STATISTICAL MACHINE LEARNING GAUSSIAN PROCESSES

Luca Bortolussi

Department of Mathematics and Geosciences University of Trieste

> Office 238, third floor, H2bis luca@dmi.units.it

OUTLINE

RANDOM FUNCTIONS AND BAYESIAN REGRESSION

GAUSSIAN PROCESSES

BAYESIAN LINEAR REGRESSION REVISITED

- Bayesian linear regression places a (Gaussian) prior over the weights vector, and computes the (Gaussian) posterior distribution over weights.
- What does this mean? Consider linear basis functions. In this case, the regression line is a *random line*, with the property that the output prediction at any point is a Gaussian random variable
- This concept can be generalised: taking linear combinations of basis functions with (Gaussian) random coefficients leads to a (Gaussian) random function

RANDOM FUNCTIONS TERMINOLOGY

- A random function is an infinite collection of random variables indexed by the argument of the function
- A popular alternative name is a stochastic process
- When considering the random function evaluated at a (finite) set of points, we get a random vector
- The distribution of this random vector is called *finite* dimensional marginal

IMPORTANT EXERCISE

Let $\phi_0(x), \ldots, \phi_{M-1}(x)$ be a fixed set of functions, and let $f(x) = \sum w_i \phi_i(x)$. If $\mathbf{w} \sim \mathcal{N}(0, I)$, compute:

- The single-point marginal distribution of f(x)
- Solution of $f(x_1), f(x_2)$

THE GRAM MATRIX

- Generalising the exercise to more than two points, we get that *any* finite dimensional marginal of this process is multivariate Gaussian
- The covariance matrix of this function is given by evaluating a function of two variables at all possible pairs
- The function is defined by the set of basis functions

$$k(x_i, x_j) = \boldsymbol{\phi}(x_i)^T \boldsymbol{\phi}(x_j)$$

- The covariance matrix is often called *Gram matrix* and is (necessarily) symmetric and positive definite
- Bayesian prediction in regression then is essentially the same as computing conditionals for Gaussians (more later)

MAIN LIMITATION OF BAYESIAN REGRESSION

- Choice of basis functions inevitably impacts what can be predicted
- Suppose one wishes the basis functions to tend to zero as $x \to \infty$
- Then, necessarily, very large input values will have predicted outputs near zero with high confidence!
- Ideally, one would want a prior over functions which would have the same uncertainty everywhