kr Xr, ks Xi}) and (er − et , kt Xt), where ez is the unit vector equal to one for component z, and 
zero elsewhere, with z = r, t, i, b. The server component, instead, will be mapped to a TDSHA with only two stochastic 
transitions: (true, X + eb − ei, kb Xi) and (true, X − eb + ei, k f Xb). These two TDSHA are visually represented in Fig. 1, 
together with their composition.

5 Alternatively, we could have considered the support {μ1
π , . . . , μk

π , . . .} of μπ , with probability density P (μ1
π ), . . . , P (μk

π ), . . . , and generated a family 
of continuous transitions with rate P (μk

π ) fη(X) and update vector μk
π . However, if we add up these transitions as required to construct the vector field 

(see Section 2.5), we obtain E[μπ ] fη(X), i.e. the two approaches are equivalent.
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Fig. 1. TDSHA associated with client and server components of Example 2.1, together with their composition. Continuous transitions are rendered into 
a set of ODE, as explained in Section 2.5.

Remark 2.4. Choosing how to partition variables into discrete and continuous is a complicated matter, and depends on 
specific features of the model under study. We postpone a more detailed discussion on this issue to Remark 5.1 in Section 5, 
as this choice can depend on the notion of system size, which has still to be introduced. Here we just note that a non-flat
sCCP model may naturally suggest a candidate subset of variables to be kept discrete, namely state variables of a sequential
sCCP component (i.e. an agent changing state but never forking or killing itself) present in a single copy in the network. 
This is the approach followed e.g. in [18,20] to define the control modes of the TDSHA. However, the approach presented 
here is more general: different partitions of model variables and stochastic transitions lead to different TDSHA, which can 
be arranged in a lattice, as done in [19].

2.4. Piecewise Deterministic Markov Processes

The dynamical evolution of Transition Driven Stochastic Hybrid Automata is defined by mapping them to a class of 
stochastic processes known as Piecewise Deterministic Markov Processes (PDMP [31]). They have a continuous dynamics 
given by the solution of a set of ODE and a discrete and stochastic dynamics given by a Markov jump process.

Definition 2.5. A PDMP is a tuple (Z, Q , Y, E, φ, λ, R), such that:

• Z is a set of discrete variables, taking values in the countable set Q ⊂ R
k , the set of modes or discrete states,6 hence 

q ∈ Q is of the form (z1, . . . , zk). Y is a vector of variables of dimension |Y| = n. For each q ∈ Q , let Eq ⊂ R
n be an 

open set, the continuous domain of mode q. E , the hybrid state space, is defined as the disjoint union of Eq sets, namely 
E = ⋃

q∈Q {q} × Eq . A point x ∈ E is a pair x = (q, y), y ∈ Eq .7 In the following, we will denote Z ∪ Y by X, so that 
variables X range over E .

• With each mode q ∈ Q we associate a vector field Fq : Eq → R
n . The ODE ẏ = Fq(y) is assumed to have a unique solution 

starting from each y0 ∈ Eq , globally existing in Eq (i.e., defined until the time at which the trajectory leaves Eq). The 
(semi)flow φq : Eq ×R

+ → R
n of such vector field is assumed to be continuous in both arguments. φq(t, y0) denotes the 

point reached at time t starting from y0 ∈ Eq .8

• λ : E → R
+ is the jump rate. λ(x)dt gives the probability of executing a discrete transition between time t and t + dt , 

conditional on being in state x at time t . It is assumed to be a (locally) integrable function.
• R : E ∪ ∂ E × B → [0, 1] is the transition measure or reset kernel. It maps each y ∈ E ∪ ∂ E on a probability measure on 

(E, B), where B is the Borel σ -algebra of E . R(x, A) is required to be measurable in the first argument and a probability 
measure for each x.

The idea underlying the dynamics of PDMP is that, within each mode q, the process evolves along the flow φq . While in 
a mode, the process can jump spontaneously with hazard given by the rate function λq . Moreover, a jump is immediately 
performed whenever the boundary of the state space of the current mode is hit.

In order to formally capture the evolution, we need to define the sequence of jump times and target states of the PDMP, 
given by random variables T1, χ1, T2, χ2, . . . . Let t∗(x) = inf{t > 0 | φq(t, x) ∈ ∂ Eq} (with inf∅ = ∞) be the hitting time of 
the boundary ∂ Eq starting from x = (q, y) ∈ E . We can define the survivor function of the first jump time T1, given that the 
process started at x = (q, y), by F (t, x) = P(T1 ≥ t) = It<t∗(x) exp

(
− ∫ t

0 λ(q, φq(s,x))ds
)

.

This defines the probability distribution of the first jump time T1, which can be simulated, as customary, by solving for 
t the equation F (t, x) = U 1

1 , with U 1
1 uniform random variable in [0, 1]. Once the time of the first jump has been drawn, 

6 The representation of modes as a tuple of values deviates slightly from the classical definition of a PDMP, but simplifies the following presentation.
7 See Appendix C for a brief discussion on metric and topological properties of hybrid state spaces.
8 Usually, Fq is locally Lipschitz continuous, hence the solution exists and is unique, provided trajectories do not explode in finite time. However, as in the 

paper we will consider also situations in which the vector field con be discontinuous due to the presence of guards, we have chosen this more general 
condition.
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we can sample the target point χ1 of the reset map from the distribution R(x−
T1

, ·), with x−
T1

= φq(T1, x), using another 
independent uniform random variable U 2

1 . From χ1 = (q1, x1), the process follows the flow φq1 (t − T1, x1), until the next 
jump, determined by the same mechanism presented above.

Using two independent sequences of uniform random variables U 1
N and U 2

N , we are effectively constructing a realization 
of the PDMP in the Hilbert cube [0, 1]ω . A further requirement is that, letting Nt = ∑

k I{t > Tk} be the random variable 
counting the number of jumps up to time t , it holds that Nt is finite with probability 1, i.e. ∀t, ENt < ∞, see [31] for further 
details. If this holds, then the PDMP is called non-Zeno.

Remark∗ 2.5. In [27], we proved some limit results restricting the attention to the case in which no instantaneous jump can 
occur. This amounts to requiring that each Eq has no boundaries, i.e. Eq = R

n , or, more precisely, that t∗(x) = ∞ for each 
x ∈ E . If, in addition to this description, we also require the vector field to be Lipschitz continuous and the stochastic jumps 
to be described by a finite set of transitions η with rate λη and reset given by a constant increment νη , we obtain the so 
called simple PDMP [27].

2.5. From TDSHA to PDMP

The mapping of TDSHA into PDMP is quite straightforward, with the exception of the definition of the reset kernel. 
Essentially, the problem lies in the fact that each discrete transition of a PDMP has to jump in the interior of the state 
space E , which will be defined as the set of points in which no guard of any instantaneous transition is active. However, 
in a TDSHA we do not have any control over this fact, and we may define guards of transitions η ∈ TD in such a way 
that an infinite sequence of them can fire in the same time instant. For instance, the transitions (X >= 1, X ′ = 0, 1) and 
(X <= 0, X ′ = 1, 1) will loop forever if one of them is triggered. In order to avoid such bad behaviours, we will forbid by 
definition the possibility that two discrete transitions fire in the same time instant. We will call chain-free a TDSHA with 
this property, which will be formally defined after introducing some notation.

Let T = (Z, Q , Y, TC, TD, TS, init) be a TDSHA. Given a transition η ∈ TD, we let Gη = {x ∈ Q ×R
n | Gη(x) true}, and 

Rη = {x ∈ Q × R
n | x ∈ rη(Ḡη, W)}. Rη is the set of points that can be reached after the firing of η, defined as the image 

under rη of the closure Ḡη of the activation set Gη of the guard. Similarly, for η ∈ TS, we let Rη = {x ∈ Q × R
n | x ∈

rη({x1 | λη(x1) > 0}, W)}, the set of points that can be reached by a stochastic jump.

Definition 2.6. A TDSHA is chain-free if and only if, for each η1 ∈ TD∪TS and each η2 ∈ TS, Rη1 ∩ Ḡη2 = ∅.

Consider now a chain-free TDSHA T = (Z, Q , Y, TC, TD, TS, init). Then, its associated PDMP P = (Z, Q , Y, E, φ, λ, R) is 
defined by:

• Discrete and continuous variables, and discrete modes Q , are the same both in T and in P .
• The state space of the PDMP, encoding the invariant region of continuous variables in each discrete mode, is defined as 

the set of points in which no instantaneous transition is active:

E =
⋂

η∈TD

G
c
η.

Note that Eq is open, because we are intersecting the complement of the closure of each set Gη .
• The vector field is constructed from continuous transitions, by adding their effects on system variables:

F (x) =
∑

η∈TC

νη · fη(x). (1)

• The rate function λ is defined by adding point-wise the rates of all active stochastic transitions:

λ(x) =
∑

η∈TS

I{Gη(x)}λη(x). (2)

• The reset kernel R for x ∈ E is obtained by choosing the reset of one active stochastic transition in x with a probability 
proportional to its rate. As all such resets jump to points in the interior of E by the chain-free property of the TDSHA, 
we have

R(x, A) =
∑

η∈TS

(
I{Gη(x)}λη(x)

λ(x)
P{rη(x,W) ∈ A}

)
, (3)

where A ∈ B, the Borel σ -algebra of E . If the reset of η is deterministic, then P{rη(x, W) ∈ A} = δrη(x,W) , where δx1 (A)

is the Dirac measure on the point x1 ∈ E , assigning probability 1 to x1 and 0 to the rest of the space.
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• The reset kernel R on the boundary ∂ E is defined from resets of instantaneous transitions. If more than one tran-
sition is active in a point x ∈ ∂ E , we choose one of them with probability proportional to their weight. Let p(x) =∑

η∈TD | Gη(x) true pη(x), then

R(x, A) =
∑

η∈TD | Gη(x) true

(
pη(x)

p(x)
P{rη(x,W) ∈ A}

)
. (4)

• The initial point is x0 = init.

From now on, we implicitly assume that all the TDSHA obtained by the sCCP models we consider are chain-free. In 
general this may not be true and has to be checked. However, the property will hold straightforwardly in all the examples 
of this paper, and it will also be true in many practical examples.

Remark∗ 2.6. The chain-free condition is unnecessarily restrictive, and can be relaxed allowing the firing of a finite number 
of finite sequences (loop-free TDSHA), as done in [19], but it allows a simpler definition of the reset kernel of the PDMP. The 
interested reader is referred to [19] for the construction of the reset kernel for loop-free TDSHA. The good news here is that 
all the results in this paper extend immediately to loop-free TDSHA. The bad news is that checking if a TDSHA is loop-free is 
in general undecidable, as one can easily encode an Unlimited Register Machine in a TDSHA [19]. However, some sufficient 
conditions in terms of acyclicity of a graph constructed from transitions in TD have been discussed in [43]. Practically, 
most models will satisfy the chain-free condition, as the discrete controller described by instantaneous transitions is usually 
simple. More advanced controllers will perform some form of local computation, which can then result in a loop-free model. 
Violation of the loop-free property, instead, usually indicates an error in the model. The method of [43], in particular, allows 
us to check automatically sufficient conditions ensuring the loop-free property.

3. System size and normalization

In this paper we are concerned with the correctness of the hybrid semantics of sCCP in terms of approximation or limit 
results. Essentially, we want to show that “taking the system to the limit”, the standard CTMC semantics of sCCP converges 
(in a stochastic sense) to the PDMP defined by the hybrid semantics.

Clearly, this idea of convergence requires us to have a sequence of models. This sequence will depend on the size γ of 
the system. Hence, we will be concerned with the behaviour of a sCCP program, when the system size goes to infinity.

The concrete notion of system size depends on the model under examination and the type of system being modelled. 
In general, it is related to the size of the population, intended as the number of agents or entities in the system (which in 
flat sCCP models are counted by the system variables). For instance, in the client/server example (Example 2.1), this can be 
the total number of clients or the total number of clients and servers. In an epidemic model, this can be the size of the 
total population, or of the initial population, if we allow also birth and death events. However, the notion of system size 
can also be connected to the size of the population in an area or a volume. In this case, when the size increases, both the 
number of agents and the area or volume increase, usually keeping constant the density (number to area or volume ratio). 
The classical examples here are biochemical systems, in which we consider molecules in a given volume. Furthermore, in a 
model of bacteria’s growth (like that of Example Appendix B.1), we may be interested in increasing the number of bacteria 
together with the area of the Petri dish in which the culture is grown.

In order to make the notion of size explicit, we will decorate a sCCP model with the corresponding population size.

Definition 3.1. A population-sCCP program (A, γ ) consists of a sCCP program A together with the population size γ ∈ R
+ .

It is intended that rates of transitions, and even updates, of a population-sCCP program can depend on the population 
size γ . We further stress that, in a population-sCCP program, model variables usually take integer values.

Example 3.1. We go back to the client-server model of Example 2.1, and consider the population-sCCP model in which the 
size γ corresponds to the total population of clients and servers, namely γ = N1 + N2 = Xr(0) +Xt(0) +Xi(0) +Xb(0). In this 
scenario, we are interested in what happens when the total population increases, maintaining constant the client-to-server 
ratio.

A different notion of size can be envisaged, corresponding to a different scaling law. More specifically, we can consider 
γ = N1 = Xr(0) +Xt(0), the total number of clients in the system. Increasing this notion of size, we are effectively increasing 
the number of clients requesting information to a fixed number of servers. Intuitively, these two different scalings for the 
client-server system should correspond to two different limit behaviours (taking γ to infinity).

In order to compare models for increasing values of the size γ , we need to normalize models to the same scale. This is 
done by the normalization operation. Essentially, we will divide system variables by the system size (in fact, only those that 
will be approximated continuously), and express guards, rates, and resets in terms of such normalized variables.
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We formalize now the operation of normalization. Consider a population-sCCP program (A, γ ), with A = (X, D, Def,
A, x0), let X(t) be the associated CTMC, and assume that variables X are partitioned into discrete Xd , continuous Xc , and 
environment variables Xe . Then the normalized CTMC X̂(t) is constructed as follows:

• Normalized variables are X̂ = (Xd, X̂c, Xe), with X̂c = γ −1Xc ;
• Given a stochastic action π = (Gπ (X), rπ (X), λπ (X)), we define:

– Ĝπ (X̂) = Gπ (X), the guard predicate with respect to normalized variables;
– Let X ′ = rπ [X](X, W). If X ∈ Xd ∪ Xe , then r̂π [X](X̂, W) = rπ [X](X, W). Otherwise, if X ∈ Xc , then r̂π [X](X̂, W) =

γ −1rπ [X](X, W) (hence, we replaced Xc variables with their normalized counterpart in the reset function, but also 
rescaled the reset of X̂c variables by dividing the reset function for γ );

– λ̂π (X̂) = λπ (X).9

• Instantaneous transitions are rescaled in the same way (expressing the weight function p̂ in terms of normalized vari-
ables like the rate of stochastic transitions);

• Normalized initial conditions are x̂0 = (xd,0, γ −1xc,0, xe,0).

Applying this transformation to a sCCP program, we can construct the normalized CTMC X̂(t) along the lines of the construc-
tion of Section 2.1. Furthermore, we can construct the TDSHA associated with a sCCP program by considering normalized 
transitions and variables, instead of non-normalized ones. As we will always compare normalized processes, we will always 
assume that this construction has been carried out.

Given a population-sCCP program (A, γ ), our goal is to understand what will be the limit behaviour of a sequence of 
normalized CTMC X̂(N)(t), constructed from (A, γ ) and a sequence of system sizes γN → ∞ as N → ∞. In order to properly 
do this, we need to get a better grasp on some related questions, namely:

1. how to split variables into discrete and continuous;
2. how rates and updates scale with the system size.

These two questions are somehow dependent; the last one, in particular, is crucial, as the correct form of the limit depends 
on the scaling of rates and updates. Investigating these issues, moreover, will give us some hints on how to choose discrete 
and continuous variables and transitions to define the hybrid semantics of sCCP.

We will start by considering the fluid case, in which all variables are approximated as continuous. Rates and updates 
will be required to scale in a consistent way, and we will refer to these conditions as the continuous scaling. Then, we will 
turn our attention to hybrid scaling and hybrid limits.

Before doing this, we stress that the normalization operation extends naturally to the TDSHA associated with a 
population-sCCP program and, consequently, to the PDMP associated with the so-obtained TDSHA. In particular, if we have 
a sequence (A, γN ) of population-sCCP models, we can construct its normalization for each N , and associate a TDSHA with 
each element of the sequence. We call T̂ (A, γN ) such a TDSHA. However, in the rest of the paper we are interested in 
the limit behaviour, i.e. in models independent of γN . The scaling conditions for each transition that we will introduce will 
naturally lead to the construction of a limit TDSHA, independent of any notion of size, referred to as T̂ (A) in the rest of 
the paper.

4. Continuous scaling and fluid limit

We discuss now the standard fluid limit [11,10,37,44,45] in our context. We will consider a sequence of population-sCCP
programs (A, γN ) with divergent population size γN → ∞ as N → ∞.

In the rest of this section, we will require the following assumptions:

• All variables X are continuous and thus normalized according to the recipe of the previous section (hence there are no 
discrete or environment variables).

• There is no instantaneous transition in A.
• All stochastic transitions are unguarded and have constant or random increment updates.

In order to define the continuous scaling, we consider the domain E ⊆ R
m of normalized variables (note that here 

E is not a hybrid state space), which depends on possible values that non-normalized variables can take in Rm (usually 
in Z

m , see also Remark 4.2 below). In particular, we assume that E contains the domain of the normalized variables of a 
population-sCCP program (A, γN ) for any N ≥ 0, so that also the limit process will be defined in E .

Now we state the continuous scaling assumptions:

9 The conditions for Ĝπ and λ̂π state that the validity of a guard and the rate of a stochastic action depend only on the state of the system, but not on 
the system size.
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Scaling 1 (Continuous scaling). A normalized sCCP transition π̂ = (true, X̂′ = X̂ + ν̂
(N)
π , ̂λ(N)

π (X̂)) of a population-sCCP program 
(A, γN ), with E ⊆ R

m the domain of normalized variables X̂, has continuous scaling if and only if:

1. there is a locally Lipschitz continuous and locally bounded function gπ : E →R≥0 such that g(N)
π :=λ̂

(N)
π (X̂)/γN converges 

uniformly to gπ (rates are O (γN ));
2. There is a constant or random vector νπ ∈ R

m such that the non-normalized increments ν(N)
π converge weakly to νπ , 

ν
(N)
π ⇒ νπ .10 Furthermore, ν(N)

π and νπ have bounded and convergent first order moments, i.e. E[‖ν(N)
π ‖] < ∞, E[‖νπ‖] <

∞, E[ν(N)
π ] → E[νπ ], and E[‖ν(N)

π ‖] → E[‖νπ‖]. In particular, it follows that normalized increments are 
(γ −1
N ).

The intuition behind the previous conditions is that, as the system size increases, rates increase, leading to an increase 
of the density of events on the temporal axis. Furthermore, the increments become smaller and smaller, suggesting that 
the behaviour of the CTMC will become deterministic, with instantaneous variation equal to its mean increment. This will 
produce a limit behaviour described by the solution of a differential equation.

Remark 4.1. Scaling 1 can be generalized in some way, see for instance [45,44]. However, the version stated here is 
sufficiently general to deal with sCCP programs. If we further restrict the previous scaling condition, requiring that 
g(N)
π (X̂) = gπ (X̂), where gπ (X̂) is a locally Lipschitz function independent of γN , and ν(N)

π = νπ , then we obtain the so-called 
density dependent scaling. For instance, all transitions in the client/server model of Example 2.1 are density dependent, as 
easily checked.

Remark∗ 4.2. The structure of the domain E of normalized variables depends mainly on conservation properties of the 
system modelled. For instance, a closed population model (i.e. without birth and death events) will preserve the total 
population (this is the case for the client/server model of Example 2.1), hence the domain of the normalized variables will 
be contained in the unit simplex in Rm , which is a compact set. For open systems, for instance a model of growth of 
a population of bacteria (see Example Appendix B.1), in which the population can (in principle) become unbounded, the 
domain can be the whole Rm . However, it is unlikely that populations actually diverge (one may question the reliability of 
the model itself, if this happens), hence one can usually find a compact set that contains the interesting part of the state 
space (at least up to a finite time horizon). In particular, some of the hypotheses that we will state afterwards, like locally 
Lipschitzness or local boundedness, rely on this implicit assumption (i.e., that we can restrict our attention to a compact set 
in any finite time horizon). We will further discuss these issues while proving main theorems, once they emerge.

In order to state the fluid limit theorem, we need to construct the limit ODE. This is done according to the recipe of 
equation (1). More specifically, for each N we construct the drift or mean increment in x̂ as

F (N)(x̂) =
∑
π

E[ν̂(N)
π ]λ̂(N)

π (x̂) =
∑
π

E[ν(N)
π ]g(N)

π (x̂), (5)

where the sum ranges over all stochastic actions of the sCCP program A. If all sCCP transitions satisfy the continuous 
scaling assumption, F (N) converges uniformly to

F (x̂) =
∑
π

E[νπ ]gπ (x̂). (6)

The limit ODE is therefore dx̂(t)
dt = F (x̂(t)), whose solution starting from x0 is denoted by x̂(t). Note that this limit ODE can 

be obtained in terms of TDSHA with continuous transitions only, by the construction of Section 2.5. In particular, the limit 
TDSHA corresponding to the fluid ODE has a continuous transition of the form (E[ν̂π ], γN gπ ) = (γ −1

N E[νπ ], γN gπ ) for each 
normalized sCCP transition π̂ .

Theorem 4.1. (See Kurtz [11,44,45].) Let (A, γN) be a sequence of population-sCCP models for increasing system size γN → ∞, 
satisfying the conditions of this section, and with all sCCP-actions π satisfying the continuous scaling condition. Let X̂(N)(t) be the 
sequence of normalized CTMC associated with the sCCP-program and x̂(t) be the solution of the fluid ODE.

If x̂(N)
0 → x̂0 almost surely, then for any T < ∞, supt≤T ‖X̂(N)(t) − x̂(t)‖ → 0 as N → ∞, almost surely. �

Example. Consider again the client/server model of Example 2.1, in which both the number of clients and of servers is 
increased. Therefore, consider a sequence of models with size γN equal to the total number of clients and servers. It is easy 
to see that its normalized models all live in the unit simplex E in R4, and that all its transitions are density dependent, 
hence satisfy the continuous scaling. Assume that x̂0 = (c, 0, s, 0), with c + s = 1, so that X(N)

0 = (cN, 0, sN, 0), meaning that 
we keep constant the client-to-server ratio. The fluid ODE associated with this model is

10 The concept of weak convergence is recalled in Appendix C.



L. Bortolussi / Information and Computation 247 (2016) 37–86 49
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dxr
dt = kt xt − min{kr xr,ksxi}
dxt
dt = min{kr xr,ksxi} − kt xt
dxi
dt = k f xb − kbxi

dxb
dt = kbxi − k f xb

Hence, we can apply Theorem 4.1 to infer convergence of the CTMC sequence X̂(N) to its solution.

Remark 4.3. The version of Kurtz theorem we presented here is similar to the one of [44], but with scaling taken from [45]. 
The point of the scaling is to prove that noise goes to zero, which is usually shown either by some martingale inequality or 
by using the law of large number of Poisson random variables, using a Poisson representation of CTMC. In Appendix D, we 
present a proof based on the Poisson representation.

Remark∗ 4.4. In continuous transitions with random increments, we assumed for simplicity that the distribution of the 
increment is independent from the current state of the system. However, this restriction can be safely dropped, pro-
vided that we require uniform boundedness (in any compact K ⊂ E) of the limit first order moments of the increments, 
i.e. supx∈K E[ν(x)] < ∞ and supx∈K E[‖ν(x)‖] < ∞, and uniform convergence of the expectation of ν(N)(x) to ν(x), i.e. 
supx∈K ‖E[ν(N)(x)] − E[ν(x)]‖ → 0 and supx∈K |E[‖ν(N)(x)‖] − E[‖ν(x)‖]| → 0. Given these conditions, it is easy to check 
that the resulting sequence of CTMC still satisfy the conditions of [11] (restricted to a suitable compact K ), hence Theo-
rem 4.1 continues to hold.

5. Hybrid scaling and hybrid fluid limits

In this section we will introduce a scaling for transitions that cannot be approximated continuously, roughly speaking 
because their frequency remains constant as the population size grows. We will then prove that the sequence of normalized 
CTMC converges to the PDMP associated with the normalized sCCP model. This proof will be first given under a suitable 
set of restrictions (essentially, restricting to unguarded stochastic actions with generic random resets for transitions kept 
discrete), in order to clarify the main ingredients that guarantee convergence. In the next sections, we will remove some of 
these restrictions, considering more complex hybrid limits.

The first step in the construction of the hybrid limit, which coincides with the first step in constructing the sCCP hybrid 
semantics, is the separation of model variables into discrete and continuous. This step is delicate and is model-dependent, as 
the same model can be interpreted in different ways. For example, the client/server model of Example 2.1 can be interpreted 
continuously, assuming that the number of both clients and servers is increased with γN , or in a hybrid way, assuming that 
only the number of clients increases, while the number of servers remains constant. In this case, the service rate has also 
to be increased in order to match the larger demand. This can be justified by thinking of an increased number of cores on 
the same machine, in such a way that the breakdown of a server will affect all its cores. We will discuss the partitioning of 
variables in Remark 5.1 below, after introducing the hybrid scaling conditions.

To this end, we need to modify the conditions of Scaling 1 for continuous transitions. In particular, we need to allow 
the possibility of activating a transition only in a subset of discrete modes. This is enforced by guards depending only on 
discrete (and environment) variables.

Scaling 2 (Hybrid continuous scaling). A normalized sCCP transition π̂ = (Ĝπ (X̂), X̂′ = X̂ + ν̂
(N)
π , ̂λ(N)

π (X̂)) of a population-sCCP
program (A, γN ), with discrete variables Xd , continuous variables Xc , and environment variables Xe , and with X̂ ∈ E , has 
hybrid continuous scaling if and only if:

1. the rate λ̂(N)
π (X̂) and the update X̂′ = X̂ + ν̂

(N)
π satisfy the conditions of Scaling 1;

2. The guard predicate Ĝπ (X̂) depends only on discrete (Xd) and environment (Xe) variables.

Additionally, we need to define the scaling for discrete stochastic transitions. Also in this case, we will assume that their 
guard depends only on discrete or environment variables.

Scaling 3 (Discrete scaling for stochastic transitions). A normalized sCCP transition with random reset π̂ = (Ĝπ (X̂), X̂′ =
r̂(N)
π (X̂, W(N)(X̂)), ̂λ(N)

π (X̂)) of a population-sCCP program (A, γN ) with discrete variables Xd , continuous variables Xc , and 
environment variables Xe , with X̂ ∈ E , has discrete scaling if and only if:

1. the guard predicate Ĝπ (X̂) depends only on discrete (Xd) and environment (Xe) variables;
2. λ̂

(N)
π (X̂) = O (1), λ̂(N)

π (X̂) converges uniformly in each compact K ⊂ E to the continuous function λ̂π (X̂);
3. Resets converge weakly (uniformly on compact (sub)sets), i.e. for each x̂(N) → x̂ in E , r̂(N)

π (x̂(N), W(N)(x̂(N))) ⇒
r̂π (x̂, W(x̂)), as random elements on E .
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Remark 5.1. The choice on how to partition variables into discrete and continuous is a crucial step. This choice is usually 
model dependent, and relies heavily on the knowledge and intuition of the modeller. However, as a general guideline, we 
can look at two aspects of the model:

Conservation Laws: Very often, the identification of discrete variables can be made by looking at conservation laws, i.e. 
at subsets of variables whose total mass is conserved during the evolution of the system, as pursued in [46]. In fact, 
conserved variables usually are related to internal states of an agent which is present in one or very few copies. The 
identification of these sets can be carried out using algorithms like the Fourier–Motzkin elimination procedure [47], or 
using a constraint based approach [48]. In sCCP, when describing non-flat models, these sets of variables, corresponding 
to state variables, are usually evident (cf. Remark 2.4).

Scaling of Rates: in describing a population-sCCP model, a modeller is forced to make explicit the dependence of rates on 
the system size γN . Given this knowledge, it is possible to identify some variables that cannot be continuous, otherwise 
both Scalings 1 and 3 would be violated. For instance, if we have a rate like kX1 X2, then at least one of X1 and 
X2 has to be discrete, otherwise the normalized rate would depend quadratically on γN . On the contrary, kγ −1

N X1 X2
is not compatible with both X1 and X2 discrete, otherwise the rate would vanish. Clearly, not all rate functions are 
informative; for instance, linear rates are compatible both with discrete and continuous scaling.

The two previous arguments can be used to set up an algorithmic procedure to suggest a possible partition of variables into 
discrete and continuous, given a population-sCCP model. However, we leave this for future work.

We stress that, in general, if the modeller does not know how rates depend on the system size, she may choose a 
partition of variables and a scaling for each transition and impose a dependence of rates on system size that is correct with 
respect to the partition. This dependence has then to be validated a-posteriori, checking if it is meaningful in the context 
of the model. For instance, in a practical modelling scenario for the client/server example of Section 2.1, one usually has a 
fixed number of clients and servers and fixed parameters. To apply the convergence results of this paper, a specific scaling 
has to be assumed, and the parameters of the limit model have to be computed consequently. If, for instance, the number of 
servers is kept fixed, we obtain a meaningful limit if the service rate per client is constant. If this cannot be assumed, namely 
if it is the global service rate of servers that remains constant, then the service rate per client depends on their number N , 
and goes to zero as N increases. Hence, in the limit model the service rate is zero. However, for a fixed population size, we 
can still obtain a hybrid process that approximates closely the CTMC, using the size-dependent rates. This phenomenology 
(uninformative limit, but good size-dependent approximation) happens also in the fluid limit setting, see for instance [49].

Consider now a population-sCCP model (A, γN ) with only stochastic actions, in which transitions satisfy either the 
continuous Scaling 1 or the discrete Scaling 3. The limit TDSHA T̂ (A) constructed from this model has continuous transi-
tions of the form (E[νπ ], gπ ), for each sCCP action π satisfying continuous scaling and stochastic transitions of the form 
(true, ̂rπ , ̂λπ ), for each sCCP action π satisfying the discrete scaling. The limit PDMP is obtained from this TDSHA by the 
construction of Section 2.5.

Example 5.1. We consider a new example with a biological flavour, namely a simple genetic network. Genes are the storage 
units of biological information: they encode in a string of DNA the information to produce a protein. Each cell has a 
biochemical machine that is capable of reading the information in a gene, first copying it into a mRNA molecule and then 
translating this molecule into a protein. Genes are in fact more than simple storage units: they are also part of the software 
that controls their own expression. In fact, expression is regulated by specific proteins, called transcription factors, which 
physically bind to the DNA close to a gene and activate or repress transcription. There are genes encoding for transcription 
factors that act as self-repressors. We model such a scenario here.

To construct a population-sCCP model, we need two integer-valued variables: M , counting the amount of mRNA, and P , 
counting the amount of protein. Here the size of the system γ is the volume times the Avogadro number, so that normalized 
variables represent molar concentrations (see for instance [50,4]). We will consider a model with one agent for the gene 
(which can be on or off), and agents for translation of mRNA into protein and degradation of both protein and mRNA.

gene_on
def= [∗ → M ′ = M + 1]kp.gene_on
+ [∗ → P ′ = P − 1]kbγ −1 P.gene_off

gene_off
def= [∗ → P ′ = P + 1]ku.gene_on

translate
def= [∗ → P ′ = P + 1]γ kt M.translate

degrade
def= [∗ → M ′ = M − 1]kdm M.degrade
+ [∗ → P ′ = P − 1]kdp P.degrade

Inspecting the previous model, we can see that it is not flat. To convert it into a flat model, we need to add two 
additional variables, Gon and Goff , with domain {0, 1}, encoding the state of the gene agent. The structure of the gene agent 
itself reveals a conservation pattern in the system, namely that Gon + Goff = 1, as they are indicator variables of the state of 
the gene. Inspecting transitions, we can notice how translation has a rate depending on γ , suggesting that M has also to be 
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treated as a discrete variable. On the other hand, repression scales as γ −1, i.e. it depends on the concentration of P , rather 
than on the number of molecules (repression depends only on the molecules close to the gene, the only ones that can bind 
to it). With this partitioning of variables, we obtain the following normalized TDSHA:

• Discrete variables are Gon, Goff , M , while P̂ is the continuous variable. Q = {0, 1} ×{0, 1} ×N and P̂ has domain [0, ∞).
• Continuous transitions are (∗, P̂ ′ = P̂ + γ −1, γ kt M) and (∗, P̂ ′ = P̂ − γ −1, γ kdp P̂ );
• Discrete transitions are (∗, G ′

on = 0, G ′
off = 1, P̂ ′ = P̂ −γ −1, kb P̂ Gon), (∗, G ′

on = 1, G ′
off = 0, P̂ ′ = P̂ +γ −1, ku Goff ), (∗, M ′ =

M + 1, kp Gon), (∗, M ′ = M − 1, kdm M).

Remark∗ 5.2. Scaling 3 forbids discrete transitions to have a fast, O (γ ) rate. If this would be the case, the dynamics of 
discrete transitions in the limit would be faster and faster, and one would expect that the discrete subsystem affected by 
these transitions reaches immediately the equilibrium (in a stochastic sense). This is what actually happens, under some 
regularity conditions on fast discrete dynamic, namely the possibility of isolating a discrete subsystem affected by fast 
discrete transitions, which is ergodic (considering only fast discrete transitions), and with fast rates depending continuously 
on continuous variables. In this case, one can compute the equilibrium distribution (as a function of other variables) of 
the fast discrete subsystem, remove the fast discrete variables and average the rate functions depending on fast discrete 
variables according to the equilibrium distribution. In case one has only fast discrete variables, the fluid limit is given in 
terms of ODE [51]. This scaling can be integrated quite easily in our framework, using the limit theorem of [51] instead of 
Theorem 4.1 and defining syntactically the averaging at the level of the TDSHA, given a method to compute the equilibrium 
distribution.

We now turn to discuss the limit behaviour of a model showing hybrid scaling, i.e. with both discrete and continuous 
transitions. We will stick to further simplifying assumptions for the moment: the sCCP program has no instantaneous 
transitions, all stochastic actions are unguarded and have continuous rates, variables and transitions have been partitioned 
into discrete and continuous, discrete transitions have deterministic resets and satisfy discrete Scaling 3, and continuous 
transitions satisfy continuous Scaling 1.

We are now ready to state the main result of this section, namely that, under these restrictions, a normalized CTMC 
constructed from a sCCP program converges weakly to the PDMP constructed from the normalized TDSHA associated with 
the sCCP program.

Theorem 5.1. (See [27].) Let (A, γN) be a sequence of population-sCCP models for increasing system size γN → ∞, satisfying the 
conditions of this section, with variables partitioned into discrete Xd, continuous Xc , and environment ones Xe . Assume that discrete 
actions satisfy Scaling 3 and continuous actions satisfy Scaling 2. Let X̂(N)(t) be the sequence of normalized CTMC associated with the 
sCCP program and x̂(t) be the PDMP associated with the limit normalized TDSHA T̂ (A).

If x̂(N)
0 ⇒ x̂0 (weakly) and the PDMP is non-Zeno, then X̂(t) converges weakly to x̂(t), X̂ ⇒ x̂, as random elements in the space of 

cadlag function with the Skorokhod metric.11

Proof. We just sketch the proof here. A detailed proof can be found in Appendix D. The main idea is to exploit the fact 
that we can restrict our attention to CTMC and PDMP that do at most m discrete jumps. This is sufficient to obtain the 
weak convergence of the full processes, for two reasons. The first is related to the nature of the Skorokhod metrics, which 
discounts the future (i.e. only 1/2T of the distance comes from time instants greater than T ), while the second is the non-
Zeno nature of the limit PDMP, which implies that we can consider no more than m jumps up to time T , with probability 
1 − εm , for εm → 0 as m → ∞.

In order to prove weak convergence of X̂(N)
m , the CTMC with at most m jumps of discrete transitions, to x̂m , the PDMP 

with at most m jumps, we can exploit the piecewise deterministic nature of PDMP, applying Theorem 4.1 inductively. At 
the first step, we will prove that the time τ (N)

1 of the first stochastic jump for X̂(N) converges weakly to τ1, the first 
jump time of x̂ (Lemma Appendix D.2 in Appendix D), and also the state X̂(N)(τ

(N)
1 ) after time τ (N)

1 converges weakly to 
x̂(τ1) (Corollary Appendix D.1). This shows convergence of the processes up to the first stochastic jump. Exploiting this 
and the strong Markov property, we can restart x̂(t) at time τ1 from x̂(τ1) and X̂(t) from X̂(τ

(N)
1 ) at time τ (N)

1 and apply 
Theorem 4.1 and its corollaries again (actually, a minor modification of Theorem 4.1, allowing to sample probabilistically the 
initial conditions of the ODE), to prove weak convergence of the CTMC to the PDMP up to the m-th jump, for any m. Note 
that this argument is based on the continuity of vector fields, rates and resets, which holds in our setting as their guards 
depend only on discrete and environment variables, hence their values do not change in each deterministic phase of the 
PDMP dynamics. �
Example. We consider again the simple client server network of Example 2.1, but with a different scaling compared to 
Section 4. In particular, we consider as size γN the number of clients, assuming that the number of servers remains con-

11 See Appendix C for a brief introduction of these concepts.
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Fig. 2. Left: comparison of stochastic trajectories and fluid ODE for the client-server model of Example 2.1, with scaling discussed in Section 4. Parameters 
are kr = 2, ks = 0.8, kt = 1/50, kb = 1/2000, k f = 1/1000, and initial conditions are X (N)

r (0) = N1 = 100N , Xi(0) = N2 = 2N . In the plot, the CTMC 
trajectory for N = 100 000 and M = 2000 fully overlap with the solution of the fluid ODE. Right: comparison of a trajectory of the limit PDMP and of 
the CTMC for the gene network model of Example 5.1. Parameters are kp = 0.1, kt = 1, kdp = 1, kdm = 0.01, kb = 0.1, ku = 0.1, and initial conditions are 
P (0) = M(0) = Goff (0) = 0, Gon(0) = 1. Note that both the stochastic and the hybrid system show a multi-modal behaviour.

stant, but with service rate depending linearly on γN . In this way, the rate of the request transition of client agents is 
γN min{kr X̂ (N)

r , ks Xi}, and it satisfies the continuous scaling. Breakdown and repair transitions, on the other hand, will be 
kept discrete as they modify only the number of available servers. As their rate is independent of γN and their reset is 
constant and also independent of N , they both clearly satisfy the discrete scaling. The limit TDSHA that we obtain in this 
way is shown in Fig. 1. As the hypotheses of Theorem 5.1 are satisfied, the sequence of CTMC models obtained from sCCP
with the standard stochastic semantics converges (weakly) to the limit TDSHA.

This can be seen in Fig. 3, where we compare a trajectory of the CTMC with a trajectory of the PDMP, and the distribution 
of the number of clients requesting service at time t = 10 000.

Example. We reconsider now the genetic network model of Example 5.1. Also in this case, we can expect a bimodal be-
haviour for the CTMC semantics, due to the gene working as a discrete switch. If the binding strength of the repressor is 
large, meaning that the protein will remain bound to the gene for a long time, then the gene will be switched off for long 
periods, and we may expect to see a bursty behaviour. This is indeed the case, as can be seen in Fig. 2(b). Moreover, the 
hybrid limit constructed in Example 5.1 matches perfectly this behaviour, as can be seen in Fig. 2(b). As the model satisfies 
the (scaling) assumptions of Theorem 5.1, we can conclude that this is indeed the consequence of the (weak) convergence 
of the sequence of CTMC models to the hybrid limit.

5.1. More on random resets

The scaling condition 3 requires us to check a convergence condition on resets that seems quite complicated at first 
glance, as it involves checking weak convergence of reset kernels for any possible convergent sequence of states. We chose 
this condition because it is very general and it interfaces smoothly with the inductive proof technique that we use in the 
paper. However, in the following, we will briefly discuss several simpler conditions that can be checked more easily, and 
that should cover most practical cases.

We first start by observing that we can split the convergence condition in two parts, i.e. we can check that r̂(N)
π (x̂, w) →

r̂π (x̂, w) uniformly in x̂ and w and that W(N)
π (x̂(N)) ⇒ Wπ (x̂) (weakly), for any x̂(N) → x̂.

We now focus attention on the weak convergence of random elements W(N)(x̂) to W(x̂). First, note that the weak 
convergence condition is essentially equivalent to showing that

sup
x̂∈K

∥∥∥∥∥∥
∫
E

g(ŷ)P{W(N)
π (x̂) = ŷ} dŷ −

∫
E

g(ŷ)P{Wπ (x̂) = ŷ} dŷ

∥∥∥∥∥∥ → 0,

for any compact set K ⊆ E and any uniformly continuous function g : E → R and that 
∫

E g(ŷ)P{Wπ (x̂) = ŷ} dŷ is a contin-

uous function [52], which may be sometimes easier to check. Moreover, in practise we can expect W(N)
π and Wπ to have a 

simple structure, which should facilitate the task of verifying the scaling condition.
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Fig. 3. Client server model of Example 2.1, compared with the hybrid limit scaling keeping the number of server fixed to 2. Parameters are kr = 2, ks = 0.01, 
kt = 1/50, kb = 1/2000, k f = 1/1000, and initial conditions are X (N)

r (0) = N , Xi(0) = 2. Figs. 3(a) and 3(b) show one trajectory of the PDMP and the CTMC 
for N = 1000, respectively. Fig. 3(c), instead, compares the empirical cumulative distribution of the PDMP limit and the CTMC, for N = 1000 and N = 10 000, 
at time t = 10 000, generated from 2500 sampled trajectories.

First of all, if W(N)
π and Wπ do not depend on x̂, then the condition reduces to W(N)

π ⇒ Wπ , which can be checked by 
showing one of the equivalent conditions of the Portmanteau theorem [53]. In particular, the condition is trivially true if 
W(N)

π does not depend on N , i.e. if W(N)
π = Wπ .

We consider now two examples, to illustrate the use of random resets and the hybrid convergence in this case.

Example 5.2. We consider a small variation of the client server model of Example 2.1. The difference is that we will assume 
different levels of severity of a breakdown, so that the repair time can be variable, depending on this level. For simplicity, 
we assume a single server, but a generalization to more than one server is straightforward. In order to model this situation 
in sCCP, we can either increase the number of internal states of the server (one for each level of damage) or use an 
additional (discrete) variable. We chose this second approach, introducing D , the damage-level variable. We assume that D
takes values on the integers, and that each time a breakdown happens, its value is sampled from a geometric distribution 
with parameter 0.5, W ∼ Geom(0.5), so that we have a probability 1/2k to see a damage of level k. We further assume that 
the repair time is proportional to the damage level, so that the rate of repair is k f /D . We therefore obtain the following
sCCP code, where variables Xr, Xt , Xi, Xb are as in Example 2.1:

client
def= [∗ → X ′

r = Xr − 1 ∧ X ′
t = Xt + 1]min{kr Xr ,γN ks Xi}.client +

[∗ → X ′
r = Xr + 1 ∧ X ′

t = Xt − 1]kt Xt.client

server
def= [∗ → X ′

i = Xi − 1 ∧ X ′
b = Xb + 1, D ′ = W ]kb Xi.server

+ [∗ → X ′
i = Xi + 1 ∧ X ′

b = Xb − 1]k f /D·Xb.server

In this case, we clearly have that Xi , Xb , and D are discrete variables, while Xr and Xt can be approximated continuously. 
D can also be seen as an environment variable, as it is used to modify a parameter of the model. Therefore, the transitions 
of the client agent become continuous transitions in the associated TDSHA, while the transitions of the server agent remain 
discrete and stochastic. Note that we made explicit the dependence on size in the rate functions. Clearly, all transitions 
satisfy the scalings of Theorem 5.1. This is true also for the breakdown transition, as W does not depend on the current 
state of the system. It follows that Theorem 5.1 applies also to this example, see also Figs. 4(a) and 4(b).
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Fig. 4. Empirical cumulative distribution of clients requesting service at time t = 10 000 and average number of clients request service for the client server 
models of Example 5.2. The top row shows the model with severity level of breakdowns samples according to a geometric distribution with probability 
p = 0.5. Parameters are as in caption of Fig. 3, a part from k f = 1/200. The bottom row shows the model with fix rate lognormally distributed with mean 
−2.5 and standard deviation 1.0. Note that both histograms present a similar pattern. The bimodality of the distribution is captured for the geometric 
breakdown. Moreover, the hybrid model has less variability in the distribution (it has a sharper cumulative distribution function). The averages are almost 
indistinguishable.

A variation of this model is to replace the finite damage levels with a continuous level of damage, essentially sampling 
the repair rate from a continuous distribution. This can be done in sCCP by using a real-valued environment variable, 
call it K . For simplicity, here we assume that the fixing rate is sampled from a lognormal distribution with mean μ and 
standard deviation σ . We can obtain this variant of the model by replacing the server agent with the following one, 
where W ∼ Lognormal(μ, σ 2):

server
def= [∗ → X ′

i = Xi − 1 ∧ X ′
b = Xb + 1, K ′ = W ]kb Xi.server

+ [∗ → X ′
i = Xi + 1 ∧ X ′

b = Xb − 1]K ·Xb.server

Also in this case, the hypotheses of Theorem 5.1 are satisfied, and convergence to the hybrid limit works (see Figs. 4(c) 
and 4(d)).

We turn now to discuss convergence of W(N)
π (x̂) to Wπ (x̂) when they depend on x̂. The situation is more delicate, as 

convergence has to be uniform. In the following, however, we list some sufficient conditions to guarantee convergence, that 
are of practical relevance.

1. W(N)
π (x̂) = Wπ (x̂) and Wπ (x̂) depends continuously on x̂;

2. W(N)
π (x̂) and Wπ (x̂) are discrete distributions with mass concentrated on points {ŷ1, . . . , ̂yk, . . .}, and P{W(N)

π (x̂) = ŷk}
converges to P{Wπ (x̂) = ŷk} uniformly in any compact K ⊆ E;

3. W(N)(x̂) and W(x̂) are unidimensional real random variables, with cumulative distribution functions F (N)(y, ̂x) and 
F (y, ̂x), such that, for each x̂(N) → x̂, F (N)(y, ̂x(N)) → F (y, ̂x) pointwise for any continuity point y of F (y, ̂x).

4. W(N)(x̂) and W(x̂) have values in R
h , and they have continuous density functions g(N)(y, ̂x), g(y, ̂x), and

supy∈Rk,x̂∈K ‖g(N)(y, ̂x) − g(y, ̂x)‖ → 0, for each compact set K ⊆ E .
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Fig. 5. Comparison of the empirical cumulative distribution of clients requesting service at t = 10 000 (left) and average (right) of the limit PDMP and 
the CTMC at system size 1000, for the client-server model with worm infection of Example 5.3. There are 2 servers and γN = N clients. Parameters are 
ks = 0.01γN , kr = 2, kt = 1/40, kw = 1/2000, wd = 0.1, and the infection probability is p = 0.33.

5. W(N)(x̂) and W(x̂) can be decomposed into the product of marginal and conditional distributions that converge 
in the sense of Scaling 3, i.e. W(x̂) = Wi1 (x̂)Wi2 (x̂, wi1) · · ·Wik (x̂, wi1 , . . . , win−1), W(N)(x̂) = W(N)

i1
(x̂)W(N)

i2
(x̂, wi1 ) · · ·

W(N)
ik

(x̂, wi1 , . . . , win−1), and W(N)
i j

(x̂(N), w(N)) ⇒ Wi j (x̂, w), as x̂(N) → x̂ and w(N) → w.

6. W(N)(x̂) and W(x̂) are mixtures of distributions W(N)
j (x̂) and W j(x̂) of one of the previous types, i.e. W(N)(x̂) =∑

j p(N)
j (x̂)W(N)

j (x̂) and W(x̂) = ∑
j p j(x̂)W j(x̂).

It is straightforward to show that each of these conditions implies that W(N)(x̂(N)) ⇒ W(x̂) as x̂(N) → x̂, hence they can be 
used whenever it is more appropriate.

Example 5.3. We consider again the client-server model of Example 2.1, but modify it by including the spread of a worm 
epidemic. We consider a situation in which a worm has spread on the network and activates on a specific date, sending 
all infected clients into a non-working state, called Xd , from which they need some time to recover. We abstract from the 
epidemic spreading and model the effect of the epidemics as an event that affects synchronously all clients and infects each 
of them with probability p. Let W i(X), i = 1, 2, be binomial distributions with success probability p and size given by X . 
For simplicity, we ignore the breakdown and repair of servers, so that we need four variables, Xr , Xt , Xd , and Xi , and initial 
network client ‖ worm, where client is as in Example 2.1, while worm is given by the following code:

worm
def= [∗ → X ′

r = Xr − W1(Xr) ∧ X ′
t = Xt − W2(Xt) ∧ X ′

d = Xd + W1(Xr) + W2(Xt)]kw.worm
+ [∗ → X ′

d = Xd − 1 ∧ X ′
r = Xr + 1]kd ·Xd.worm

In the limit TDSHA model, the infection action remains discrete and stochastic, while all others are approximated con-
tinuously (including the recovery). Here, the system size is clearly the number of clients (server dynamics are ignored, so 
the number of servers can be seen as a parameter). When looking at the normalized model for system size γN = N , then 
the reset of the infection transition, say for what concerns clients thinking, is x̂t − 1

N W (�Nx̂t�), which can be also written 
as x̂t − �Nx̂t�

N
1

�Nx̂t� W (�Nx̂t�), provided �Nx̂t� > 0. By the law of large numbers, this expression converges to x̂t − px̂t , so 
this should be the reset of the limit PDMP. However, to apply the limit results of this section to this model, we have to 
prove that 1

N W (�Nx̂(N)�) → x̂p for any x̂(N) → x̂ and then apply point 3 of proposition above. To show this, observe that 
if x̂ > 0, then x̂(N) > x̂/2 ultimately, hence �Nx̂(N)� → ∞, so that 1

�Nx̂t� W (�Nx̂t�) → p. When x̂ = 0, instead, observe that 
1
N W (�Nx̂(N)�) ≤ �Nx̂(N)�

N → 0, which shows the desired convergence (see also Fig. 5 for a numerical comparison).

Remark∗ 5.3. The framework of population-sCCP programs forces the modeller to explicitly consider the notion of system 
size and to incorporate it in the rate functions. This requirement greatly simplifies the manual verification of the scaling 
conditions, at least for what concerns rate functions.

There are three kinds of conditions to check: convergence of rate functions, regularity of rate functions (local Lipschitz-
ness), and convergence of reset kernels (or of increments).

Most of the time, these checks are easy to carry out: rates are often density dependent and differentiable and resets are 
constant increment updates. If rates depend on γN , usually this dependence is simple and verifying convergence poses no 
challenges. For instance, in a biochemical system, the (normalized) mass action rate when two molecules of the same kind 
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Fig. 6. Left: limit trajectory of x̂1(t) for Example 6.1. Right: P{Z (N)(t) = 1} as a function of t , for different values of N . Bi-modality of the distribution around 
t = 1 and t = 4 is manifest.

react together has the form kx̂(x̂ − 1
γN

), which is easily seen to converge uniformly in any compact set (i.e., whenever x̂ is 
bounded). As for the regularity of rates, most of the time we will deal with functions constructed by algebraic operations, 
plus some other function like the exponential or the logarithm. All these functions are analytic [54], hence locally Lipschitz. 
Also the use of minimum or maximum preserves this property. What can be more challenging is the case in which resets 
have a stochastic part depending on the current state of the model. However, the conditions discussed in this section 
should cover most of the practical cases. Indeed, we can expect in most models the use within resets of simple discrete or 
continuous distributions, like Gaussian or uniform ones.

What is undoubtedly more challenging is to make this check automatic. This is partly due to the generality of sCCP as a 
modelling language, which allows a user to express very complex rates and updates. Hence, a malicious user can construct 
models that are very complicated to check. However, in most practical cases it may be possible to set up automatic routines 
that verify the scaling, by clever use of computer algebra systems.

Another alternative is to identify a library of functions (for both rates and resets) which are guaranteed to satisfy the 
regularity and scaling conditions. This is what happens in the process algebra PEPA [12], where the syntactic-derived restric-
tions on the possible set of rate functions and updates guarantee that the conditions of the fluid approximation theorem 
(Theorem 4.1) are always satisfied. Constructing a library of “good” functions restricts the expressive power of the language, 
but should be enough to cover most practical modelling activity. Furthermore, libraries can be extended when needed, and 
the user can also use additional functions, if she also provides a “certificate of correctness”. We will pursue this line of 
investigation in the future, with the implementation of the framework in mind.

6. Dealing with instantaneous transitions

In this section we discuss convergence to the hybrid limit in presence of instantaneous events. These events remain 
discrete also in the limit process and can introduce a discontinuity in the dynamics that is triggered as soon as their guard 
becomes true. The class of limit PDMP obtained in this way is more difficult to deal with than PDMP with just stochastic 
jumps. In fact, we cannot rely any more on the “smoothing” action in time of a continuous probability distribution like the 
exponential, but we need to track precisely the times at which instantaneous events happen. In particular, there can be 
time instants in which we can observe a jump in the limit process with probability greater than zero. This is particularly 
the case when the hybrid limit is a deterministic process, i.e. a process without discrete stochastic transitions and random 
resets.

From the point of view of weak convergence, dealing with instantaneous transitions requires us to prove that their 
firing times in the sequence of CTMC models converge to the firing time in the hybrid limit model. Furthermore, we need 
prove also convergence of the state after the reset. As we will see, both properties are not always guaranteed to hold. The 
problem resides in the intrinsic discontinuous nature of the exit times and resets on the activation region of guards. Thus, 
to prove convergence, we need to impose further regularity conditions on the PDMP, forcing its dynamics to avoid these 
discontinuous regions (with probability 1). We will start by discussing the issues with the exit time, then turn to reset 
kernels, and finally move to the limit theorem. After having discussed examples, we will consider a small extension of sCCP, 
allowing guards to depend on (simulation) time, and discuss limit theorems for this extended class of models.

6.1. Convergence of exit times

Convergence of exit times does not hold in general. Focussing on a deterministic trait of the PDMP dynamics, the problem 
is created by trajectories of the vector field that activate a guard by touching tangentially its boundary surface, as shown in 
Fig. 6(a). In fact, for N large enough trajectories of the CTMC are contained in a small flow tube around this solution, hence 
some of them can cross the surface, while others may miss it. Another class of trajectories that creates problems is that 
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of trajectories remaining in the boundary of the activation region of the guard (i.e., the discontinuity surface of the guard 
predicate) for a non-negligible amount of time, say for the time interval [t1, t2], t1 < t2. Here, the problem is that a CTMC 
trajectory can activate the guard in any time instant between t1 and t2.

However, convergence holds for trajectories of the vector field which transversally cross the discontinuity surface of a 
guard predicate, meaning that they intersect the surface at time t and enter in the interior of the region in which the guard 
is true just after t . Fortunately, this is the situation we are more likely to find in practise.

Now we prove a result about convergence of exit times that can be applied to the setting of Section 4. This result 
requires that almost surely only transversal crossings occur. We will then extend the hybrid limit theorem imposing this 
condition. We postpone discussion about how to check and/or enforce such a condition until later in the section.

We need some preliminary definitions. The first logical step that we need is to move from predicates to continuous 
functions in the definition of a guard.

Definition 6.1. Let Ĝ(x̂) be a guard predicate with closed activation region. A function h : E → R is an activation function or 
a guard function for Ĝ if it is a continuous function, and if the sets of points {x̂ | h(x̂) ≥ 0} defines the activation region of Ĝ: 
Ĝ(x̂) is true if and only if h(x̂) ≥ 0.

The function h is a robust activation function for Ĝ if and only if ∂{x̂ | h(x̂) < 0} = ∂{x̂ | h(x̂) > 0} = {x̂ | h(x̂) = 0}.

The notion of robust activation function essentially guarantees that the interior of the set in which Ĝ is true is {x̂ | h(x̂) >
0}, so that it makes sense to define a transversal crossing of the guard Ĝ as a change of sign of the function h. The 
discontinuity surface of the guard is therefore H = {x̂ | h(x̂) = 0}.

The notion of robust activation is a very reasonable assumption to make. In practical cases, the function h will be a 
piecewise smooth function, usually piecewise linear, and the surface H will be a union of differentiable (or even analytic) 
manifolds of dimension n −1 or less. In particular, a function like h(x̂) = x1 if x1 ≤ 0 and h(x̂) = 0 if x1 > 0 is forbidden. This 
function is a bad activation function as its discontinuity surface H is the whole half-space {x1 ≥ 0}, and furthermore the 
sequence of functions h(N)(x̂) = h(x̂) − 1

N converges uniformly to h but their activation set is empty for all N . This justifies 
the use of the term robust: we are forbidding functions which under any small perturbation induce a discontinuous change 
in the activation set. From now on, we restrict our attention to robust activation functions.

Coming back to PDMP derived from TDSHA, it is easy to see how to construct a guard function for the class of guards 
of instantaneous transitions. In fact, we are considering only positive boolean combinations of atoms of the form hi(x̂) ≥ 0, 
where hi is continuous. Then, we just need to combine the functions hi with maximum, minimum, and negation to take into 
account the structure of boolean combinators. Furthermore, if in the TDSHA we have k instantaneous transitions π1, . . . , πk , 
with activation functions h1, . . . , hk , we can combine them into a unique activation function h by taking their maximum: 
h(x̂) = max{h1(x̂), . . . , hk(x̂)}. The function is a robust activation function which is greater than or equal to zero if and only 
if at least one guard is true. We call h the activation function of the PDMP.

Consider now a continuous trajectory x̂ : [0, ∞) → E and let h : E → R be a robust activation function, such that 
h(x̂(0)) < 0.

Definition 6.2. The robust activation function h (or the corresponding activation surface H) is transversal for the trajectory 
x̂(t) if and only if, letting ζ = inf{t | h(x̂(t)) ≥ 0}, there is a δ > 0 such that h(t) > 0 for t ∈ (ζ, ζ + δ].

Suppose now X̂(t) is a stochastic process with almost surely continuous trajectories, like the fluid limit x̂(t), with initial 
conditions (drawn from a distribution) x̂0.

Definition 6.3. An activation function h is robustly transversal to X̂(t) if and only if the set of trajectories for which it is 
transversal has probability 1.

The notion of robustly transversal activation function can be lifted to PDMP, by requiring that all the guards of the 
PDMP are robustly transversal in each continuous trait of the dynamics,12 i.e. that instantaneous transitions are activated 
transversally:

Definition 6.4. A PDMP x̂(t) is robustly transversal if and only if with probability one its trajectories are robustly transversal
in each continuous trait.

Consider now a sequence X̂(N)(t) of normalized CTMC associated with a sequence (A, γN ) of population-sCCP models, 
and assume that X̂(N)(t) converges weakly to X̂(t) as N → ∞, where X̂ is a.s. continuous. Furthermore, let h, h(N) : E → R

12 This means that, if the i-th jump of a PDMP trajectory x̂(t), happening at time Ti , corresponds to an instantaneous transition, then there is a δ > 0
such that by extending the continuous trajectory starting at x̂(T +

i−1) up to Ti + δ, the crossing is transversal, i.e. h(x̂(t)) > 0 for t ∈ (Ti , Ti + δ).
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be the activation functions for X̂ and X̂(N)(t), respectively. Assume that h(N) converges to h uniformly for each compact set 
K ⊆ E and call ζ (N) = inf{t | h(N)(X̂(N)(t)) ≥ 0}.

We can show the following lemma, whose proof is given in Appendix D.

Lemma 6.1. Let (A, γN ) be a sequence of population-sCCP models for increasing population size γN → ∞, as N → ∞. Let X̂(N)(t)
be the associated normalized sequence of CTMC, and suppose X̂(N) ⇒ X̂, where X̂ has a.s. continuous sample paths. Let h(N), h be 
activation functions for X̂(N) and X̂, such that h(N) → h uniformly, and suppose h is robustly transversal to X̂. Then ζ (N) ⇒ ζ . �
Example 6.1. We discuss now a hand-crafted example to demonstrate the need for the request of transversal activation of a 
guard. We consider a population-sCCP program (A, γN ) with three continuous variables X1, X2, and X3 taking values in Z, 
and one discrete variable Z .

agent1
def= [X2 ≥ 0 → X ′

1 = X1 + 1]X2.agent1
+ [X2 < 0 → X ′

1 = X1 − 1]|X2|.agent1
agent2

def= [∗ → X ′
2 = X2 + 1]X3.agent2

+ [∗ → X ′
2 = X2 − 1]12γN.agent2

agent3
def= [∗ → X ′

3 = X3 + 1]6γN.agent3

doom
def= [X1 ≥ 5γN → Z = 1]∞:1.0

The initial network is agent1 ‖ agent2 ‖ agent3 ‖ doom, with initial value of variables X1(0) = γN , X2(0) = 9γN , 
X3(0) = Z(0) = 0.

Normalizing the model, we observe that all non-instantaneous transitions satisfy the continuous scaling. If we compute 
the drift, we obtain the following set of ODE (as the guards in the transitions of agent1 elicit with the modulus), with 
initial conditions (1, 9, 0):

⎧⎪⎨
⎪⎩

dx1
dt = x2 + 9

dx2
dt = x3 − 12

dx3
dt = 6

These equations can be integrated directly, obtaining x1(t) = t3 − 6t2 + 9t + 1, whose trajectory can be seen in Fig. 6(a). 
Notice that, for t = 1, the curve hits tangentially the line x1 = 5, which is the activation surface associated with the robust 
activation function h(x̂) = x1 − 5, while it transversally crosses such a line at t = 4. In Fig. 6(b), we show the hitting time 
distribution for the sequence of CTMC for increasing size γN , by visualizing the passage-time distribution of the event Z = 1, 
i.e. P{Z(t) = 1} as a function of t . As we can see, the bimodal nature of the distribution persists also for large N , supporting 
the claim that tangential activation creates problems for convergence of exit times.

6.2. Convergence of reset kernels

There is a second source of discontinuity induced by instantaneous transitions, namely in the reset kernel of the PDMP 
on the activation surface of the guards. The problem lies in the fact that, if we have more than one instantaneous transition, 
a specific one will be active only in a subregion Hπ of the activation surface H, where H = {x̂ | h(x̂) = 0} and Hπ = {x̂ ∈
H | hπ (x̂) = 0}. In particular, the reset kernel is not robust in the boundary ∂HHπ of Hπ in H. In fact, if a trajectory of the 
PDMP hits H in such a boundary, then a small perturbation can change the set of active guards (including or excluding π ), 
and the fate of the system may be different. The same problem can manifest itself on the intersection between the activation 
surfaces of the guards of two instantaneous transitions π1 and π2: in any neighbourhood of (the boundary of) this region, 
we can find points in which only one of π1 and π2 is active. This lack of robustness reflects itself in a loss of continuity of 
the reset kernel. Hence we can no longer rely on this property to prove the convergence of the state after the reset (a fact 
used in the proof of Theorem 5.1).

Intuitively, convergence cannot hold for trajectories x̂(t) of the PDMP that hit H in ∂HHπ . In fact, trajectories of the 
CTMC that converge to x̂(t) can hit either Hπ or is complement in H, implying that the CTMC can be reset to a different 
state from the PDMP. Furthermore, the probability of hitting Hπ or its complement in H will depend on the geometry of 
H around the boundary ∂HHπ , rather than on the priority functions governing the choice for the PDMP. We illustrate this 
point by the following simple example.

Example 6.2. We consider a model of a one-dimensional random walk in sCCP. More specifically, we consider a population-
sCCP program (A, γN ) with two variables to be approximated continuously, X and Y , and one variable Z to be kept discrete. 
In particular, X and Y will count how many times we go up and down, respectively. We have the following sCCP code:
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Fig. 7. (Left) Exemplification of the random walk model of Example 6.2. The activation surface of instantaneous transition doom1 is shown in red, while 
the activation surface for doom2 is visualized in blue. Trajectories are coloured according to the surface they hit. The black trajectory is the solution of 
the PDMP associated with the model. (Right) Exemplification of the random walk model of Example 6.3. The trajectories coloured in red fire the doom2
instantaneous transition, whose activation surface is also shown in red. The dotted blue line is the activation surface of doom1. Obviously, no trajectory is 
coloured in blue, as no trajectory can hit that surface. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.)

up
def= [∗ → X ′ = X + 1]γN.up

down
def= [∗ → Y ′ = Y + 1]γN.down

doom1
def= [X ≥ γN → Z = 1]∞:99.0

doom2
def= [Y ≥ γN → Z = −1]∞:1.0

The initial network is up ‖ down ‖ doom1 ‖ doom2, with initial value of variables X(0) = Y (0) = Z(0) = 0. This system 
is easily seen a to be a one-dimensional random walk for the variable W = X − Y . When visualized in the plane X, Y , the 
trajectories of the random walk are rotated by 45 degrees along the line defined by the equation Y = X (see Fig. 7(a)). In 
the normalized system, such trajectories will eventually hit one of the discontinuity surfaces at x̂ = 1 or ŷ = 1. The vector 
field of the PDMP is given by F (x, y) = (1, 1), hence the solution from the point x̂(0) = ŷ(0) = 0 is x̂(t) = ŷ(t) = t , which 
corresponds to the line x̂ = ŷ. This line hits the activation surface in its corner point (1, 1), where both transitions are active, 
hence after the reset Z = 1 with probability 0.99, and Z = −1 with probability 0.01. However, in the CTMC X̂ and Ŷ can 
only increment by 1/N asynchronously, meaning that each trajectory has to hit one of the two segments of the activation 
surface before the other. By a simple symmetry argument, we can see that for each N , the probability that Z = 1 after the 
reset is 0.5 (see again Fig. 7(a)), hence convergence cannot hold for this model.

To have some hope to obtain convergence after a reset, we need to exclude trajectories of the PDMP x̂(t) that are 
troublesome. Consider a sCCP model with m instantaneous transitions π1, . . . , πm , and let hπ1 , . . . , hπm be the corresponding 
activation functions, and h = max{hπ1 , . . . , hπm } be the activation function of the PDMP. Define the activation surface H =
{x̂ | h(x̂) = 0} and Hπ j = {x̂ ∈H | hπ j (x̂) = 0}. Let D j = ∂HHπ j be the boundary of Hπ j in H and D = ⋃

j D j be the union 
of such boundaries, called the discontinuity region of H.

Definition 6.5. A PDMP x̂(t) obtained from a TDSHA T has the robust activation property if and only if the set of trajectories 
hitting the discontinuity region D of H has probability zero.

This property essentially tells us that we can ignore the situations in which the PDMP activates instantaneous transitions 
in non-robust points.

However, this is not the only issue with reset kernels. There is another problem that can arise when we allow the acti-
vation functions hπ of instantaneous transitions to depend on the size γN , i.e. when h(N)

π �= hπ . The problem, in particular, 
manifests itself if the activation surfaces of two or more guards with size-dependent activation functions overlap (robustly) 
in the limit model.

Example 6.3. We consider a simple random walk model, with one variable X with values in Z, that will be approximated 
continuously, and a variable Z that will remain discrete.
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rw
def= [∗ → X ′ = X + 1]γN.rw
+ [∗ → X ′ = X − 1]γN.rw

doom1
def= [Z = 0 ∧ X ≥ γNk − 1 → Z = 1]∞:1.0

doom2
def= [Z = 0 ∧ X ≥ γNk − 2 → Z = −1]∞:1.0

The initial network is rw ‖ doom1 ‖ doom2, with initial value of variables X(0) = Z(0) = 0. The activation surface for Z = 0
of doom1 in the normalized model is the hyperplane X̂ = k − 1

γN
, while that of doom2 is the hyperplane X̂ = k − 2

γN
. As X

is increased and decreased by one unit only (hence X̂ is modified by 1
N units), for any N the system will always fire doom2

(notice that the additional condition on Z forbids firing doom1 once doom2 has fired). Hence, Z = −1 eventually, for the 
CTMC models at any population level N (see also Fig. 7(b), for k = 0.5). However, in the limit model both activation surfaces 
converge to the limit hyperplane x̂ = k, hence in the limit PDMP Z takes value −1 only with probability 0.5. Convergence 
again fails.

This example suggest that, in order to avoid such problems, we should either forbid N-dependent guards in instantaneous 
transitions of population-sCCP models, or try to forbid those situations in which more than one N-dependent guard can be 
robustly activated at the same time in the limit model. We state this in the following definition.

Definition 6.6. A set of activation functions of guards h(N)
1 , . . . , h(N)

m of a population-sCCP model is size-compatible if and 
only if, for each j such that h(N)

j is size-dependent (i.e. h(N)
j converges uniformly to h j in each compact set but h(N)

j �= h j), 
then intH(H j) ∩Hi = ∅, for each i �= j (i.e. in any point in which the limit activation function h j is robustly zero in H, no 
other hi function is zero).

The limit PDMP x̂(t) obtained from a population-sCCP model is size-compatible if and only if the set of activation function 
of guards of instantaneous transitions is size compatible.

Technically, Definitions 6.5 and 6.6 are the key properties that allow us to extend a lemma on the convergence of con-
tinuous reset kernels (Lemma Appendix C.1), into a more general result capable of dealing with discontinuous reset kernels 
of the form induced by instantaneous transitions. This will be formally discussed in Lemma Appendix D.3 in Appendix D.

6.3. Hybrid convergence theorem

The previous lemmas and hypothesis are the core argument for extending Theorem 5.1 in the presence of instantaneous 
transitions. Before proving it, we make explicit the scaling for instantaneous transitions.

Scaling 4 (Discrete scaling for instantaneous transitions). A normalized instantaneous sCCP transition with random reset
π̂ = (g(N)(X̂), X̂′ = r̂(N)(X̂, W(N)(X̂)), ̂p(N)

π (X̂)) of a population-sCCP program (A, γN ) with variables partitioned into X̂ =
(Xd, X̂c, Xe), with X̂ ∈ E , satisfies the discrete scaling if and only if:

1. The activation function h(N)(X̂) of the guard g(N)(X̂) converge uniformly in each compact K ⊂ E to a continuous function 
h(X̂);

2. p̂(N)
π (X̂) = O (1), p̂(N)

π (X̂) is continuous and it converges uniformly in each compact K ⊂ E to the continuous function 
p̂π (X̂);

3. Resets converge weakly (uniformly on compacts), i.e. for each x̂(N) → x̂ in E , r̂(N)(x̂(N), W(N)(x̂(N)) ⇒ r̂(x̂, W(x̂)), as 
random elements on E .

If an instantaneous sCCP-transition of the form π = [h(N)
π (X̂) ≥ 0 → X̂′ = r̂(N)

π (X̂, W(N)(X̂))]∞:p̂(N)
π (X̂)

satisfies the previous 
scaling, then the corresponding transition in the limit TDSHA is given by (hπ (x̂)) ≥ 0, ̂rπ (x̂, W(x̂)), ̂pπ (x̂)). Consider now the 
limit PDMP x̂ on E , associated with the normalized TDSHA T̂ (A) constructed from a sequence (A, γN ) of population-sCCP
models, in which all transitions satisfy Scalings 2, 3, or 4.

Theorem 6.1. Let (A, γN) be a sequence of population-sCCP models for increasing system size γN → ∞, as N → ∞, with variables 
partitioned into X = (Xd, Xc, Xe), with discrete stochastic actions satisfying Scaling 3, instantaneous actions satisfying Scaling 4, and 
continuous actions satisfying Scaling 2. Let X̂(N)(t) be the associated sequence of normalized CTMC and x̂(t) be the limit PDMP associ-
ated with the normalized limit TDSHA T̂ (A).

If x̂(N)
0 ⇒ x̂0 (weakly) and the PDMP is non-Zeno, robustly transversal, has the robust activation property and it is size-

compatible, then X̂(N)(t) converges weakly to x̂(t), X̂(N) ⇒ x̂, as random elements in the space of cadlag function with the Skorokhod 
metric.

Proof. The proof is only sketched here, see Appendix D for further details. The idea is to reason as in Theorem 5.1, just 
replacing the machinery about jump times by a more refined one taking into account also instantaneous jumps. Essentially, 
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we have to take the minimum of the stochastic and instantaneous jump times, and choose which reset kernel to use 
according to which kind of event (stochastic or instantaneous) fires first. The weak convergence of these new jump times 
and reset kernels follows easily from the convergence of stochastic and instantaneous ones. �
Remark∗ 6.1. Theorem 6.1 relies on three global properties of the PDMP associated with the population-sCCP model, namely 
the robust transversal, the robust activation, and the size-compatibility property.

The last requirement should be generally relatively easy to check, as it depends only on the activation functions of 
guards, and not on their interaction with the vector field. In fact, in most practical cases, guards are boolean combinations 
of linear predicates, hence if some of them depend on N , by computing the limit activation function (which should also be a 
combination of linear functions h j,1, . . . , h j,k j ), one can discover if there is a robust overlapping of guards by solving a linear 
system of equations for each pair i, j of size-dependent guards (say hi,1(x̂) = 0, . . . , hi,ki (x̂) = 0, h j,1(x̂) = 0, . . . , h j,k j (x̂) = 0) 
and checking if the solution has dimension n − 2 or less in each mode. Here we are implicitly assuming that the PDMP 
and the sequence of CTMC can evolve in an open subset of E of dimension n in each mode (if this is not the case, due to 
conservation laws, we can just use these laws to reduce the dimensionality of the system). If the activation functions are 
non-linear, then the previous approach can be still carried out, though checking the intrinsic dimensionality of a non-linear 
manifold is obviously more complicated.

On the other hand, the robustness conditions on the PDMP are more complex to check. The robust transversal property 
requires that the PDMP transversally crosses an activation surface with probability one. If the PDMP is deterministic (i.e., 
there is no discrete and stochastic transition), then this check can be carried out along the single trajectory starting from the 
given initial state. In case the number of firings of instantaneous transitions is finite, or these events are ultimately periodic, 
then it may be possible to set up a semi-decision procedure for this task. The problem, also in this simple case, is that 
checking if a trajectory has a tangential crossing is the same as looking for a non-simple zero13 of the activation function. 
However, no root finding algorithm is able to properly deal with non-simple zeros, even for analytic functions, see e.g. [55]. 
In fact, we can only hope to compute a non-deterministic approximation of the trajectory, namely a flow tube around it, 
which for a tangential activation would intersect the surface but not cross it completely. This still does not prove that there 
is a tangential zero, just that we cannot ignore this possibility. Note that if a trajectory does not intersect the activation 
surface but a flow tube of small radius around it does, then the behaviour of the sequence of CTMC can diverge from that of 
the PDMP due to small fluctuations around the limit trajectory, which can lead to completely different behaviours. In those 
cases, even if convergence will hold in the limit, the speed of convergence can be very slow.

If the PDMP is a proper stochastic process, then checking the robust transversal property can be even more challeng-
ing. In fact, the condition requires us to show that non-transversal activations happen with probability zero. One way to 
approach the problem is to exploit randomness to our advantage. Suppose that, in a given mode q, the continuous state 
space Eq has topological dimension n and that we can show that the activation surfaces have (topological) dimension n − 1
and set of points B in the activation manifold corresponding to non-transversal crossing has (topological) dimension n − 2
or less. Then, the set of points Et of Eq such that x̂(t) ∈ B if x̂0 ∈ Et has dimension n − 2 (it is the continuous image of B
under the flow of the vector field for −t units of time) so that the subset E B ⊆ Eq of initial points for which x̂(t) hits B
has dimension n − 1. If we can further prove that the distribution at each time t of the PDMP is absolutely continuous with 
respect to the Lebesgue measure (i.e. P(A) = 0 for each Borel set A of Lebesgue measure 0), it necessarily follows that the 
probability that x̂(t) ∈ B is zero (as E B has Lebesgue measure zero). This last property can be enforced by requiring that the 
initial conditions and the reset kernels are absolutely continuous probability distributions (e.g. n-dimensional multivariate 
Gaussian distributions). If the system satisfies some conservation law, so that we are interested in its dynamics in a mani-
fold of dimension less than n, then we can reduce its dimensionality and analyze the reduced system in the way sketched 
above.

Proving that the set B has dimension n − 1 or less, instead, is more challenging in general. If the activation function of 
guards are linear (or analytic), and the vector field is analytic, then one may exploit properties of analytic manifolds for 
this task, studying the set of zeros of the scalar product of the normal vector to the activation surface with the vector field 
(B , in fact, is contained in this zero set). We do not pursue this direction any further in this paper, leaving its investigation 
for future work, with the goal of providing (semi-)automatic static analysis procedures to check for the applicability of the 
hybrid approximation method, at least for a practically relevant subclass of population-sCCP models.

The property of robust activation can be dealt with along the lines sketched above, looking at the dimension of the 
intersection of activation surfaces. In this case, the task should be considerably simplified if all guards are linear.

Example 6.4. We consider now a different scenario, in which we model the spreading of a worm epidemic in a computer 
network. The class of models used for this circumstance is usually drawn from the well developed field of epidemiology, and 
we make no exception to this rule. We will consider a simple SIR model [56], in which each node of the network has three 
states: susceptible Xs , infected Xi and recovered Xr . Here the size of the system γN coincides with the total population N
of nodes, which is assumed to be constant, i.e. Xi + Xs + Xr = N . We assume that infection happens by the malicious action 
of the worm in infected nodes, which try to send infected messages around the network. There is also a small chance that 

13 A zero of a real valued differentiable function is non-simple if also the derivatives of the function up to order k ≥ 1 are zero in the same point.
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Fig. 8. Comparison of hybrid and stochastic trajectories of the epidemics model of Example 6.4, for parameters ki = 100, ke = 0.001, ks = 0.1, k0
p = 0.1, 

k1
p = 2.0 (left) or k1

p = 1.0 (right). Control thresholds are α0 = 0.3 and α1 = 0.1 (left) or α1 = 0.088 (right). Initial conditions are x̂i(0) = 0.1 and x̂s(0) = 0.9. 
Note that for N large the stochastic trajectory is indistinguishable from the hybrid limit one. In the figure on the right, the threshold α1 is slightly smaller 
than the steady state of the ODE when U = 1. However, the stochastic system can hit the threshold and change mode, even for γN large. In any fixed time 
horizon, this event becomes less and less likely as N goes to infinity: here, we observe a spike for N = 100 000, but not for N equal to one million.

infection comes externally from the network. Recovery from an infection is obtained by patching an infected computer node. 
However, after some time new generations of worms appear, and we describe this by the loss of immunity of recovered 
nodes, that return to be susceptible. We assume that only infected nodes are patched. The sCCP code for this model is as 
follows:

infection
def= [∗ → X ′

i = Xi + 1 ∧ X ′
s = Xs − 1]ki Xs Xi/γN.infection +

[∗ → X ′
i = Xi + 1 ∧ X ′

s = Xs − 1]γN ke.infection

loss_immunity
def= [∗ → X ′

r = Xr − 1 ∧ X ′
s = Xs + 1]ks Xr.loss_immunity

patching
def= [∗ → X ′

i = Xi − 1 ∧ X ′
r = Xr + 1]kp Xi.patching

The patching rate kp is the only controllable activity in the system, and we will use instantaneous transitions to model 
control policies. In particular, we consider here the following policy: if the fraction of infected computers is above a thresh-
old α1, we increase the patch rate from k0

p to k1
p . If the fraction of infected fall below the threshold α0 < α1, we switch 

back to the normal patching rate. We model this in sCCP by introducing a new variable U , taking values 0 or 1, modifying 
the agent patching as

patching
def= [U = 0 → X ′

i = Xi − 1 ∧ X ′
r = Xr + 1]k0

p Xi
.patching

+ [U = 1 → X ′
i = Xi − 1 ∧ X ′

r = Xr + 1]k1
p Xi
.patching

and introducing the control agent

control
def= [Xi/γN > α1 → U ′ = 1]∞:1.control
+ [Xi/γN < α0 → U ′ = 0]∞:1.control

First, note that this model satisfies the scaling assumptions of Theorem 6.1, when all variables except U and all stochastic
sCCP-transitions are considered as continuous. As there is no stochastic transition, the limit model is deterministic. Hence, 
if we start from a given initial state, we need to check that the single trajectory of the limit model satisfies the assumptions. 
For a given set of parameters, shown in Fig. 8, we can choose α1 such that the steady state of the limit model with low 
patching rate is above α1 and α0 such that the steady state of the limit ODE model with high patching rate is below α0, 
inducing oscillations in the limit hybrid model. This is confirmed in Fig. 8(a), where we can also check visually that the 
crossing of the guard surfaces is always transversal. A formal proof can be given as well, by verifying that the projection of 
the vector field on the orthogonal direction to X̂i = α1 or X̂i = α0 is null in a single point, namely (k0

p/ki, α1, 1 −k0
p/ki −α1)

or (k1
p/ki, α0, 1 − k1

p/ki −α0), respectively, and observing that the trajectory in Fig. 8 never passes from these points. As the 
conditions of Theorem 6.1 are satisfied, we can conclude that the sequence of CTMC models obtained by the sCCP-program 
for increasing γN converges to the hybrid system.

In Fig. 8(b), we show the same model for a different high patching rate and a different threshold α1, such that the limit 
model in state U = 1 converges to a steady state slightly greater than α1, thus never activating the instantaneous transition. 
We can see that the stochastic model behaves in the same way, but for N very large, because the proximity of α1 induces 
an activation of the transition in stochastic trajectories with small (but non-null) probability for any N . In particular, this 
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implies that if we leave enough time, almost surely a stochastic trajectory will eventually cross the surface x̂i = α1, changing 
discrete mode. This shows how the notion of weak convergence is restricted to the transient behaviour, but does not bring 
in general information about the steady state.

6.4. Time-dependent guards

Guards of instantaneous transitions depending on time can be a valuable addition to the modelling language, as they 
allow us to describe global events that have a duration, which can be either deterministic or stochastic.

More precisely, we consider the extension of sCCP [20] with a reserved keyword time, referring to simulation time, 
whose usage is confined to guards and update functions of instantaneous transition, and to update functions of stochastic 
transitions, which have to be kept discrete. Moreover, the special variable time can never be updated. Specifically, we allow 
instantaneous transitions of the form [Gπ (X, time) → X′ = rπ (X, W, time)]∞:w . In particular, Gπ (X, time) is required to be of 
the form time ≥ h0(X) ∧ Gπ,1(X), for some function h0 and some standard guard predicate Gπ,1(X) (with activation function 
h1(X̂)). We call a population-sCCP model (A, γ ) with timed-guards a time-guarded population-sCCP model.

Translation of these transitions to TDSHA is straightforward and follows the same scheme as Section 2.3. The only 
difference is that in the TDSHA/PDMP setting it is more convenient to internalize the notion of time, by adding a dedicated 
clock variable keeping track of the global simulation time. This is done by adding a new continuous variable, Time, and a 
new automata, called time-monitor, in the parallel composition of TDSHA, with a single continuous transition of the form 
(1Time, 1), where 1Time is the vector equal to one in the position of the variable Time, and zero elsewhere.

In the following, we restrict our attention to time-guarded transitions that satisfy the following scaling assumption with 
respect to the population size γN .

Scaling 5 (Discrete scaling for time-guarded instantaneous transitions). A normalized time-guarded instantaneous sCCP transi-
tion with random reset π̂ = (g(N)(X̂, time), X̂′ = r̂(N)(X̂, W(N)(Ŷ), time), p̂(N)

π (X̂)) of a population-sCCP program (A, γN ) with 
variables partitioned into (Xd, Xc, Xe), X̂ ∈ E , has discrete scaling if and only if:

1. The activation function of the guard g(N)(X̂), which is min{time − h(N)
0 (X̂), h(N)

1 (X̂)}, is such that h(N)
i (X̂) converges 

uniformly in each compact K ⊂ E to a continuous function hi(X̂), i = 0, 1. Furthermore, h(N)
0 and h0 do not depend on 

the variables X̂c of X̂ that are modified continuously;
2. p̂(N)

π satisfies the same conditions as in Scaling 4;
3. Resets converge weakly (uniformly on compacts), i.e. for each (x̂(N), t(N)) → (x̂, t) in E × R≥0, r̂(N)(x̂(N), W(N)(x̂(N)),

t(N)) ⇒ r̂(x̂, W(x̂), t), as random elements on E .

Under the previous scaling, if we consider initial conditions (or the state after one jump) such that X̂(N)
0 ⇒ X̂0, given the 

independence of the activation function from variables modified continuously, we easily obtain h(N)
0 (X̂(N)

0 ) ⇒ h0(X̂0) (reason 
as in Lemma 6.1). Recalling that in the limit PDMP, Time is treated like a regular continuous variable, we can combine 
this observation with the discussion about exit times and reset kernels in the previous section to obtain convergence. 
Note, in particular, that the activation condition on time has always a robustly transversal activation function (as Time
is monotonically increasing). Hence, the only problems for convergence of a timed-transition can come from the other 
component of the guard (i.e. from the activation function h1). Therefore, we obtain that the time T (N) in which g(N) becomes 
true converges weakly to the time T in which g becomes true. Then, a minor adaptation of the proof of Theorem 6.1 gives 
the following

Proposition 6.1. Let (A, γN) be a sequence of time guarded population-sCCP models for increasing systems size, γN → ∞, as N → ∞, 
with variables partitioned into X = (Xd, Xc, Xe), with discrete stochastic actions satisfying Scaling 3, instantaneous actions satisfying 
Scaling 4, time guarded actions satisfying Scaling 5, and continuous actions satisfying Scaling 2. Let X̂(N)(t) be the associated sequence 
of normalized CTMC and x̂(t) be the limit PDMP associated with the sequence of normalized TDSHA T̂ (A, γN ).

If X̂(N)
0 ⇒ x̂0 (weakly) and the PDMP is non-Zeno, robustly transversal, has the robust activation property and it is size-

compatible, then X̂(N)(t) converges weakly to x̂(t), X̂(N) ⇒ x̂, as random elements in the space of cadlag function with the Skorokhod 
metric. �
Example 6.5. As an example of time-dependent guards, we consider again the client-server model with breakdown, as in 
Example 5.2. In that example, we used random resets to model a variable level of damage, reflecting in the time needed to 
repair the system. Here, instead, we consider a single damage level, but with a generally distributed repair time. In terms 
of sCCP model, we need an environment variable, say K , representing the time in which the server repair will finish. It will 
be re-sampled from a given distribution each time a breakdown occurs. More specifically, let W be a random variable on 
the positive reals, with cumulative distribution function F (t), independent of the current state. Each time the server breaks, 
we set K to time + W . The server agent now becomes
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Fig. 9. Empirical cumulative distribution of clients requesting service at time t = 10 000 and average number of clients request service for the client-server 
model of Example 6.5. The model has a fixing time sampled from a Weibull distribution with shape 1.5 and rate 1/1000. Other parameters are as in the 
caption of Fig. 3. The bimodality of the distribution is captured, with less variability in the hybrid model. The average is almost indistinguishable.

server
def= [∗ → X ′

i = Xi − 1 ∧ X ′
b = Xb + 1 ∧ K ′ = time + W ]kb Xi.server

+ [time = K → X ′
i = Xi + 1 ∧ X ′

b = Xb − 1]∞:1.server

It is easy to see that this modified model satisfies the scaling conditions of Proposition 6.1, as the guard of the times 
transition is independent of γN . It follows that convergence holds, as can be seen in Fig. 9, where we consider a fixing time 
sampled according to a Weibull distribution.

7. Dealing with guards depending on continuous variables

In this section, we look at what happens if we allow guards depending on continuous variables in sCCP transitions, 
which in the limit can either be approximated as continuous or be kept discrete and stochastic. This additional feature, 
which is straightforward from the point of view of the modelling language and which poses no problems in the definition 
of the CTMC semantics, has more complex consequences for what concerns the hybrid limits.

We will first focus on guards on continuous transitions, as these are somehow more delicate to deal with. Guards on 
discrete stochastic transitions, which create problems that are, in a certain sense, analogous to those with instantaneous 
transitions, will be discussed later on in Section 7.4.

7.1. Guards on continuous transitions

Guards on continuous transitions introduce discontinuities in the vector field. In fact, the rate function λ̂π (x̂) of a con-
tinuous transition π has to be multiplied by the indicator function of the guard predicate, which we assume to be of the 
form h(x̂) ≥ 0, obtaining the discontinuous function f̂π (x̂) = λ̂π (x̂) · I{h(x̂) ≥ 0}. In doing this operation, we leave the world 
of differential equations, entering into the more intricate realm of discontinuous or piecewise-smooth dynamical systems 
(PWSS) [32,57] or, more generally, of differential inclusions [33].

The problem, roughly speaking, is that existence and uniqueness of the solution of an ODE with discontinuous right-
hand-side is not guaranteed even if all rate functions are regular (say Lipschitz continuous) and if guards are also described 
by smooth functions (say differentiable functions). Furthermore, solutions can exhibit strange behaviours, like sliding motion
(sliding on a discontinuity surface) or chattering (Zeno behaviour in crossing discontinuity surfaces).

The lack of uniqueness, in particular, is problematic in our context, as it is a fundamental condition in the definition of 
the class of PDMP we consider here. Indeed, more general frameworks can be considered, like PDMP based on differential 
inclusions, but we leave the investigation of this direction for future work.

In this paper, we will follow the treatment of [34], in which the author discusses mean field limits in presence of guards, 
when the limit is a PWSS. A more general approach is that of [35], but we stick to the first one as we believe it is more 
intuitive. In the next subsection, we will briefly give an introduction to PWSS, in which we will discuss conditions for 
existence and uniqueness of solutions. Then, we will turn our attention to fluid approximation of those systems and plug 
these results into our framework.

7.1.1. Piecewise-smooth dynamical systems
Consider an ordinary differential equation dx̂

dt = F (x̂). A solution in the classical sense is a (continuously) differentiable 
function x̂(t) such that d x̂(t) = F (x̂(t)), and x̂(0) = x̂0. A classical result is the Picard Lindelöf theorem [58]: if F is (locally) 
dt
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Fig. 10. Schematic representations of transversal motion across H, of sliding motion along H, and of the geometric construction of the sliding vector 
field G(x̂).

Lipschitz on a set E ⊆ R
n and x̂0 is in the interior of E , then there exists a unique global solution of the differential equation 

within E .
However, here we are interested in dynamical systems in which the right hand side of the ODE can be a discontinuous 

function, possibly undefined, on a set of points of measure zero. This is the setting studied in the theory of ordinary 
differential equations with discontinuous right-hand side [57]. In particular, we will consider the so-called switching systems 
or piecewise smooth (PWS) dynamical systems [32,59]. Let F : E → R

n , with E ⊆ R
n , and suppose there exist a finite set of 

domains Ri , i = 1, . . . , s, such that F is smooth (or at least Lipschitz) on R̄i , the closure of Ri , and 
⋃

R̄i ⊇ Ē . Notice that 
F can be discontinuous only on the boundaries ∂Ri of the regions Ri , so that the discontinuous set is H = ⋃

∂Ri and it 
has measure zero.

In the following, we will briefly sketch some basic notions of these systems, which we will need in the following, starting 
from the concept of a solution. In fact, given that the vector field is discontinuous, we cannot look anymore for solutions 
which are continuously differentiable functions. Therefore, we will look for solutions among absolutely continuous functions, 
i.e. continuous functions which are equal to the integral of another function [60] and are henceforth differentiable almost 
everywhere.

In order to define such solutions, we will lift the function F to a set valued function F̄ , F̄ (x̂) ⊆ R
n , known as the 

Filippov extension of F . Then we define a Filippov solution as an absolutely continuous function x̂(t) such that x̂(0) = x̂0
and d

dt x̂(t) ∈ F̄ (x̂(t)) almost everywhere. That is to say, we replace the discontinuous differential equation by a differential 
inclusion [32,33]. More specifically, we define F̄ (x̂) as co{limk→∞ F (x̂k) | x̂k → x̂, x̂k /∈ H}, where co denotes the convex 
closure of a set. Notice that for each continuity point x̂ of F , F̄ (x̂) = {F (x̂)}, so that we have a proper differential inclusion 
only in the discontinuity region H.

For simplicity, consider a PWS system constituted by only two regions R1 and R2, and let x̂ ∈ H be a point of discon-
tinuity of the vector field. Furthermore, suppose that F equals the function F1 on R̄1 and the function F2 on R̄2, and that 
F1, j(x̂) < F2, j(x̂). In this setting, F̄ j(x̂) = [F1, j(x̂), F2, j(x̂)].

The existence of a solution, starting from a point x0 , is guaranteed under mild conditions on the Filippov extension F̄
of F [57]: F̄ must be (locally) bounded14 and upper semicontinuous.15 Consider again a PWS system with two regions R1
and R2, as above. Then, existence is guaranteed if functions F1 and F2 are continuous on R̄1 and R̄2.

In order to understand the behaviour of a PWS dynamical system on a discontinuity point of the vector field, we restrict 
our attention to the two regions system (which is a good local model, unless a discontinuity point belongs to the boundary 
of more than two regions), further assuming that R1 and R2 are separated by a smooth surface H. In particular, H is 
defined as H = {x̂ | h(x̂) = 0}, where h is a function with continuous second order derivatives, while R1 = {x̂ | h(x̂) >
0} and R2 = {x̂ | h(x̂) < 0}. We further require that ∇h(x̂) �= 0 for each point x̂ ∈ H, so that the normal vector n(x̂) =
∇h(x̂)/||∇h(x̂)|| is always defined for the surface H, and always points into R1, see Fig. 10.

To understand the behaviour of a trajectory when it hits the surface H, consider a situation in which the solution is in 
the interior of R2 and hits H in x̂ at some time t . Then, two things can happen, depending on the relative orientation of the 
vectors F1(x̂) and F2(x̂) with respect to H. In particular, as x̂(t) hits H from R2, the vector F2(x̂) must point towards R1. 
If also the vector F1(x̂) points towards R1, then the trajectory x̂(t) crosses the surface H, possibly with a discontinuity 
in its derivative. This phenomenon is called transversal motion, see Fig. 10(a). Alternatively, the vector F1(x̂) may point 
towards R2. In this case, the trajectory cannot enter R1, as it will be pushed immediately back to H, but, symmetrically, 
it cannot also remain in R2. Therefore, the motion is confined in the discontinuity surface H. This kind of behaviour is 
known as sliding motion, see Fig. 10(b). In particular, the trajectory x̂(t) follows the solution of the vector field tangential 
to H obtained by selecting the unique vector in F̄ (x̂) tangential to H, see Fig. 10(c). More precisely, the sliding motion is 
defined by the differential equation d

dt x̂ = G(x̂), where G is the vector field (x̂) = α(x̂) f1(x̂) + (1 − α(x̂)) f2(x̂). The value of 
the weight coefficient α(x̂) is obtained by requiring that nT (x̂)G(x̂) = 0 (i.e., that G(x̂) is tangential to H), obtaining

14 A set function F̄ is locally bounded at x̂ ∈R
n if there exist ε > 0 and Mx̂ > 0 such that ||ẑ|| < Mx̂ for each ẑ ∈ F̄ (ŷ) and ŷ ∈ B(x̂, ε).

15 A set function F̄ is upper semicontinuous at x̂ ∈R
n is for each ε > 0 there exists δ > 0 such that F̄ (ŷ) ⊂ F̄ (x̂) + B(0, ε) for each ŷ ∈ B(x̂, δ).
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α(x̂) = nT (x̂)F2(x̂)

nT (x̂)F2(x̂) − nT (x̂)F1(x̂)
,

where nT (x̂)F1(x̂) is the projection of F1(x̂) along the normal vector n(x̂) of H in x̂. Sliding motion continues until one (and 
only one) of the two vectors fields, say F1, becomes tangential to H. In this case, the motion continues in the region R1. 
The condition that only one vector out of F1(x̂) and F2(x̂) becomes tangential to H is known as the first order exit condition 
of the sliding motion [59]. If both F1 and F2 become tangential, then the motion continues on a submanifold of H, but we 
do not consider these situations in this paper, which can, however, be treated similarly to the motion in the intersection of 
the boundary between three or more regions [59]. Hence, from now on we tacitly assume that sliding motion terminates 
with first order exit conditions.

In general, if we are in a point x̂ of H, the behaviour of a solution starting in x̂ depends on the values of nT (x̂)F1(x̂) and 
nT (x̂)F2(x̂):

• If both nT (x̂)F1(x̂) and nT (x̂)F2(x̂) are non-zero and have the same sign, then there is a transversal crossing of the 
surface.

• If nT (x̂)F1(x̂) < 0 and nT (x̂)F2(x̂) > 0, we have a stable sliding motion along H.
• If nT (x̂)F1(x̂) > 0 and nT (x̂)F2(x̂) < 0, we have an unstable sliding motion along H.
• If only nT (x̂)F1(x̂) = 0, then the trajectory continues in the region pointed by F2(x̂), and similarly for nT (x̂)F2(x̂) = 0

(tangential crossing).

For the scope of this paper, the uniqueness result for PSW systems plays a relevant role. More precisely, Filippov [57]
proved that there is a unique solution starting in x̂ ∈ H, provided that at least one of nT (x̂)F1(x̂) < 0 and nT (x̂)F2(x̂) > 0
holds. Notice that this condition rules out unstable sliding motion. There is also a condition for existence and uniqueness 
expressed in terms of differential inclusions, which requires the set-valued function F̄ to be one-sided Lipschitz continu-
ous.16 We remark that the global existence and uniqueness of a solution allows us to define a semiflow φ(t, ̂x) for the 
discontinuous vector field F , which is the condition required in the definition of a PDMP adopted here.

7.2. Deterministic approximation for PWS limits

We will now present the limit result of [34] in the framework of this paper, and then plug it in the proof of Theorem 5.1
in order to extend the hybrid convergence limit to this discontinuous setting. We start by expanding Scaling 1 to deal with 
guards.

Scaling 6 (Continuous scaling with guards). A normalized guarded sCCP transition π̂ = (Ĝ(N)
π (X̂), X̂′ = X̂ + ν̂

(N)
π , ̂λ(N)

π (X̂)) of 
a population-sCCP program (A, γN ), with E the domain of normalized variables X̂, assumed to be all continuous, has 
continuous scaling if and only if:

1. The rate and update satisfy the conditions of Scaling 1;
2. Ĝ(N)

π (X̂) is of the form hπ,1(X̂) ≥ 0 ∧ . . . ∧ hπ,k(X̂) ≥ 0, where each hπ, j is independent of N and has continuous second 
order derivatives, with ∇hπ, j(x̂) �= 0 for all x̂ ∈ {x̂ | h(x̂) = 0}.

Consider now a population-sCCP program (A, γN ), with no discrete variables and no instantaneous transitions, and with 
stochastic actions satisfying either Scalings 1 or 6 (hence, all actions will be approximated continuously). Then, we can 
compute its drift according to equation (5), which defines a piecewise-smooth system:

F (N)(X̂) =
∑
π

E[ν̂(N)
π ]I{Ĝπ (X̂)} f̂ (N)

π (X̂)

Notice, in particular that, as the guards are independent of N , it holds that F (N) → F uniformly, where F is defined by

F (X̂) =
∑
π

E[ν̂π ]1{Ĝπ (X̂)} f̂π (X̂).

Let us take a closer look to the PWS systems d
dt x̂ = F (x̂). Each transition of the model having a non-trivial guard, 

partitions the state space in several regions. In fact, if the predicate Ĝπ is a conjunction of inequalities defined by smooth 
functions hπ, j , then each such function partitions the state space in two regions: R+

π, j , where hπ, j is positive, and R−
π, j , 

where hπ, j is negative. Therefore, in order to define the PWS system, we have to consider all possible intersections of 
regions R+

j and R−
j , for all distinct function h j appearing in guards of transitions. If there are m0 such functions, then we 

16 A set valued function F is one-sided Lipschitz if and only if for each x1, x2 ∈ E and y1 ∈ F (x1), y2 ∈ F (x2), it holds that (x1 −x2)t ·(y1 −y2) ≤ L‖x1 −x2‖, 
for some L > 0.
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have 2m0 distinct regions. In practise, however, many transitions usually have trivial guards, and there may be transitions 
sharing the same functions h j , so that this number should be reasonably small. In the following, we indicate by H j the 
manifold defined by h j : H j = {x̂ ∈R

n | h j(x̂) = 0}.
In the rest of the paper, we require that the PWSS defined by F is globally regular, in the following sense:

1. solutions exist globally in E , and are unique, so that the PWSS admits a semi-flow on E;
2. sliding motion never happens on the intersection of more than one surface, and has first order exit condition;
3. the PWSS has no Zeno trajectories, i.e. the number of transversal crossings and traits of sliding motion is finite in each 

compact time interval [0, T ], for each trajectory of the PWSS.

These conditions are essentially those introduced in [34], just extended to the whole domain E .17 If the PWSS is regular, 
then each of its trajectories is regular and therefore the following theorem holds:

Theorem 7.1. Let (A, γN ) be a sequence of sCCP models for increasing systems size, satisfying the conditions of Theorem 4.1, with all 
actions π satisfying either Scaling 1 or Scaling 6. Let X̂(N)(t) be the associated sequence of normalized CTMC, and assume x̂(N)(0) → x̂0
(in probability/almost surely).

Let x̂(t) be the solution of the regular PWSS system d
dt x̂ = F (x̂) starting in point x̂(0) = x̂0 ∈ E. Fix a finite time horizon T < ∞.

Then

lim
N→∞ sup

t≤T

∥∥∥X̂(N)(t) − x̂(t)
∥∥∥ = 0 in probability. �

As an immediate corollary, we get that if x̂(N)
0 ⇒ x̂0, then X̂(N) ⇒ x̂ as random elements in the space of cadlag functions.

The intuition behind the proof of the theorem is that each regular trajectory in [0, T ] of the PWSS can be sliced into a 
finite number of pieces, such that each piece is either the solution of a standard ODE within a continuity region of the vector 
field, or it is a sliding motion along a discontinuity surface. The idea is to prove the convergence of the sequence X̂(N)(t) to 
x̂(t) in each piece separately, either using standard deterministic approximation (Theorem 4.1), or using a specialized version 
of such a result for sliding motion (Theorem IV.2 in [34]). Then, one simply proves convergence in [0, T ] by combining the 
convergence in each piece, exploiting convergence of exit times. Sliding motion is the difficult case, because the trajectory 
of the PWSS evolves according to the sliding vector field, which is different from the drift F (N) of the sequence of CTMC.

Differently from [34], we are not requiring that rate functions are globally bounded and Lipschitz on E , but they just 
satisfy these properties locally. However, the validity of the previous theorem depends only on a compact neighbourhood 
of the trajectory up to time T , and on the assumption of global existence of solutions. Furthermore, we are also allowing 
random increments, which can be dealt with exactly as in Theorem 4.1.

We also note that we could have relaxed the scaling condition on guards by making guard functions h j depend on N , 
and assuming that they converge uniformly to a limit function, with the same properties. The previous theorem would still 
hold, but with some modification with respect to the proof of [34].18

7.3. Hybrid limit with guarded continuous transitions

The previous theorem can be easily plugged in the framework of Section 5, replacing Kurtz theorem in the proof device 
of Theorem 5.1. This can be done under the regularity assumption of the limit PWSS in each mode of the PDMP, i.e. for 
each possible combination of values of discrete variables. We call PWS-regular such a PDMP. The reason is that the proof 
of Theorem 5.1 relies only on the weak convergence implied by Kurtz theorem and on the continuity of limit trajectories, 
which are also satisfied by the subset of PWSS considered here. Furthermore, as the treatment of instantaneous transitions 
or time-dependent guards in Section 6 is also independent of the fine-grained details of the continuous dynamics, we can 
also include those kinds of transitions. Notice that the notion of non-Zeno PDMP and those of robustly transversal PDMP, 
robust activation property and size-compatible PDMP, extend automatically to this PWS setting, as they only depend on 
the existence of the semi-flow of the continuous dynamics of the PDMP. Before stating the theorem, we need to extend 
Scaling 6 to the hybrid setting, as done for Scaling 1.

17 This regularity condition can be simplified, if the problem is restated in terms of differential inclusions and we require that the set-values extension F̄
of F is one-sided Lipschitz. Under this milder assumptions, the following theorem still holds. However, we stick here to the formulation in terms of PWSS, 
which is more natural in the context of PDMP.
18 The proof becomes more involved because if guards are varying with N , F (N) does not converge uniformly to F any more. Essentially, one proves 

that the trajectories of the PWSS defined by the discontinuous vector field F (N) converge uniformly in each [0, T ] to the trajectories of F , and that X̂(N)

converges in probability, uniformly in [0, T ], to x̂(N) , the solution of d/dt x̂(N)(t) = F (N)(x̂(N)(t)). To show that x̂(N) is regular, one relies on the regularity 
of the limit trajectory x̂, and on the uniform convergence of activation functions of guards and of the components f̂ (N)

π of the vector field. To show 
convergence of X̂(N) to x̂(N) , one either invokes an obvious modification of Theorem 4.1, or modifies the proof for sliding motion in [34] using again the 
uniform convergence of guard’s functions and of rates. Alternatively, one could work with differential inclusions, as in [35].
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Fig. 11. Comparison of single trajectories of the limit PDMP and the CTMC model for system size 1000, for the control policies of the network epidemic 
models of Example 7.1 (left) and Example 7.3 (right). The behaviour is essentially the same (modulo randomness of switch times in the figure on the right). 
Parameters are as in the caption of Fig. 8. Additionally, in the model of Example 7.1, we have k1

p = 0.05, k2
p = 4.0, k3

p = 0.5, α = 0.1, β = 0.3, and the 
duration of the emergency policy is 10 units of time. The rate of switch from emergency to normal patching policy in the model of Example 7.3 is 0.1.

Scaling 7 (Hybrid continuous scaling with guards). A normalized guarded sCCP transition π̂ = (Ĝ(N)
π (X̂), X̂′ = X̂ + ν̂

(N)
π , ̂λ(N)

π (X̂))

of a population-sCCP program (A, γN ), with variables X̂ ∈ E partitioned into (Xd, X̂c, Xe), has hybrid continuous scaling if and 
only if:

1. The rate and update satisfy the conditions of Scaling 6;
2. Ĝ(N)

π (X̂) = Ĝ(N)

π,d(Xd, Xe) ∧ Ĝπ,c(X̂c), where Ĝπ,c(X̂c) satisfies the condition of Scaling 6.

Therefore, we have the following:

Proposition 7.1. Let (A, γN ) be a sequence of time-guarded population-sCCP models for increasing systems size γN → ∞, as N → ∞, 
with variables partitioned into X = (Xd, Xc, Xe), with discrete stochastic actions satisfying Scaling 3, instantaneous actions satisfying 
Scaling 4, time guarded actions satisfying Scaling 5, and continuous actions satisfying either Scaling 2 or Scaling 7. Let X̂(N)(t) be the 
associated sequence of normalized CTMC and x̂(t) be the limit PDMP associated with the limit normalized TDSHA T̂ (A).

If x̂(N)
0 ⇒ x̂0 (weakly) and the PDMP is non-Zeno, robustly transversal, has the robust activation property, is size-compatible 

and PWS-regular, then X̂(N)(t) converges weakly to x̂(t), X̂(N) ⇒ x̂, as random elements in the space of cadlag function with the 
Skorokhod metric. �
Example 7.1. We consider a variant of the computer network epidemic model of Example 6.4. In particular, we consider the 
following normal and emergency patching policies. Under the normal policy, patches are applied at constant rate k1

p . Under 
the emergency policy, instead, computers in the network are patched with a rate k2

p > k1
p if the fraction X̂i of infected nodes 

is above a threshold α, and at rate k3
p < k2

p , k3
p > k1

p , if the fraction of infected nodes is below α. The emergency policy is 
initiated as soon as the fraction of infected nodes becomes greater than a threshold β > α, and is executed for w ∈R

+ units 
of time. We will use an environmental variable K to remember the next firing time of such a delayed transition. When the 
emergency policy is aborted, the normal policy is restored. We can model this policy in sCCP by suitably modifying the code 
of Example 6.4, with particular regard to the patching and the control agents. The variable U is the discrete variable 
modelling the patching policy: U = 1 indicates the normal policy, while U = 2 indicates the emergency one.

patching
def= [U = 1 → X ′

i = Xi − 1 ∧ X ′
r = Xr + 1]k1

p Xi
.patching

+ [U = 2 ∧ X̂i ≥ α → X ′
i = Xi − 1 ∧ X ′

r = Xr + 1]k2
p Xi
.patching

+ [U = 2 ∧ X̂i < α → X ′
i = Xi − 1 ∧ X ′

r = Xr + 1]k3
p Xi
.patching

control
def= [U = 1 ∧ X̂i > β → U ′ = 2 ∧ K ′ = time + w]∞:1.control
+ [U = 2 ∧ time ≥ K → U ′ = 1]∞:1.control

The limit model is a PWSS when U = 2. In Fig. 11(a), we show a trajectory of the PWSS exhibiting sliding motion on the 
plane X̂i = α. It is easy to check that the PWSS has a unique solution from any initial state. In fact, taking the scalar product 
of the two vector fields F1, F2 with the normal to X̂i = α on the two sides of the plane X̂i = α, we obtain kiα X̂s − k2

pα and 
kiα X̂s −k3

pα. Now, kiα X̂s −k3
pα > 0 for X̂s > k3

p/ki . But as k2
p > k3

p , for X̂s ≤ k3
p/ki , we have that kiα X̂s −k2

pα ≤ αk3
p −k2

pα < 0, 
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which shows that the uniqueness condition is verified. Also in this case, the hybrid limit model is deterministic, and we can 
see its trajectory from a fixed set of initial conditions in Fig. 11. Inspecting this trajectory, we can easily convince ourselves 
that the crossing of activation surfaces is always transversal, so that we can apply Proposition 7.1.

7.4. Guards on discrete stochastic transitions

In this section, we consider a relaxation of Scaling 3, in which we allow guards on discrete stochastic transitions to 
depend on continuous variables. Similarly to continuous transitions, this extension introduces discontinuities in the rate 
functions of the PDMP. Intuitively, as the jump time distribution is obtained by the cumulative rate, i.e. by integrating the 
rate function, these discontinuities should not create problems, as far as the trajectories of the PDMP do not remain in a 
discontinuity surface of a rate for too long. Essentially, problems emerge if a continuous trajectory of the PDMP slides on 
the discontinuity surface of a guard for some time interval [t1, t2], t1 < t2. Suppose that on the surface the guard is false, 
hence the transition of the PDMP cannot fire. In this case, even if trajectories of the CTMC converge to the one of the 
PDMP, they may remain on the “wrong” side of the discontinuity surface, i.e. on the side in which the guard is true and the 
transition active, so that the event can fire in the sequence of CTMC. If this transition determines the fate of the system, 
than convergence to the PDMP can fail quite dramatically.

To explain better the problem, we consider the following example.

Example 7.2. Consider a simple sCCP model of a random walk in 1 dimension, for variable X , initially set to zero. Variable 
Z instead, can take values 0 and 1, and it is the fate variable. Initially it is set to zero, and it may become 1 by the firing 
of a stochastic transition with rate 1, but active only if X > 0. The sCCP program has initial configuration random_walk ‖
doom, where

random_walk
def= [∗ → X ′ = X + 1]γN.random_walk
+ [∗ → X ′ = X − 1]γN.random_walk

doom
def= [X > 0 → Z = 1]1.0

Notice that the rate of the transitions of the random_walk agent grow with γN , hence they can be approximated 
continuously, and, once normalized, induce the drift F (N)(X̂) = F (X̂) = 0. Hence, the limit PDMP model has quite boring 
continuous dynamics, in fact a constant one on the discontinuity surface x̂ = 0. It follows that the discrete stochastic tran-
sition will never fire in the PDMP model, and Z will remain 0. However, for any N , the CTMC model will spend half of its 
time on the subspace X̂ > 0, meaning that the doom agent will eventually fire its transition, on average in 2 time units. 
Hence Z will be equal to 1 with probability going to 1 as T increases. Hence convergence does not hold for this model. 
Notice, however, that if we set the initial value of x̂ to −ε, for ε > 0, then convergence will hold. In particular, by the Kurtz 
theorem, for any time T < ∞, the CTMC X̂(N)(t) will be smaller than −ε/2, in [0, T ], for N large enough, hence the doom
transition will not fire in [0, T ]. However, it will eventually fire for any N , as with probability one, X̂(N)(t) will get eventually 
above zero and remain there for a long enough time. In addition, the time when this event will happen is pushed further 
and further into the future as N grows. This does not create problems for weak convergence, as the Skorokhod metric 
on which weak convergence is based discounts the future and will give a smaller and smaller weight to the difference of 
Z -values as N grows (see Appendix C for details on the Skorokhod metric).

From the previous discussion, it should be clear that the problems in introducing guards for discrete stochastic transitions 
are somehow related to the way the flow of the vector field interacts with the discontinuity surface of the guards. This 
suggests the following definition:

Definition 7.1. A cadlag function x̂(t) taking values in E is robustly compatible with the activation function h(x̂) of a guard 
predicate Ĝ(x̂) if and only if the set {t ≥ 0 | h(x̂(t)) = 0} has Lebesgue measure zero.

A PDMP is robustly compatible with a guard Ĝπ (x̂) if almost surely its trajectories are robustly compatible with the 
activation function of Ĝπ (x̂).

A PDMP derived from a TDSHA T is robustly compatible if and only if it is robustly compatible with all guards of discrete 
stochastic transitions of T .

We can now introduce the scaling condition for guarded discrete stochastic transitions.

Scaling 8 (Discrete scaling for guarded stochastic transitions). A guarded normalized sCCP transition with random reset, π̂ =
(Ĝ(N)π(X̂), X̂′ = r̂(N)(X̂, W(N)(X̂)), ̂λ(N)

π (X̂)) of a population-sCCP program (A, γN ) with variables X̂ ∈ E partitioned into 
(Xd, X̂c, Xe), has discrete scaling if and only if:

1. Ĝ(N)
π (X̂) has activation function h(N)(X̂), converging uniformly in every compact subset K of E to the continuous func-

tion h(X̂);
2. λ̂

(N)
π and r̂(N)

π satisfy the same conditions as Scaling 3.
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Technically, the condition of robust compatibility of a PDMP is needed to prove the convergence of the stochastic jump 
times and of the states after the reset. The problem here lies in the fact that, on the surface {h(x̂) = 0}, the reset kernel R
of the PDMP is discontinuous, and a sequence x̂(N) of points approaching x̂ ∈ {h(x̂) = 0} may activate a different subset of 
guards for each R(N) . This may lead to radically different behaviours and compromise convergence. This problem is essen-
tially the same as we had with the discontinuity of the reset kernel for instantaneous transitions. The robust compatibility 
condition permits us to ignore such points, as there is probability zero of jumping from them. With these assumptions in 
force, we get the following proposition, whose proof can be found in Appendix D.

Proposition 7.2. Let (A, γN) be a sequence of population-sCCP models for increasing systems size γN → ∞, as N → ∞, with variables 
partitioned into X = (Xd, Xc, Xe), with discrete stochastic actions satisfying either Scaling 3 or Scaling 8, no instantaneous actions, 
and continuous actions satisfying Scaling 2. Let X̂(N)(t) be the associated sequence of normalized CTMC and x̂(t) be the limit PDMP 
associated with the normalized limit TDSHA T̂ (A).

If x̂(N)
0 ⇒ x̂0 (weakly) and the PDMP is non-Zeno and robustly compatible, then X̂(N)(t) converges weakly to x̂(t), X̂(N) ⇒ x̂, as 

random elements in the space of cadlag function with the Skorokhod metric. �
Example 7.3. We consider again the computer network epidemics model of Examples 6.4 and 7.1. In particular, we modify 
the control policy with respect to Example 7.1 by assuming that the emergency policy is dropped in favour of the normal 
one in an exponentially distributed time, with rate kd , provided X̂i is below β2 < β . The control agent then becomes

control
def= [U = 1 ∧ X̂i > β → U ′ = 2]∞:1.control
+ [U = 2 ∧ X̂i < β2 → U ′ = 1]kd.control

Furthermore, we assume that there is a single emergency patch rate k2
p > k1

p , so that the patch agent is

patching
def= [U = 1 → X ′

i = Xi − 1 ∧ X ′
r = Xr + 1]k1

p Xi
.patching

+ [U = 2 → X ′
i = Xi − 1 ∧ X ′

r = Xr + 1]k2
p Xi
.patching

If we take the scalar product between the vector field and the normal 1i to the plane X̂i − β2 = 0 and set it to zero in 
the plane, we get the equation ki X̂s − k2

p = 0, which has only one solution (k2
p/ki, β2, 1 − k2

p/ki − β2) if k2
p/ki + β2 ≤ 1, and 

no solution otherwise. In particular, it follows that the trajectories of the vector field do not slide on X̂i = β2, hence the 
PDMP is robustly compatible. Thus, the model satisfies the hypothesis of Proposition 7.2, and convergence to the hybrid 
limit holds.

Remark∗ 7.1. In order to check the robust compatibility of a PDMP with respect to a guard of a stochastic transition, we can 
proceed similarly to Remark 6.1, by applying the randomization trick. In particular, the property holds if we can show that 
the set of trajectories of the vector field sliding on the discontinuous surface has dimension n − 1 or less,19 where n is the 
number of continuous variables, and if initial conditions and resets are absolutely continuous with respect to the Lebesgue 
measure. If guards are linear, this check should be relatively easy to carry out, see Example 7.3.

7.5. Collecting all results together

In this subsection, we collect in a unique statement all the approximation results spread throughout the paper.

Theorem 7.2. Let (A, γN) be a sequence of time-guarded population-sCCP models for increasing system size γN → ∞, as N → ∞, 
with variables partitioned into X = (Xd, Xc, Xe), satisfying the following scaling conditions:

1. discrete stochastic actions with guards not depending on continuous variables satisfy Scaling 3;
2. discrete stochastic actions with guards depending on continuous variables satisfy Scaling 8;
3. instantaneous actions satisfy Scaling 4;
4. time-guarded actions satisfy Scaling 5;
5. continuous actions with guards not depending on continuous variables satisfy Scaling 2;
6. continuous actions with guards depending on continuous variables satisfy Scaling 7.

Let X̂(N)(t) be the associated sequence of normalized CTMC and x̂(t) be the limit PDMP associated with the limit normalized TDSHA 
T̂ (A). If

19 This holds, for instance, if the set of zeros of the scalar product of the normal to the discontinuity surface of the guard with the vector field has 
dimension n − 2 or less.
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1. the PDMP is non-Zeno;
2. the PDMP is robustly transversal, has the robust activation property, and is size-compatible (for instantaneous transitions);
3. the PDMP is robustly compatible with all guards of discrete stochastic actions;
4. the PDMP is PWS-regular (if continuous transitions guarded by continuous variables are present);
5. x̂(N)

0 ⇒ x̂0 (weakly)

then X̂(N)(t) converges weakly to x̂(t), X̂ ⇒ x̂, as random elements in the space of cadlag function with the Skorokhod metric. �
8. Conclusions

In this paper, we discussed hybrid limits of Markov population processes, described as stochastic concurrent constraint 
programs. We considered the limit behaviour when only a subset of system variables, corresponding to populations of 
growing size, is approximated continuously, while the other variables remain discrete. We proved that the sequence of 
CTMC for increasing population size converges to a stochastic hybrid system, described as a Piecewise-Deterministic Markov 
Process.

We first considered the simplest case, in which continuous transitions, i.e. those becoming fluxes of the limit vector field, 
satisfy the standard scaling à la Kurtz, while discrete transitions are stochastic and have continuous rates and reset kernels.

We then extended these results by including several sources of discontinuity in the evolution of the system: instan-
taneous transitions in the sCCP program, which induce forced transitions at the PDMP level, and guards depending on 
continuous variables in continuous and stochastic transitions. In all these cases, discontinuities create potential problems 
in the interactions between the deterministic vector field in each mode of the PDMP and the discontinuity surfaces of the 
involved functions. Essentially, the reset kernels become non-Feller (i.e. non-continuous), and one has to impose additional 
conditions to enforce convergence of the times at which transitions fire and the states of the system after a jump. In general, 
the conditions required can be quite difficult to check. However, in practical cases the geometry of discontinuous surfaces 
should be reasonably simple (mainly linear hyperplanes), hence checking the required conditions should not be too hard.

Nevertheless, it is unlikely that one can find general algorithmic procedures to check automatically if a sequence of 
models is amenable of hybrid approximation, unless there is no source of discontinuity and rate functions and resets satisfy 
further constraints, see Remark 5.3.

The moral is that one should avoid introducing too many discontinuities in a model, if approximation results are needed 
to perform more efficient analysis.

In this direction, we are investigating some relaxation techniques. In most of the cases, boolean conditions may be 
replaced by smooth counterparts without altering significantly the model behaviour. For instance, instantaneous events may 
be replaced by stochastic ones with a rate that changes continuously from zero to a very large value in the proximity of the 
activation surface, as done in [61]. Moreover, guards in discrete and stochastic transitions may be replaced by sharp sigmoid 
functions modulating the rates. However, this operation is not always possible without introducing spurious behaviours. In 
this case, one has to verify additional regularity conditions before using hybrid approximation.

Another strategy to simplify the conditions required for the hybrid limits, similar in spirit to the previous one, is to in-
troduce randomness in the continuous evolution. In particular, we could replace the vector field of the PDMP by a stochastic 
differential equation, obtaining a Stochastic Hybrid System in the sense of [62]. The simplest possibility is to perturb the 
trajectories of the vector field with Gaussian noise, obtaining the so-called central-limit approximation, for which a limit re-
sult analogous to Theorem 4.1 exists (see [37], Chapter 11). This fact guarantees that convergence proofs presented in this 
paper extend straightforwardly to this new setting. Furthermore, in doing this, we get the advantage of removing the bad 
behaviours happening at the discontinuity boundary. Intuitively, in the central-limit regime, the probability of a trajectory 
to slide on a surface of dimension n − 1 is zero. Similarly, the probability that a trajectory tangentially hits a surface is zero. 
It follows that in this setting, most of the additional conditions on PDMP required for convergence hold almost automati-
cally. On the downside, simulating a SDE is more expensive from a computational point of view, although the regularity of 
Gaussian Processes may be exploited to improve efficiency. We are currently investigating this direction.

We also plan to investigate the definition of algorithms to check the conditions for convergence and to suggest a partition 
of variables into discrete and continuous (also for models in which the dependency on system size is not explicit).

An important question related to approximation theorems is if the weak convergence result, which are limited to the 
transient dynamics, can be extended to steady state. In the deterministic case, this can be done only in a limited number of 
cases. Essentially, convergence of steady state depends on the phase space properties of the limit ODE, and it is guaranteed 
only in presence of a unique globally attracting steady state, see e.g. [51,63]. In the future, we would like to investigate if 
similar results can be found for the hybrid limit case. The situation in this case is more complex. On the one hand, if the 
limit process is deterministic, then we can exploit recent results [64], provided we can characterize invariant measures for 
deterministic hybrid systems. On the other hand, if the limit process is stochastic, one has to prove that it does indeed have 
a steady state, and extend the result on invariant measures from the deterministic case to the stochastic one. In this setting, 
computing the invariant measure of the PDMP can be quite challenging in itself [65].

Finally, we want to understand what happens if we include non-determinism in the framework, especially in terms of 
uncertainty on parameters. This would require consideration of stochastic hybrid systems combining differential inclusions 
[33] with imprecise probabilities [66].
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Appendix A. Notation

Here are some notational conventions followed throughout the paper.

• We denote the closure of a set A by Ā and its boundary by ∂ A.
• We denote with R the reals, Z the integers, N the natural numbers, and R≥0 the non-negative reals.
• Q indicates a countable subset of Rk , the set of modes. E is the state space of the fluid limit (in this case E ⊆ R

n) or 
of the hybrid limit, and in this case E ⊆ Q ×R

n .
• n is the dimension of continuous variables, k is the dimension of discrete variables, m is the dimension of the full vector 

of variables.
• X denotes the non-normalized vector of variables. We assume an ordering of variables, so that the terms sets of vari-

ables and vectors of variables can be used equivalently. Y or Xc are vectors of non-normalized continuous variables, 
while Z or Xd are vectors of discrete variables.

• x, y, z denote points in the non-normalized space Rm .
• X̂ denotes the normalized vector of variables, taking values in E . Ŷ or X̂c are vectors of normalized continuous variables.
• x̂, ŷ, ẑ denote points in the normalized space E .
• Given a vector function f :Rn → R

n , with f (X) we indicate the variables it depends to, while with f [X](X) we indicate 
the function corresponding to variable X .

• γ and γN denote the system size.
• (A, γN ) is a population-sCCP program. T (A) is the TDSHA associated with sCCP program A. T̂ (A, γN ) is the TDSHA 

associated with the normalized population-sCCP program (A, γN ) and T̂ (A) is the limit normalized TDSHA.
• π denotes a sCCP action, while η denotes a TDSHA transition.
• X(N)(t) denotes a CTMC associated with a population sCCP model with system size γN , while X̂(N)(t) denotes the 

corresponding normalized CTMC.
• x̂(t) denotes either the (normalized) limit PDMP or the fluid limit.
• With Bε(x̂) we indicate the ball of radius ε centred in x̂, while Bε(x̂([0, T ]) = ⋃

t∈[0,T ] Bε(x̂(t)).
• τi is the jump time of the i-th stochastic event in the PDMP. ζi is the jump time of the i-th instantaneous event. Ti is 

the jump time of the i-th event.

Appendix B. Additional material on sCCP

In this appendix, we provide a few additional details about sCCP. We start by formalizing the construction transforming 
a generic sCCP program A into a flat sCCPmodel flat(A).

Definition Appendix B.1. Let A = (X, D, Def, A, x0) be a sCCP program. Its flattened version flat(A) = (A+, Def+, X+, D+,

x0
+) is constructed as follows:

• We add a new variable for each component C ∈ Def: X+ = X ∪ P, with P = {P C | C ∈ Def} taking values in N.
• Each component C is replaced by a component C+ . If C = π.A + M , with π = [g(X), u(X, X′, μ)]λ(X , then C+ = π+.C+ +

M+ , with π+ = [g+(X), u+(X, X′, μ)]λ+(X) .
• The guard of π+ is g+(X) = g(X) ∧ P C > 0.
• The update of π+ is u+(X, X′, μ) = u(X, X′, μ) ∧ P ′

C = P C − 1 + #(C, A) ∧ ∧
C1 �=C P ′

C1
= P C1 + #(C1, A), where #(C, A)

is the number of occurrences of component C in the parallel composition A.
• The rate of π+ is λ+(X) = P C · λ(X).
• If π is an instantaneous action, then ∞ : p(x) becomes ∞ : P C · p(x) in π+ .
• The initial value of variables x0

+ equals x0 for variables in X and #(C, A) for each variable P C .
• The initial network of flat(A) is A+ =‖C+∈Def+ C+ .

The notion of flattening has been previously defined in [13], but was called the extended version of a sCCP program. 
In [19] we also showed that a sCCP program and its flattened version have isomorphic labelled transitions systems, hence 
they are stochastically equivalent.

Example Appendix B.1. We illustrate this transformation with a simple example. Consider a simple model of a population 
of bacteria, in which each bacterium can consume a source of food and reproduce, or die. Both actions happen after some 
exponentially delayed time. We can model this in sCCP by using a single integer variable F , representing the available food, 
initially set to f0, and by describing each bacterium as an agent as follows:
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bacterium
def= [F > 0 → F ′ = F − 1]kr.(bacterium ‖ bacterium) + [∗ → ∗]kd.0

The initial network bacterium ‖ . . . ‖ bacterium consists of m copies of the agent. This model can be flattened by 
introducing a new variable, B , counting the number of bacteria in the system, initially set to m, and replacing the agent
bacterium by

bacterium_flat
def= [F > 0 ∧ B > 0 → F ′ = F − 1 ∧ B = B + 1]kr ·B.bacterium_flat
+ [B > 0 → B ′ = B − 1]kd ·B.bacterium_flat

The new initial network will contain only the agent bacterium_flat. Notice how the rates are updated to take into 
account the shift of perspective from the single agent to the population view.

Appendix C. Background material

In this section we briefly recall some notions that are needed in the proofs.

Hybrid state space Let Q be a countable subset of Rk , and consider Q ×R
n , the hybrid space. A point x ∈ Q ×R

n is a pair 
x = (q, y), y ∈R

n .
In Q ×R

n , we define a metric d̄ for which Q ×R
n is a complete and separable metric space. This metric is derived from 

the euclidean metric d in Rn by

d̄(x1,x2) =
{

d(y1,y2)/(1 + d(y1,y2)) if xi = (qi,yi) and q1 = q2,

1 if xi = (qi,yi) and q1 �= q2

In particular, d̄(x1, x2) < 1 if and only if x1 and x2 have the same Q -coordinate. Hence, a sequence converges with respect 
to d̄, xN → x, if and only if x = (q, y), xN = (q, yN ) for N ≥ N0, and yN → y in Rn .

Each subset A of Q ×R
n is of the form A = ⋃

q∈Q {q} × Aq , Aq ⊂ R
n . A sub-base for the topology of Q ×R

n is given by 
the open balls of the form {q} × Bε(y). The boundary of a set A is denoted by ∂ A and the closure by A. Borel sets B for 
Q ×R

n are defined from the Borel sets Bq of Rn as B = ⋃
q∈Q {q} ×Bq . See [31] for further details.

Skorokhod metric Continuous Time Markov Chains and Piecewise Deterministic Markov Processes considered in this paper 
can be seen as random variables on the space of cadlag functions D([0, ∞), E) with values in E ⊆ Q ×R

n . A cadlag function 
f : [0, ∞) → E is right continuous and has left limits for any t ∈ [0, ∞).

The space D([0, ∞), E) is given the structure of a metric space by the Skorokhod metric. The Skorokhod metric is first 
defined on compact time intervals [0, T ] and then extended over the whole positive time axis [0, ∞).

Consider the uniform metric on the space D([0, T ], E), i.e. sup0≤t≤T ‖x(N)(t) − x(t)‖. If we have a sequence x(N) of cadlag 
functions, then they will converge to x in the uniform norm if and only if the discontinuous jumps of x(N) happen precisely 
at the same times as those of x (for N ≥ N0). The idea behind the Skorokhod metric is to allow a small difference in 
these jump times by re-synchronizing them. That is to say, if the uniform metric allows one to wiggle space a bit, the 
Skorokhod metric allows us also to wiggle time. To formalize this statement, let ω(t) : [0, T ] → [0, T ] be a time-wiggle 
function, i.e. a strictly increasing continuous function. Call IT the set of such functions. Then, the Skorokhod distance 
between x, y ∈ D([0, T ], E) is

dT (x,y) = inf
ω∈IT

max{ sup
t∈[0,T ]

‖ω(t) − t‖, sup
t∈[0,T ]

‖x(t) − y(ω(t))‖}.

The metric dT is extended to a metric on D([0, ∞), E) by discounting large times as follows:

d(x,y) =
∑
K∈N

2−K min{1,dK (x,y)}.

The Skorokhod metric defines a topology for which D([0, ∞), E) is complete and separable, i.e. it is a Polish space. See 
[67,53] for a detailed introduction to the metric and its properties.

We note here that a sequence of functions x(N) ∈ D([0, ∞), E) converges to x ∈ D([0, ∞), E) if and only if for each 
T > 0 there is a sequence of time-wiggle functions ω(N) ∈ IT satisfying supt∈[0,T ] ‖ω(N)(t) − t‖ → 0 and supt∈[0,T ] ‖x(N)(t) −
x(ω(N)(t))‖ → 0.

Weak convergence The notion of weak convergence of a sequence of random variables X(N) on a Polish space E to a 
random variable X is essentially the convergence of the induced probability measures on E . Weak convergence of probability 
measures is defined as convergence in the weak* topology [60]. More specifically, denote by Cb(E) the set of bounded 
continuous functions f : E →R (note that we can have E = D([0, ∞), E0); in this case f is usually called a functional), and 
let P , P (N) be probability measures on E . We refer the reader to [67,53] for an introduction to the subject.
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Definition Appendix C.1. P (N) converges weakly to P , P (N) ⇒ P , if and only if, for each f ∈ C(E),

lim
N→∞

∫
E

f (x)P (N)(x)dx =
∫
E

f (x)P (x)dx.

In case we have random variables X, X(N) , then the previous condition can be written as

lim
N→∞E[ f (X(N))] = E[ f (X)].

In this case, we write X(N) ⇒ X.
The Portmanteau theorem provides a set of equivalent conditions for weak convergence of X(N) to X:

1. X(N) ⇒ X;
2. limN→∞ E[ f (X(N))] = E[ f (X)] for all bounded, uniformly continuous functions f : E →R;
3. lim supN→∞ P{X(N) ∈ F } ≤ P{X ∈ F } for all closed sets F ;
4. lim infN→∞ P{X(N) ∈ G} ≥ P{X ∈ G} for all open sets G;
5. limN→∞ P{X(N) ∈ A} = P{X ∈ A} for all X-continuity sets A (i.e., such that P{X ∈ ∂ A} = 0).

Recall that there are other modes of convergence of random variables, among which almost sure convergence and conver-
gence in probability. These two notions, differently from weak convergence, require to have fixed the sample space in which 
random variables are defined. More precisely, let X, X(N) be random variables on E , defined on the sample space �, with 
σ -algebra A and probability measure P (i.e. X : � → E is a A, B measurable function). Then X(N) converges to X almost 
surely if and only if P{ω | limN→∞ X(N)(ω) = X(ω)} = 1, while it converges in probability if and only if, for each δ > 0, 
limN→∞ P{ω | ‖X(N)(ω) − X(ω)‖ > δ} = 0.

These three notions are linked in several ways. Almost sure convergence implies convergence in probability, which in 
turn implies weak convergence. Furthermore, the Skorokhod representation theorem states that, if X(N) ⇒ X, then there is 
a sample space (�, A, P), and realizations X̃, X̃(N) of X, X(N) on � (i.e. X̃ : � → E induces the same probability on E as X) 
such that X̃(N) converges to X̃ almost surely. Furthermore � can be taken as the unit interval with the Lebesgue measure. 
In particular, for real-valued random variables X (N), X on E ⊆ R, the Skorokhod representation can be constructed using the 
quantile function F ← , i.e. the pseudo-inverse of the cumulative distribution function F (t) = P{X ≤ t}: ˜X (N) = (F (N))←(U )

and X̃ = F ←(U ), with U uniform in [0, 1] [67].
Finally, weak convergence to a deterministic limit, i.e. a random variable concentrating all the probability mass to a point 

of E , implies convergence in probability.
In the following, we also need the notion of tight probability measure.

Definition Appendix C.2. A probability measure P on E is tight if and only if, for each ε > 0, there is a compact set Kε ⊂ E
such that P (Kε) > 1 − ε.

A sequence P (N) of probability measure s on E is uniformly tight if and only if for each ε > 0, there is a compact set 
Kε ⊂ E such that P (N)(Kε) > 1 − ε for each N ≥ 0.

If the space E is Polish, i.e. a complete and separable metric space, then each probability measure on E is tight. Further-
more, if P (N) ⇒ P , then P (N) is uniformly tight.

Tightness is the right notion to characterize weak convergence in the space D([0, ∞), E) equipped with the Skorokhod 
topology. Let πt1,...,tk : D([0, ∞), E) → Ek be the projection at fixed times t1, . . . , tk ∈ [0, ∞). If X is a random variable in 
D([0, ∞), E), then πt1,...,tk (X) is called a finite dimensional distribution. Now, if X, X(N) are random variables in D([0, ∞), E), 
X(N) is uniformly tight and πt1,...,tk (X(N)) ⇒ πt1,...,tk (X), for t j taken from a subset � ⊆ [0, ∞) whose complement is at most 
countable (convergence of finite dimensional distributions), then X(N) ⇒ X. Uniform tightness of X(N) can be checked using 
some criteria based on the modulus of continuity, see [67,53] for further details.

Finally, we need the continuous mapping theorem: Let X(N), X be random variables on E and let h : E → E1. If h is X-almost 
surely continuous (i.e., P{X ∈ Ch} = 1, where Ch ⊆ E is the set of continuity points of h), and X(N) ⇒ X, then h(X(N)) ⇒ h(X).

Markov kernels A Markov kernel or Markov transition kernel on E , with σ -algebra B, is a function R : E ×B → [0, 1] such 
that

1. R(·, A) is a measurable function of for each A ∈ B.
2. R(y, ·) is a probability measure for each y ∈ E .

We now prove a lemma that will be used in many proofs in next section, that allows us to propagate weak convergence 
by Markov kernels, under a suitable notion of continuity of the kernel.
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Lemma Appendix C.1. Let R(N)(ŷ) = R(N)(ŷ, ·) and R(ŷ) = R(ŷ, ·) be Markov transition kernels on some Polish space E such 
that R(N)(ŷ(N)) ⇒ R(ŷ), whenever ŷ(N) → ŷ. If Ŷ(N) ⇒ Ŷ, where Ŷ(N) , Ŷ are random elements in E, then R(N)(Ŷ(N)) ⇒ R(Ŷ) and 
(Ŷ(N), R(N)(Ŷ(N))) ⇒ (Ŷ, R(Ŷ)).

Proof. The proof is essentially the same as that of the core argument of Theorem 1 in [52]. We reproduce it here just 
for completeness. Fix a bounded and uniformly continuous function g : E → R. We need to show that |E[g(R(N)(Ŷ(N)))] −
E[g(R(Ŷ))]| → 0. For simplicity, call R(N) g(ŷ) = ∫

E g(x̂)R(N)(ŷ, ̂x) dx̂ and similarly Rg(ŷ), and further let P (N)(ŷ) = P{Ŷ(N) =
ŷ}, and similarly for P (ŷ). Then

|E[g(R(N)(Ŷ(N)))] −E[g(R(Ŷ))]| =
∣∣∣∣∣∣
∫
E

R(N)g(ŷ)P (N)(ŷ) dŷ −
∫
E

Rg(ŷ)P (ŷ) dŷ

∣∣∣∣∣∣
≤

∫
E

|R(N)g(ŷ) − Rg(ŷ)|P (N)(ŷ) dŷ

︸ ︷︷ ︸
(a)

+
∣∣∣∣∣∣
∫
E

Rg(ŷ)P (N)(ŷ) dŷ −
∫
E

Rg(ŷ)P (ŷ) dŷ

∣∣∣∣∣∣ .︸ ︷︷ ︸
(b)

The term (b) in the previous inequality goes to zero as the hypothesis imply that Rg(ŷ) is a continuous function (see [52]) 
and P (N) ⇒ P , hence we just need to focus on (a). As E is a Polish space, i.e. a separable complete metric space, it follows 
from P (N) ⇒ P and P tight that P (N) is uniformly tight. Then, we find a compact set Eε such that P (N)(Eε) > 1 − ε/2‖g‖∞ , 
and so∫

E

|R(N)g(ŷ) − Rg(ŷ)|P (N)(ŷ) dŷ ≤
∫
Eε

|R(N)g(ŷ) − Rg(ŷ)|P (N)(ŷ) dŷ + ε

≤ sup
ŷ∈Eε

|R(N)g(ŷ) − Rg(ŷ)| + ε → ε.

Therefore

lim sup
N→∞

∫
E

|R(N)g(ŷ) − Rg(ŷ)|P (N)(ŷ) dŷ ≤ ε,

as the hypothesis of the lemma imply that R(N) g converges to Rg uniformly on compact sets [52]. As the previous inequality 
holds for each ε > 0, then R(N)(Ŷ(N)) ⇒ R(Ŷ). To prove the second part of the theorem, observe that in the previous 
computation we can always restrict the expectation to a closed set F1 ⊂ E , showing that E[g(R(N)(Ŷ(N)))1F1 (Ŷ(N))] →
E[g(R(Ŷ))1F1 (Ŷ)]. Now, if we fix another closed set F2 ⊂ E , and choose bounded uniformly continuous functions gρ ↓ 1F2 , 
approximating from above the indicator function of F2, we then have

P{(Ŷ(N), R(N)(Ŷ(N))) ∈ F1 × F2} ≤ E[gρ(R(N)(Ŷ(N)))1F1(Ŷ(N))],
from which, fixing ρ ,

lim sup
N→∞

P{(Ŷ(N), R(N)(Ŷ(N))) ∈ F1 × F2} ≤ E[gρ(R(Ŷ))1F1(Ŷ)],

by letting ρ → 0 and invoking the bounded convergence theorem, as gρ converges to 1F2 , we have

lim sup
N→∞

P{(Ŷ(N), R(N)(Ŷ(N))) ∈ F1 × F2} ≤ P{(Ŷ, R(Ŷ)) ∈ F1 × F2},

which by the Portmanteau theorem [53], implies that (Ŷ(N), R(N)(Ŷ(N))) ⇒ (Ŷ, R(Ŷ)). �
Functional analysis In the following, we will also need the famous Gronwall inequality, which we recall here for conve-
nience.
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Proposition Appendix C.1. For any real valued integrable function f on the interval [0, T ], if

f (t) ≤ C + D

t∫
0

f (s) ds,

then

f (T ) ≤ CeDT .

Appendix D. Proof of main lemmas and theorems

We will start by providing a quick proof of Theorem 4.1, the classic fluid theorem. This will be helpful in proving 
subsequent lemmas and theorems.

Theorem (4.1). Let (A, γN) be a sequence of population-sCCP models for increasing system size γN → ∞, satisfying the conditions 
of Section 4, and with all sCCP-actions π satisfying the continuous scaling condition. Let X̂(N)(t) be the sequence of normalized CTMC 
associated with the sCCP-program and x̂(t) be the solution of the fluid ODE.

If x̂(N)
0 → x̂0 almost surely, then for any T < ∞, supt≤T ‖X̂(N)(t) − x̂(t)‖ → 0 as N → ∞, almost surely.

Proof. Intuitively, the result of the theorem is a limit result, hence it depends only on what happens in a neighbourhood 
Bε(x̂([0, T ]) of the solution of the ODE. Thus, by restricting our attention to a compact set K ⊂ E containing Bε(x̂([0, T ]) ∩ E
for some ε, we can assume that all functions gη defining the rate of normalized transitions are bounded, say by Bη , and 
Lipschitz, say with Lipschitz constant Lη . This assumption is not restrictive, as we can always extend the functions gη on the 
whole E so that they are globally bounded and Lipschitz continuous. Clearly, x̂(t) will remain unchanged by this operation, 
as it depends only on the value of gη in K .

We consider now the representation of the CTMC X̂(N)(t) in terms of Poisson processes, which can be obtained applying 
a random time change argument [37]. We will use one Poisson process for each transition η and each possible value 
of νη (which is a random element with bounded first and second moments). In the following, we indicate with pη(w) the 
probability that νη = w.

X̂(N)(t) = X̂(N)
0 +

∑
η∈T

∑
w∈Zn

w

N
Nη

⎛
⎝Npη(w)

t∫
0

g(N)
η (X̂(N)(s)) ds

⎞
⎠ (D.1)

Furthermore, x̂(t) in integral form is:

x̂(t) = x̂0 +
t∫

0

∑
η∈T

E[νη]gη(x̂(s)) ds (D.2)

In the following, we need the notion of centred Poisson process [37], defined by N̂ (λt) = N (λt) − λt , for which the 
following law of large numbers holds: supt≤T

1
N N̂ (Nλt) → 0 almost surely.

Now, we define

ε(N)(t) = X̂(N)(t) − X̂(N)(0) −
t∫

0

∑
η∈T

E[νη]g(N)
η (x̂(s)) ds

=
∑
η∈T

∑
w∈Zn

‖w‖
N

N̂η

⎛
⎝Npη(w)

t∫
0

g(N)
η (X̂(N)(s)) ds

⎞
⎠ ,

so that

‖ε(N)(t)‖ ≤
∑
η∈T

∑
w∈Zn

w

N
N̂η

(
Npη(w)Bηt

)
.

By the finiteness of second order moments for νη , the previous equation is summable and we can further exchange limit and 
summation over w [37], to conclude that supt≤T ‖ε(N)(t)‖ → 0 by the law of large numbers for centred Poisson processes. 
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Therefore, we have that

sup
t≤T

‖X̂(N)(t) − x̂(t)‖ ≤ ‖X̂(N)
0 − x̂0‖ + sup

t≤T
‖ε(N)(t)‖ + sup

t≤T
‖F (N)(X̂(N)(t)) − F (X̂(N)(t))‖

︸ ︷︷ ︸
=δ(N)(T )→0 a.s.

+
t∫

0

‖F (X̂(N)(t)) − F (x̂(t))‖ ds.

Calling β(N)(T ) = supt≤T ‖X̂(N)(t) − x̂(t)‖ and applying Lipschitz condition to the last term, we have that

β(N)(T ) ≤ δ(N)(T ) + L

T∫
0

β(N)(t) dt.

By applying Gronwall’s inequality (see Proposition Appendix C.1), we finally obtain

β(N)(T ) ≤ δ(N)(T )eLT → 0 almost surely. �
We will turn now to prove Theorem 5.1. We will need some auxiliary lemmas. The first one is a straightforward gener-

alization of the Kurtz theorem, to the case in which the initial condition of the limit process is sampled from a distribution 
on the space E .

Lemma Appendix D.1. Let X̂(t) and x̂(t) be as in Theorem 4.1. Furthermore, assume that ‖X̂0 − x̂0‖ converges to zero almost surely. 
Then, for any T < ∞, supt≤T ‖X̂(N)(t) − x̂(t)‖ → 0 as N → ∞ almost surely.

Proof. To begin with, suppose x̂0 is supported on a compact set K0. Then the proof proceeds as in Theorem 4.1, with the 
only caveat that we need to consider a compact set K containing an ε-neighbourhood of all trajectories starting in K0 up 
to time T (which is a compact set, by continuity of the ODE flow). In fact, the argument of Theorem 4.1 does not require 
that the initial condition of ODE is deterministic, but just the convergence in probability of X̂0 to x̂0.

Now, as x̂0 is tight, for each ε > 0 there is a compact set Kε such that P{x̂0 /∈ Kε} < ε. Conditional on x̂0 ∈ Kε , the 
convergence of X̂(N)(t) to x̂(t) is then almost sure. Hence, fix a sequence εk ↓ 0, such that the corresponding Kεk ↑ E , and 
with 

∑
k εk < ∞. By discarding a set of measure 0, we can assume that convergence in each Kεk is sure. Then, any other 

point u of the probability space (�, A, P) on which processes are defined that makes convergence fail has to belong to the 
complement of Kεk infinitely often. By the Borel–Cantelli lemma [68], the set of all such u has probability zero. �

We will now turn to consider convergence of stochastic jump times, focussing attention on a single jump time, given 
convergent initial conditions of the stochastic and the piecewise-deterministic system. As we consider the first stochastic 
jump time, we can focus our attention on deterministic systems (with random initial conditions). In order to do this, we 
combine simple properties of the space of cadlag functions with the Skorokhod representation theorem (see Appendix C).

Proposition Appendix D.1. Let x(N) , x be elements of D([0, ∞), E), such that x(N) → x (with respect to the Skorokhod metrics). Then, 
for each T > 0, 

∫ T
0 x(N)(s) ds → ∫ T

0 x(s) ds.

Proof. By the definition of the Skorokhod metrics, let ω(N)(t) be a sequence of time-wiggle functions such that 
supt≤T ‖ω(N)(t) − t‖ → 0, and supt≤T ‖x(N)(t) − x(ω(N)(t))‖ → 0. Now,

T∫
0

‖x(N)(s) − x(s)‖ ds ≤
T∫

0

‖x(N)(s) − x(ω(N)(s))‖ ds

︸ ︷︷ ︸
(a)

+
T∫

0

‖x(ω(N)(s)) − x(s)‖ ds

︸ ︷︷ ︸
(b)

.

The term (a) goes to zero by the uniform convergence of x(N)(t) to x(ω(N)(t)), while for (b), observe that the function 
g(N)(t) = ‖x(ω(N)(t)) − x(t)‖ goes to zero in every continuity point of x, thus almost everywhere. Furthermore, in [0, T ] the 
function x is bounded by a compactness argument (see [53]), and so is g(N) , so that we can apply the bounded convergence 
theorem [68] to conclude that (b) converges to zero. �
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Jump times In order to show convergence of jump times of discrete stochastic transitions, we need the notion of cumulative 
rate for the PDMP �(t) and for the CTMCs.

Consider discrete stochastic actions π ∈ disc(A), and the rate of firing of discrete actions in the PDMP, λ̂(x̂) =∑
π∈disc(A) λ̂π (x̂), and in the CTMC at level N , λ̂(N)(x̂) = ∑

π∈disc(A) λ̂
(N)
π (x̂). Then, the cumulative rate for the PDMP x̂ is

�(t) =
t∫

0

λ̂(x̂(s)) ds, (D.3)

while for the CTMC X̂(N)(t) is

�(N)(t) =
t∫

0

λ̂(N)(X̂(N)(s)) ds. (D.4)

These are the cumulative rates of non-homogeneous Poisson processes. We are interested in the first firing time, whose 
cumulative distribution function is given by 1 − e−�(t) . By a standard inversion method [68,69], the first firing time for the 
PDMP is given by τ = inf{t ≥ 0 | 1 − e−�(t) ≥ U } = inf{t ≥ 0 | �(t) ≥ ξ}, where U is a uniform random variable and ξ is an 
exponentially distributed random variable with rate 1 (it holds that ξ = − log U ). We assume inf ∅ = ∞. Similarly, we can 
define τ (N) = inf{t ≥ 0 | �(N)(t) ≥ ξ}, the first firing time of a discrete transition π ∈ disc(A) in X̂(N)(t). By the Skorokhod 
representation theorem for unidimensional random variables (see Appendix C or, for instance, [67]), if the pointwise con-
vergence of �(N)(t) to �(t) holds, then τ (N) → τ almost surely. We can combine these facts with Proposition Appendix D.1, 
to prove the following lemma.

Lemma Appendix D.2. Let X̂(N)(t) ⇒ x̂(t), and τ (N) , τ be defined as above. If λ̂ is continuous and λ̂(N) → λ̂ uniformly in each 
compact set K ⊆ E, then τ (N) ⇒ τ , as N → ∞.

Proof. The first step of the proof is to use the Skorokhod representation theorem to construct realizations X̃(N) of X̂(N) and 
X̃ of X̂ on some probability space P such that X̃(N) → X̃ almost surely, as random elements in the space of cadlag functions.

It then follows that λ̂(N)(X̃(N)) → λ̂(X̃) almost surely. In fact, consider the time-wiggle functions ω(N) (depending also 
on the sample space (�, A, P), i.e. ω(N) = ω(N)(u, t), for u ∈ �) such that ω(N) → id and Ỹ(N) = X̃(N) ◦ ω(N) → X̃ uniformly 
in [0, T ]. Then

sup
t≤T

‖λ̂(N)(X̃(N)(ω(N)(t))) − λ̂(X̃(t))‖ ≤ sup
t≤T

‖λ̂(N)(Ỹ(N)(t)) − λ̂(Ỹ(N)(t))‖
︸ ︷︷ ︸

(a)

+ sup
t≤T

‖λ̂(Ỹ(N)(t)) − λ̂(X̃(t))‖
︸ ︷︷ ︸

(b)

.

Term (a) goes to zero by uniform convergence of λ̂(N) to λ̂ (as in [0, T ] X̃(N) and X̃ are contained in a compact set), while 
term (b) goes to zero due to uniform convergence of Ỹ(N) to X̃ in [0, T ] and uniform continuity of λ̂ in [0, T ].

Now, we can apply Proposition Appendix D.1 to λ̂(N)(X̃(N)) → λ̂(X̃), to conclude that �(N)(T ) → �(T ) almost surely for 
each T > 0. Combining this with the Skorokhod representation theorem for real random variables,20 we get τ̃ (N) → τ̃ almost 
surely, where τ̃ (N) and τ̃ (N) are the jump times obtained from the realizations of the original processes. It then follows that 
τ (N) ⇒ τ . �

We finally consider the convergence of states at times τ (N) and τ .

Proposition Appendix D.2. Let X̂(N) ⇒ x̂ and let τ (N), τ be stopping times satisfy conditions of the previous lemma. Then, conditional 
on τ < ∞, X̂(N)(τ (N)) ⇒ x̂(τ ).

Proof. In fact, let t(N) → t < ∞ (here we use implicitly the fact that τ < ∞). Then, use Skorokhod representation theorem 
and take representations X̃(N) and X̃ of X̂(N) and X̂ such that X̃(N) → X̃ almost surely. By continuity of X̃ and uniform 
convergence of X̃(N) and X̃ in [0, T ] (the Skorokhod metrics and the uniform metrics on compact sets are the same when 

20 We are effectively coupling X̂(N) , x̂, τ (N) and τ on the probability space � × [0, 1]. Note in particular that we allow τ and τ (N) to take the value ∞. 
This can happen with non-null probability if and only if �(T ) does not diverge as T → ∞.
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the limit function is continuous), it follows that X̃(N)(t(N)) → X̃(t) almost surely, hence X̂(N)(t(N)) ⇒ x̂(t). Hence, by seeing 
X̂(N) and X̂ as Markov kernels, we can apply Lemma Appendix C.1 to conclude. �

In order to prove Theorem 5.1, we will use an inductive argument whose core is the following corollary, which combines 
the previous results in the light of weak convergence.

Corollary Appendix D.1. Let (A, γN ) be a sequence of sCCP models for increasing systems size, satisfying the conditions of this section, 
and with all actions π satisfying the continuous scaling condition. Let X̂(N)(t) be the associated sequence of normalized CTMC and x̂(t)
be the solution of the fluid ODE.

If X̂(N)
0 ⇒ x̂0 , then

1. X̂(N) ⇒ x̂, as random elements in the space of cadlag function on E, with the Skorokhod metrics.
2. If τ (N) , τ , are the jump times of a stochastic event with rate λ(N) and λ, respectively, then τ (N) ⇒ τ ;
3. X̂(N)(τ (N)) ⇒ x̂(τ );
4. If R(N)(ŷ) and R(ŷ) are reset kernels satisfying R(N)(ŷ(N)) ⇒ R(ŷ) whenever ŷ(N) → ŷ, then R(N)(X̂(N)(τ (N))) ⇒ R(x̂(τ ));
5. Under the previous conditions, (X̂(N)

0 , X̂(N), τ (N), X̂(N)(τ (N)), R(N)(X̂(N)(τ (N)))) ⇒ (x̂0, ̂x, τ , ̂x(τ ), R(x̂(τ ))).

Proof. The proof works simply by constructing an a.s. convergent realization of the initial conditions. Then, by Lemma 
Appendix D.1, we obtain point 1. Point 2 follows from Lemma Appendix D.2 and point 1, while point 3 from Proposition 
Appendix D.2 and point 2. Point 4 follows from Lemma Appendix C.1 and point 3. Point 5, instead, follows again from Lemma 
Appendix C.1, observing that each element on the vector is defined conditionally on the previous one (e.g. X̂(N) depends 
conditionally on X̂(N)

0 , τ (N) depends conditionally on X̂(N) , and so on), and this dependence satisfies the assumptions of 
the lemma. For instance, if ŷ(N) → ŷ, then (X̂(N)|X̂(N)

0 = ŷ(N)) ⇒ (x̂|x̂0 = ŷ), and the dependency is measurable (in fact, 
continuous) on ŷ(N) , ŷ. Similar observations hold for the other elements of the vector. Then an iterated application of 
Lemma Appendix C.1 is enough to conclude. �

We can now prove Theorem 5.1.

Theorem (5.1). Let (A, γN) be a sequence of population-sCCP models for increasing system size γN → ∞, satisfying the conditions of 
this section, with variables partitioned into discrete Xd, continuous Xc , and environment ones Xe . Assume that discrete actions satisfy 
Scaling 3 and continuous actions satisfy Scaling 2. Let X̂(N)(t) be the sequence of normalized CTMC associated with the sCCP program 
and x̂(t) be the PDMP associated with the limit normalized TDSHA T̂ (A).

If x̂(N)
0 ⇒ x̂0 (weakly) and the PDMP is non-Zeno, then X̂(t) converges weakly to x̂(t), X̂ ⇒ x̂, as random elements in the space of 

cadlag function with the Skorokhod metric.

Proof. The basic idea of the proof to show weak convergence is to apply inductively the previous corollary, to show weak 
convergence of X̂(N)

m (t) = X̂(N)(t ∧ τ
(N)
m+1) to x̂m(t) = x̂(t ∧ τm+1), i.e. to processes stopped after m + 1 jumps, and then lift 

this to the full weak convergence.

Step 1: weak convergence conditional on m jumps or less. Consider the sequence τ1, τ2, . . . of jump times of discrete stochastic 
transitions in the PDMP x̂(t) and the sequence τ (N)

1 , τ (N)
2 , . . . of jump times of discrete transitions π ∈ disc(A) in X̂(N)(t). In 

the following, we need to take care also of the fact that τm may be infinite with probability greater than zero. Note that, 
conditional on τm being infinite, all τm+ j will be infinite, too.

In order to be more concise, let us introduce some additional local notation. First, denote Ẑ(N)
m = X̂(N)(τ

(N)+
m ) and ẑm =

x̂(τ+
m ) the states of the CTMC at level N and of the PDMP after the m-th discrete jump. If τm or τ (N)

m are infinite, we assume 
ẑm or Ẑ(N)

m be equal to a special value (q�, 0), where q� is a special state of Q where nothing happens: the vector field and 
the jump rate are null (i.e. it is a cemetery point). Note that (q�, 0) has distance 1 from any point (q, x) in E .

Let also Ẑ(N)
0 = X̂(N)

0 , ẑ0 = x̂0, τ (N)
0 = τ0 = 0. We define Ŷ(N)

m (t) to be the CTMC starting from Ẑ(N)
m with no discrete jumps, 

and ŷm(t) the PDMP starting in ẑm with no discrete jumps (in fact, an ODE with random initial conditions). Notice that, if 
τ

(N)
m (resp. τm) is finite, then Ŷ(N)

m (t) (resp. ŷm(t)) coincides with X̂(N)(τ
(N)
m + t) (resp. x̂(τm + t)) for τ (N)

m ≤ t < τ
(N)
m+1 (resp. 

τm ≤ t < τm+1), by the strong Markov property of CTMC [8] and of PDMP [31].
We will now prove that, for each m > 0, conditional on τm < ∞, Ŷ(N)

m ⇒ ŷm and τ (N)
m+1 ⇒ τm+1. Moreover, if τm+1 < ∞, 

then also Ẑm+1 ⇒ ẑm+1. Finally, we will also show that, conditional on τm+1 < ∞, (Ẑ(N)
0 , ̂Y(N)

0 , τ (N)
1 , ̂Z(N)

1 , . . . , ̂Y(N)
m , τ (N)

m+1,

Ẑ(N)
m+1) ⇒ (ẑ0, ̂y0, τ1, ̂z1, . . . , ̂ym, τm+1, ̂zm+1). The argument is a simple induction. In particular, the induction hypothesis is 

that (Ẑ(N)
0 , ̂Y(N)

0 , τ (N)
1 , ̂Z(N)

1 , . . . , ̂Z(N)
m ) ⇒ (ẑ0, ̂y0, τ1, ̂z1, . . . , ̂zm) conditional on τm < ∞.21 From this, Ŷ(N)

m ⇒ ŷm is immediate 

21 In particular, this implies that ẑm �= (q�, 0), and as Ẑ(N)
m ⇒ ẑm , ultimately also Ẑ(N)

m �= (q�, 0).
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from Lemma Appendix D.1, and τ (N)
m+1 ⇒ τm+1 follows from Lemma Appendix D.2. Now, conditional on τm+1 < ∞, we can 

apply Proposition Appendix D.2 to conclude that Ẑm+1 ⇒ ẑm+1. As τm+1 < ∞ implies τm < ∞, reasoning as in Corollary 
Appendix D.1 (using the same argument there to extend inductively its length), we obtain the weak convergence of vectors 
of the random elements.

Consider now X̂(N)
m (t) = X̂(N)(t ∧ τ

(N)
m+1) and x̂m(t) = x̂(t ∧ τm+1). We can write X̂(N)

m (t) = ∑m
i=0 Ŷ(N)

i (t − τ
(N)
i )I{τ (N)

i ≤ t <

τ
(N)
i+1} + I{τ (N)

m+1 ≤ t}Ẑ(N)
m+1 and x̂m(t) = ∑m

i=0 ŷi(t − τi)I{τi ≤ t < τi+1} + I{τm+1 ≤ t}ẑm+1. Now, the functional that associates 
with T the cadlag element I{t ≤ T } is continuous with respect to Skorokhod metrics, and if we consider the previous 
definitions of X̂(N)

m and x̂m as a function of (Ẑ(N)
0 , ̂Y(N)

0 , τ (N)
1 , ̂Z(N)

1 , . . . , ̂Z(N)
m+1) and (ẑ0, ̂y0, τ1, ̂z1, . . . , ̂zm+1), respectively, then 

this function is continuous. Hence, conditional on τm+1 < ∞, X̂(N)
m ⇒ x̂m by the continuous mapping theorem. The same 

property holds also when τm+1 = ∞. In fact, conditioning on τ j < ∞ and τ j+1 = ∞, for j ≤ m, we observe that the process 
w j(t) = ∑ j−1

i=0 ŷi(t − τi)I{τi ≤ t < τi+1} + I{t ≥ τ j}ŷ j(t − τ j) coincides with x̂m(t), and by the same argument above, applied 
to vectors (Ẑ(N)

0 , ̂Y(N)
0 , τ (N)

1 , ̂Z(N)
1 , . . . , τ (N)

j+1) and (ẑ0, ̂y0, τ1, ̂z1, . . . , τ j+1), the processes W(N)
j (t) = ∑ j−1

i=0 Ŷ(N)
i (t − τ

(N)
i )I{τ (N)

i ≤
t < τ

(N)
i+1} + I{t ≥ τ

(N)
j }Ŷ(N)

j (t − τ
(N)
j ) converge weakly to w j . Now, the processes W(N)

j (t) and X̂(N)
m (t) are the same up to 

time τ (N)
j+1, which is a divergent sequence under the event {τ j < ∞, τ j+1 = ∞}.22 This implies that X̂(N)

m converges weakly 
to W(N)

j (in fact, their Skorokhod distance converges weakly to zero, in fact a.s. under any a.s. realization of τ (N)
j+1 → ∞), and 

hence, by uniqueness of the limit, to W j = x̂m . Now, as the events {τ j < ∞, τ j+1 = ∞}, for j = 0, . . . , m and {τm+1 < ∞}
are disjoint and their union has probability one, we can remove the conditioning and conclude X̂(N)

m ⇒ x̂m .23

Step 2: weak convergence. We now lift the weak convergence X̂(N)
m ⇒ x̂m to weak convergence of the full processes X̂(N) ⇒ x̂. 

Consider a bounded uniformly continuous function f from the space D = D([0, ∞), E) of cadlag functions with values in E
to R. By the definition of the Skorokhod metric d in D , for each ρ > 0, there is a T > 0 such that d(x, y) < dT (x, y) + ρ , 
where dT is the metric restricted to the compact time interval [0, T ] (see Appendix C). By the uniform continuity of f , 
given ε > 0, we fix a ρ > 0 such that | f (x) − f (y)| < ε/4 whenever d(x, y) < ρ .

Now, fix T > 0 according to the previous condition on ρ , and choose m such that P{τm+1 > T } > 1 − ε/(16‖ f ‖), which 
can be found since the expected number of discrete transitions fired by the PDMP at time T is finite. As τ (N)

m+1 ⇒ τm+1, we 
can also find an N0 such that, for all N ≥ N0, P{τ (N)

m+1 > T } > 1 − ε/(8‖ f ‖) (using the liminf condition in the Portmanteau 
theorem).

Now, conditioning on τm+1 > T , we have that x̂(t ∧ T ) = x̂m(t ∧ T ), and so d(x̂, ̂xm) ≤ ρ . Similarly, conditioning on 
τ

(N)
m+1 > T , we have X̂(N)(t ∧ T ) = X̂(N)

m (t ∧ T ) and d(X̂(N), X̂(N)
m ) ≤ ρ . Now

∣∣∣E[ f (X̂(N))] −E[ f (x̂)]
∣∣∣ ≤ E[| f (X̂(N)) − f (X̂(N)

m )|]︸ ︷︷ ︸
(a)

+E[| f (x̂) − f (x̂m)|]︸ ︷︷ ︸
(b)

+
∣∣∣E[ f (X̂(N)

m )] −E[ f (x̂m)]
∣∣∣︸ ︷︷ ︸

(c)

Now, term (c) goes to zero as X̂(N)
m ⇒ x̂m . To bound (b), instead, using properties of conditional expectation, we have

E[| f (x̂) − f (x̂m)|] = E[E[| f (x̂) − f (x̂m)| ∣∣ I{τm+1 > T }]]
≤ E[| f (x̂) − f (x̂m)| ∣∣ I{τm+1 > T } = 1] · P{τm+1 > T } + 2‖ f ‖P{τm+1 ≤ T }
≤ E[| f (x̂) − f (x̂m)| ∣∣ I{τm+1 > T } = 1] + ε/4 ≤ ε/2,

22 In fact, τ (N)
j+1 ⇒ τ j+1 conditional on τ j < ∞. Moreover, if τ j+1 = ∞, it also holds that τ (N)

j+k ⇒ τ j+k for any k > 0, as τ j+k = ∞ and τ (N)

j+k ≥ τ j+1 → ∞. 
This means that by induction we can conclude τ (N)

j ⇒ τ j for any j.
23 To see this more precisely, couple all processes W(N)

j , w j , x̂m , and X̂(N)
m , and the exit times τ j on a common space �, and let � j the subset correspond-

ing to the event {τ j = ∞, τ j−1 < ∞}, for j = 1, . . . , m, and �0 be the subset corresponding to the event {τm < ∞}. Clearly � j , for j = 0, . . . , m, form a 
partition of �. Let P be the probability measure on �, let μ j the push-forward measure on the space of cadlag functions on E of w j , i.e. of x̂m conditioned 
on � j , and let μ(N)

j be the push-forward measure of X̂(N)
m conditioned on � j , for j such that p j = P(� j) > 0 (call J such a set of indices). We know 

μ
(N)
j ⇒ μ j . Then μ, the push-forward measure of x̂m , coincides with ∑ j∈ J p jμ j , and similarly μ(N) , the push-forward measure of X̂(N)

m , is ∑ j∈ J p jμ
(N)
j . 

Now, let F be a closed set of the cadlag space D([0, ∞), E . Then

lim sup
N

μN (F ) ≤
∑
j∈ J

p j lim sup
N

μ
(N)
j (F ) ≤

∑
j∈ J

p jμ j(F ) = μ(F ),

which implies μ(N) ⇒ μ, and hence X̂(N)
m ⇒ x̂m , by the Portmanteau theorem.
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where the last inequality follows from the choice of ρ and the fact that d(x̂, ̂xm) ≤ ρ . A similar argument can be used for 
term (a), allowing us to conclude that

lim sup
N→∞

E[| f (X̂(N)) − f (X̂(N)
m )|] ≤ ε/2,

from which we have

lim sup
N→∞

∣∣∣E[ f (X̂(N))] −E[ f (x̂)]
∣∣∣ ≤ ε.

By the arbitrariness of ε > 0, we can finally conclude that 
∣∣∣E[ f (X̂(N))] −E[ f (x̂)]

∣∣∣ → 0. �
D.1. Instantaneous transitions

In this subsection, we give the proofs of results contained in Section 6 of the paper.

Lemma (6.1). Let (A, γN) be a sequence of population-sCCP models for increasing population size. Let X̂(N)(t) be the associated 
sequence of normalized CTMC, and suppose X̂(N) ⇒ X̂, where X̂ has a.s. continuous sample paths. Let h(N), h be activation functions 
for X̂(N) and X̂, such that h(N) → h uniformly, and suppose h is transversal to X̂. Then ζ (N) ⇒ ζ .

Proof. First of all, use the Skorokhod representation theorem to construct representations X̃(N) of X̂(N) and X̃ of X̂ such that 
X̃(N) → X̃ almost surely. Now fix sample trajectories x̃(N) → x̃ in the Skorokhod metrics. As X̃ is almost surely continuous, 
we can assume x̃ continuous. In this case, the Skorokhod metric is the same as the uniform metric on compact sets [0, T ]. 
In particular, we can take T larger than ζ̃ + δ, for any δ > 0, where ζ̃ is the exit time for x̃. Now, since h is transversal for X̂, 
there is a δ > 0 such that h(x̃(t)) > 0 for t ∈ (ζ̃ , ̃ζ +δ]. Let h̄ = min{max{−h(x̃(t)) | t ∈ [ζ̃ −δ, ̃ζ ]}, max{h(x̃(t)) | t ∈ [ζ̃ , ̃ζ +δ]}}. 
Fix ε > 0, ε < h̄, and let ζ̃−

ε = sup{t ≤ ζ̃ | h(x̃(t)) ≤ −ε} and ζ̃+
ε = inf{t ≥ ζ̃ | h(x̃(t)) ≥ ε}. By continuity of x̃, it follows that 

‖h(x̃(t)) − h(x̃(ζ̃ ))‖ < ε for any t ∈ (ζ̃−
ε , ̃ζ+

ε ), and that ζ̃−
ε , ̃ζ+

ε → ζ̃ as ε → 0.
Now, choose a compact set K in E that contains the ε-neighbourhood of x̃ in [0, T ], for T > ζ̃+

ε . As h is uniformly 
continuous in K , pick a ρ > 0 such that ‖h(x̂1) − h(x̂2)‖ < ε/4 whenever ‖x̂1 − x̂2‖ < ρ , and fix N0 > 0 such that x̃(N)(t) is 
ρ-close to x̃(t) for N ≥ N0, uniformly in [0, T ]. Furthermore, find N1 such that, for N ≥ N1, supx̂∈K ‖h(N)(x̂) −h(x̂)‖ < ε/4. Let 
N̄ = max{N0, N1}. It follows that, for N ≥ N̄ , ‖h(N)(x̃(N)(t)) −h(x̃(t))‖ ≤ ‖h(N)(x̃(N)(t)) −h(x̃(N)(t))‖ +‖h(x̃(N)(t)) −h(x̃(t))‖ <
ε/2, and so h(N)(x̃(N)(t)) < 0 for t ∈ [0, ̃ζ−

ε ], hence ζ̃ (N) > ζ̃−
ε . Furthermore, h(N)(x̃(N)(ζ̃+

ε )) > 0, and so ζ̃ (N) < ζ̃+
ε . It follows 

ζ̃ (N) → ζ̃ a.s., and therefore ζ (N) ⇒ ζ . �
We now turn the attention to resets of instantaneous guards, proving a version of Lemma Appendix C.1 dealing with 

the discontinuities in the reset kernels under some regularity assumptions. We first recall some notation. Let p̂(N)
i , p̂i be 

the weight functions, with p̂i continuous and p̂(N)
i uniformly convergent to p̂i on each compact set K ⊆ E . Furthermore, let 

p̂(x̂) = ∑
i p̂i(x̂), and similarly p̂(N)(x̂) = ∑

i p̂(N)
i (x̂). Let R(N)

i and Ri be the reset kernels associated with the instantaneous 
transitions satisfying R(N)

i (x̂(N)) ⇒ Ri(x̂) whenever x̂(N) → x̂. Finally, let h(N)
i , hi be the activation functions of guards, with 

hi continuous and h(N)
i converging uniformly to hi . The further properties that are required for the activation functions are 

the following:

• Each hi is a robust activation function, according to Definition 6.1.
• The PDMP is robustly transversal, see Definition 6.3.
• The set of activation functions hi enjoys the size-compatibility property, see Definition 6.6.
• The PDMP has the robust activation property, as stated in Definition 6.5.

Consider now the activation function for the PDMP, defined by h(x̂) = max{h1(x̂), . . . , hm(x̂)}, and let H = {x̂ | h(x̂) = 0}
be the activation surface of instantaneous transitions. H(N) is defined similarly. Furthermore, let Hi = H ∩ {x̂ | hi(x̂) = 0}
be the portion of H in which transition i is active. Call Di = ∂HHi the boundary of Hi in H and D = ⋃m

i=1 Di . The 
robust activation property implies that the probability of jumping from D is zero. Furthermore, let Idep be the index of 
size-dependent activation functions, i.e. such that h(N) �= h, and Iind the index set of size-independent activation functions. 
The size-compatibility condition states that, for each i ∈ Idep and x̂ ∈ intH(Hi), h j(x̂) �= 0 for j �= i, i.e. only hi is zero.

Finally, recall the definition of the reset kernels on H(N) and H:

R(N)(x̂, ·) =
m∑

1{h(N)
i (x̂) ≥ 0}(p̂(N)

i (x̂)/p̂(N)(x̂))R(N)
i (x̂, ·),
i=1
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and

R(x̂, ·) =
m∑

i=1

1{hi(x̂) ≥ 0}(p̂i(x̂)/p̂(x̂))Ri(x̂, ·).

Under the previous hypothesis, we can prove the following lemma.

Lemma Appendix D.3. Let R(N)(ŷ) and R(ŷ) defined as before and let Ŷ(N) ⇒ Ŷ, where Ŷ(N) , Ŷ are random elements with support in 
H(N) and H, respectively, such that P{Ŷ ∈ D} = 0. Then R(N)(Ŷ(N)) ⇒ R(Ŷ) and (Ŷ(N), R(N)(Ŷ(N))) ⇒ (Ŷ, R(Ŷ)).

Proof. Fix a bounded and uniformly continuous function g : E → R. We need to prove that |E[g(R(N)(Ŷ(N)))] −
E[g(R(Ŷ))]| → 0 as N → ∞. We use the same notation as in Lemma Appendix C.1. The idea is to split the integrals ∫

E R(N) g(ŷ)P (N)(ŷ) dŷ and 
∫

E Rg(ŷ)P (ŷ) dŷ into several regions, surrounding the discontinuity points by a small probability 
region in such a way that the probability mass is concentrated on a continuity region, in which we can apply Lemma 
Appendix C.1. There are some technical details that we have to work out, as Ŷ(N) and Ŷ are concentrated on a manifold 
of E .

Let δ > 0 (to be fixed afterwards) and K ⊆ E be a compact set. Call Dδ = ⋃
x̂∈D Bδ(x̂) the δ-neighbourhood of D . Clearly, 

Dδ ↓ D as δ ↓ 0, and therefore P (Dδ) ↓ 0. The same holds for the closure Dδ : P (Dδ) ↓ 0.
Consider now a size-dependent activation function, i ∈ Idep , and let Hi,δ = Hi ∩ Dc

δ . By the size-compatibility condition, 
it follows that |h j(x̂)| > 0 for each x̂ ∈ Hi,δ and each j �= i. In particular, d(x̂, H j) > 0 for each x̂ ∈ Hi,δ , where the distance 
between a point and a set is defined in the usual way as d(x̂, A) = infŷ∈A d(x̂, ̂y). Now, notice that Hi,δ is closed and 
so Hi δ ∩ K is compact. Therefore, by continuity of the distance d, there is a ρi, j > 0 such that d(x̂, H j) > ρi, j for each 
x̂ ∈ Hi δ ∩ K .24 Let now δi = min j �=i ρi, j/2, and notice that, for each x̂ ∈ Hi,δ ∩ K and ŷ ∈ Bδi (x̂), we have d(ŷ, H j) > δi > 0. 
Let Ai,δ =

[⋃
x̂∈Hi,δ∩K Bδi (x̂)

]
∩ Dc

δ , then d(ŷ, H j) ≥ δi for each ŷ ∈ Ai,δ . It follows that h j(ŷ) > 0 in Ai,δ , which is compact, 
so that we find a ρi > 0 such that ‖h j(ŷ)‖ ≥ ρi for ŷ ∈ Ai δ and each j �= i.

By possibly invoking uniform convergence of h(N)
j to h j , for j ∈ Idep , the property of Ai,δ allows us to conclude that, for 

N large enough, h(N)
j (ŷ) �= 0 in Ai,δ . Furthermore, by the robust activation of hi , h

(N)
i ultimately changes sign within Ai,δ . In 

particular, combining this with the fact that Ŷ(N) is supported in H(N) and Ŷ is supported in H, we get that in Ai,δ , R(N)

coincides with R(N)
i and R with Ri , hence they satisfy the continuity property R(N)(x̂(N)) → R(x̂) as x̂(N) → x̂.

We can deal similarly with size-independent activation functions h j , j ∈ Iind . In this case, however, we may have more 
than one guard robustly active in H, so we really need to consider each possible activation profile. Let α be a boolean 
vector, α ∈ {0, 1}m , such that αi = 0 for i ∈ Idep . Call J ind the set of such vectors. Then we can define Hα =H∩⋂

j:α j=1 H j . 
In intH(Hα), hi(x̂) �= 0 if and only if αi = 0, hence we can reason as for the size-dependent case to construct an open 
neighbourhood Aα,δ of Hα ∩ Dc

δ in which h(N)
i (x̂) �= 0 for N large enough and all x̂ ∈ Aα,δ . Since h(N)

j = h j for α j = 1, 
and since P (N) and P are supported in Hα , when restricted to Aα,δ , we can conclude that R(N)(x̂(N)) → R(x̂) as x̂(N) → x̂
in Aα,δ .

Recall the definition of J ind , and let Jdep be the set of boolean vectors α ∈ {0, 1}m equal to one only for a single i ∈ Idep , 
and zero elsewhere, and J = J ind ∪ Jdep . For each compact K and δ, we have constructed an open set Aδ = ⋃

α∈ J Aα,δ such 
that R(N) and R behave nicely in it.

Now, fix ε > 0, and, invoking the uniform tightness of P (N) and P , choose Kε compact such that P (N)(Kε) ≥ 1 −ε/4‖g‖∞ . 
Furthermore, pick δ > 0 such that P (Dδ) ≤ ε/4‖g‖∞ . Then we have

|E[g(R(N)(Ŷ(N)))] − E[g(R(Ŷ))]| ≤

∣∣∣∣∣∣∣
∫
Aδ

R(N)g(ŷ)P (N)(ŷ) dŷ −
∫
Aδ

Rg(ŷ)P (ŷ) dŷ

∣∣∣∣∣∣∣︸ ︷︷ ︸
(a)

+

∣∣∣∣∣∣∣
∫

Kε\(Aδ∪Dδ)

R(N)g(ŷ)P (N)(ŷ) dŷ −
∫

Kε\(Aδ∪Dδ)

Rg(ŷ)P (ŷ) dŷ

∣∣∣∣∣∣∣︸ ︷︷ ︸
(b)

24 Let f : K → R be a continuous function on a compact set K such that | f (x̂)| > 0 for each x̂ ∈ K . Then there is ε > 0 such that | f (x̂)| ≥ ε for each 
x̂ ∈ K . Suppose not, and choosing ε = 1/n, construct a sequence x̂n such that f (x̂n) ≤ 1/n and so f (x̂n) → 0. By compactness of K , extract a convergent 
subsequence x̂nk → ŷ ∈ K . Then 0 = limk f (x̂nk ) = f (ŷ), a contradiction.
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+

∣∣∣∣∣∣∣
∫
Dδ

R(N)g(ŷ)P (N)(ŷ) dŷ −
∫
Dδ

Rg(ŷ)P (ŷ) dŷ

∣∣∣∣∣∣∣︸ ︷︷ ︸
(c)

+

∣∣∣∣∣∣∣
∫
K c

ε

R(N)g(ŷ)P (N)(ŷ) dŷ −
∫
K c

ε

Rg(ŷ)P (ŷ) dŷ

∣∣∣∣∣∣∣︸ ︷︷ ︸
(d)

Now, term (a) goes to zero invoking Lemma Appendix C.1, given the continuity of resets in Aδ . To deal with term (b), notice 
that Kε \ (Aδ ∪ Dδ) is closed and P (Kε \ (Aδ ∪ Dδ)) = 0, so that lim supN P (N)(Kε \ (Aδ ∪ Dδ)) = 0. Term (c) is dealt with by 
observing that lim supN P (N)(Dδ) ≤ P (Dδ) ≤ ε/4‖g‖∞ , and so lim supN P (N)(Dδ) ≤ ε/4‖g‖∞ . Therefore (c) is less than ε/2. 
Finally, (d) is less than ε/2 by the choice of Kε . It follows that

lim sup
N→∞

|E[g(R(N)(Ŷ(N)))] −E[g(R(Ŷ))]| ≤ ε,

which implies |E[g(R(N)(Ŷ(N)))] − E[g(R(Ŷ))]| → 0. Proof of the second statement of the theorem can be copied verbatim 
from Lemma Appendix C.1. �

We now give the proof of Theorem 6.1.

Theorem (6.1). Let (A, γN) be a sequence of population-sCCP models for increasing system size γN → ∞, as N → ∞, with vari-
ables partitioned into X = (Xd, Xc, Xe), with discrete stochastic actions satisfying Scaling 3, instantaneous actions satisfying Scaling 4, 
and continuous actions satisfying Scaling 2. Let X̂(N)(t) be the associated sequence of normalized CTMC and x̂(t) be the limit PDMP 
associated with the normalized limit TDSHA T̂ (A).

If x̂(N)
0 ⇒ x̂0 (weakly) and the PDMP is non-Zeno, robustly transversal, has the robust activation property and it is size-

compatible, then X̂(N)(t) converges weakly to x̂(t), X̂(N) ⇒ x̂, as random elements in the space of cadlag function with the Skorokhod 
metric.

Proof. The argument closely follows the proof of Theorem 5.1. The only difference is the definition of jump times T (N)
i

and Ti . In this case, in fact, these are defined as the minimum of stochastic jump times τ (N)
i and τi (conditional on having 

observed i − 1 jumps) and instantaneous jump times ζ
(N)
i and ζi (conditional on having observed i − 1 jumps). Now, 

as τ (N)
i ⇒ τi by Lemma Appendix D.2 and ζ (N)

i ⇒ ζi by Lemma 6.1, by the continuous mapping theorem it follows that 
T (N)

i = min{τ (N)
i , ζ (N)

i } ⇒ min{τi, ζi} = Ti .
This allows us to extend Corollary Appendix D.1, by replacing τ (N) ⇒ τ with T (N) ⇒ T in point 2, and then showing 

X̂(N)(T (N)) ⇒ x̂(T ) (use Proposition Appendix D.2 conditional on T < ∞). As for convergence of the state after the reset, 
notice that Ŷ(N) = X̂(N)(T (N)) and ŷ = x̂(T ) satisfy the conditions of Lemma Appendix D.3. Moreover, we have R(N)(Ŷ(N)) =
R(N)

s (Ŷ(N))I{τ (N)
i < ζ

(N)
i } + R(N)

i (Ŷ(N))I{τ (N)
i > ζ

(N)
i }, and R(ŷ) = Rs(ŷ)I{τi < ζi} + Ri(ŷ)I{τi < ζi}, where R(N)

s (Ŷ(N)) and Rs(ŷ)

are the resets kernels for stochastic jumps (constructed from instantaneous transitions) and R(N)
i (Ŷ(N)) and Ri(ŷ) are the 

resets kernels for the instantaneous jumps.
Both satisfy R(N)

s (Ŷ(N)) ⇒ Rs(ŷ) and R(N)
i (Ŷ(N)) ⇒ Ri(ŷ), as Ŷ(N) → ŷ. Now, as P{ζi = τi} = 0, we can apply the continuous 

mapping theorem first to the indicator functions I{τ < ζ } and I{τ > ζ }, to show that I{τ (N)
i < ζ

(N)
i } ⇒ I{τi < ζi} and I{τ (N)

i >

ζ
(N)
i } ⇒ I{τi > ζi}, and then to the definition of R(N) and R , to show that R(N)(Ŷ(N)) ⇒ R(ŷ).

Reasoning similarly to Lemma Appendix C.1, we have then proved the equivalent of point 4 and 5 of Corollary Ap-
pendix D.1. Then, the proof of the theorem works as in Theorem 5.1. �
D.2. Guards in discrete stochastic transitions

We turn now to prove convergence in the presence of guarded discrete stochastic transitions. As discussed in the paper, 
there are two main issues to deal in this case, caused by the introduction of discontinuities in the rate functions. The first 
is the convergence of jump times, the second is the convergence of states after the resets. Both points require an additional 
regularity property of the PDMP, namely the robust compatibility with respect to guards of discrete stochastic transitions.

We start by showing convergence of exit times. Recall that we have m, say, discrete stochastic transitions, with rate 
functions λ̂(N)

i , λ̂i , and activation functions h(N)
i and hi associated with guards, such that λ̂i and hi are continuous, and 

λ̂
(N) , h(N) converge uniformly on compact sets to λ̂i and hi , respectively. Let λ̂(N)(x̂) = ∑m

i=1 I{h(N)
(x̂) ≥ 0}λ̂(N)

(x̂) and 
i i i i
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λ̂(x̂) = ∑m
i=1 I{hi(x̂) ≥ 0}λ̂i(x̂). Furthermore, we consider the following discontinuity surfaces: H(N)

i = {h(N)
i (x̂) = 0} and 

Hi = {hi(x̂) = 0}, H(N) = ⋃m
i=1 H

(N)
i , and H = ⋃m

i=1 Hi .
We then can prove the following

Lemma Appendix D.4. Let X̂(N) ⇒ X̂, as random variables in the space of cadlag functions, with X̂ a.s. continuous and such that, with 
probability 1, {t ∈ R

+ | X̂(t) ∈ H} has Lebesgue measure 0. Let τ (N), τ be the jump times associated with rates λ̂(N) and λ̂ defined 
above. Then τ (N) ⇒ τ , as N → ∞.

Proof. We first prove that, if x̂(N) → x̂ as elements in the space of cadlag functions, x̂ is continuous, and λ̂(x̂(t)) is almost 
everywhere continuous, then �(N)(T ) = ∫ T

0 λ̂(N)(x̂(N)(t)) dt → ∫ T
0 λ̂(x̂(t)) dt = �(T ) for every T > 0. In fact, for each conti-

nuity point ŷ of λ̂ we have that λ̂(N)(ŷ(N)) → λ̂(ŷ) as ŷ(N) → ŷ. It follows that, for each t > 0 such that λ̂(x̂(t)) is continuous, 
then λ̂(N)(x̂(N)(t)) → λ̂(x̂(t)), as x̂(N)(t) → x̂(t) by continuity of x̂. Therefore, λ̂(N)(x̂(N)) → λ̂(x̂) pointwise almost every-

where in [0, T ]. Furthermore, by continuity of λ̂i , we have λ̂(N)
i (x̂(N)) → λ̂i(x̂), hence {λ̂(N)

i (x̂(N)), ̂λi(x̂)} is relatively compact 
in the space of cadlag functions, and so bounded uniformly. It means that there is Mi > 0 such that ‖λ̂(N)

i (x̂(N)(t))‖ ≤ Mi

and ‖λ̂i(x̂(t))‖ ≤ Mi . But as λ̂(N)(x̂(N)(t)) ≤ ∑
i λ̂

(N)
i (x̂(N)(t)) and λ̂(x̂(t)) ≤ ∑

i λ̂i(x̂(t)), it follows that λ̂(N)(x̂(N)), ̂λ(x̂) are 
bounded by 

∑
i Mi . Hence, by the bounded convergence theorem, 

∫ T
0 λ̂(N)(x̂(N)(t)) dt → ∫ T

0 λ̂(x̂(t)) dt for every T > 0.

Now, the statement follows by applying the Skorokhod representation theorem, as in Lemma Appendix D.2. Let X̃(N) , 
X̃ be representations of X̂(N) , X̂ on a probability space (�, A, P) such that X̃(N) → X̃ almost surely. Hence, due to the 
hypothesis, for ω in a subset of probability 1 of �, we have that X̃(N)(ω) → X̃(ω), X̃(ω) is continuous, and λ̂(X̃(ω)) is 
almost everywhere continuous. Then we can apply the previous argument to X̃(N)(ω), X̃(ω), and conclude that �(N)(ω, T )

converges pointwise to �(ω, T ) for each T , from which we get a.s. convergence of the representation of jump times ˜τ (N)

and τ̃ . Hence τ (N) ⇒ τ , as desired. �
We turn now our attention to reset kernels. We will extend Lemma Appendix C.1 to deal with the discontinuities in 

the limit kernel using the hypothesis that there is zero probability of being in a discontinuous state when we jump. Re-
call the definition of λ̂(N) , λ̂ , h(N)

i and hi , and further let R(N)
i , Ri be the reset kernels, satisfying R(N)

i (x̂(N)) ⇒ Ri(x̂), 
for each x̂(N) → x̂. Then the full reset kernels are R(N)(x̂, ·) = ∑m

i=1 I{h(N)
i (x̂) ≥ 0}(λ̂(N)

i (x̂)/λ̂(N)(x̂))R(N)
i (x̂, ·), and R(x̂, ·) =∑m

i=1 I{hi(x̂) ≥ 0}(λ̂i(x̂)/λ̂(x̂))Ri(x̂, ·).
Equipped with these definitions, we can prove the following lemma.

Lemma Appendix D.5. Let R(N)(ŷ) and R(ŷ) defined as before and let Ŷ(N) ⇒ Ŷ, where Ŷ(N) , Ŷ are random elements in E such that 
P{Ŷ ∈H} = 0. Then R(N)(Ŷ(N)) ⇒ R(Ŷ) and (Ŷ(N), R(N)(Ŷ(N))) ⇒ (Ŷ, R(Ŷ)).

Proof. The proof is based on Lemma Appendix C.1, with additional arguments taking care of the discontinuities in R(N)

and R . Fix ε > 0 and a bounded and uniformly continuous function g : E → R. By the same argument of Lemma Ap-
pendix C.1, {Ŷ(N), ̂Y} is uniformly tight, and so there is a compact set Kε such that P (N)(Kε) ≥ 1 − ε/4‖g‖∞ for each N , and 
P (Kε) ≥ 1 −ε/4‖g‖∞ . Furthermore, for δ ≥ 0, let Hi,δ be the closed δ-neighbourhood of Hi , defined by Hi,δ = ⋃

x̂∈Hi
Bδ(x̂), 

where Bδ(x̂) is the ball of radius δ centred in x̂. Let also Hδ = ⋃
i Hi,δ . Clearly Hδ ↓ H for δ ↓ 0, and so P (Hδ) ↓ 0. Choose 

δ such that P (Hδ) < ε/4‖g‖∞ . We have that

|E[g(R(N)(Ŷ(N)))] −E[g(R(Ŷ))]| ≤

∣∣∣∣∣∣∣
∫

Kε∩Hc
δ

R(N)g(ŷ)P (N)(ŷ) dŷ −
∫

Kε∩Hc
δ

Rg(ŷ)P (ŷ) dŷ

∣∣∣∣∣∣∣︸ ︷︷ ︸
(a)

+

∣∣∣∣∣∣∣
∫
Hδ

R(N)g(ŷ)P (N)(ŷ) dŷ −
∫
Hδ

Rg(ŷ)P (ŷ) dŷ

∣∣∣∣∣∣∣︸ ︷︷ ︸
(b)

+

∣∣∣∣∣∣∣
∫
K c

ε

R(N)g(ŷ)P (N)(ŷ) dŷ −
∫
K c

ε

Rg(ŷ)P (ŷ) dŷ

∣∣∣∣∣∣∣︸ ︷︷ ︸

(c)
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Now, the reset kernels R(N) and R in Kε ∩Hc
δ satisfy the continuity property R(N)(x̂(N)) ⇒ R(x̂) as x̂(N) → x̂, for x̂(N), ̂x ∈

Kε ∩Hc
δ . This follows because, by uniform convergence of h(N)

i to hi on the compact set Kε and the fact that Kε ∩Hc
δ does 

not contain any discontinuity surface, if x̂(N) → x̂, then x̂(N) will ultimately satisfy the same guards as x̂, i.e. I{h(N)
i (x̂(N)) ≥

0} → I{hi(x̂) ≥ 0}. Then convergence of the reset kernels follows as in the unguarded case. This means that we can apply 
Lemma Appendix C.1 and conclude that term (a) goes to zero.

As for term (b), notice that Hδ is closed, hence lim supN→∞ P (N)(Hδ) ≤ P (Hδ) ≤ ε/4‖g‖∞ by the Portmanteau theorem. 
Finally, term (c) is less than ε/2 by the choice of Kε and the fact that Rg and R(N) g are both bounded by ‖g‖∞ . Hence we 
have that lim supN→∞ |E[g(R(N)(Ŷ(N)))] −E[g(R(Ŷ))]| ≤ ε, which implies convergence to zero by the arbitrariness of ε. This 
proves R(N)(Ŷ(N)) ⇒ R(Ŷ). The second part of the statement, instead, follows as in Lemma Appendix C.1. �

We are finally ready to prove Proposition 7.2.

Proposition (7.2). Let (A, γN) be a sequence of population-sCCP models for increasing systems size γN → ∞, as N → ∞, with 
variables partitioned into X = (Xd, Xc, Xe), with discrete stochastic actions satisfying either Scaling 3 or Scaling 8, no instantaneous 
actions, and continuous actions satisfying Scaling 2. Let X̂(N)(t) be the associated sequence of normalized CTMC and x̂(t) be the limit 
PDMP associated with the normalized limit TDSHA T̂ (A).

If x̂(N)
0 ⇒ x̂0 (weakly) and the PDMP is non-Zeno and robustly compatible, then X̂(N)(t) converges weakly to x̂(t), X̂(N) ⇒ x̂, as 

random elements in the space of cadlag function with the Skorokhod metric.

Proof. The proof proceeds essentially as that of Theorem 5.1. The only difference is that we have to replace Lemma Ap-
pendix D.2 with Lemma Appendix D.4 and Lemma Appendix C.1 with Lemma Appendix D.5 in Corollary Appendix D.1 and 
in the proof of Theorem 5.1. To do this, we just need to show that the robust compatibility of the PDMP guarantees the 
satisfaction of the hypothesis of the two lemmas. This is trivial for Lemma Appendix D.4, as robust compatibility is an ex-
plicit hypothesis. The condition of Lemma Appendix D.5, instead, holds because robust compatibility of the PDMP x̂ and the 
absolute continuity of the exponential distribution with respect to the Lebesgue measure imply that the event {x̂(τ ) ∈ H}
has probability zero. �
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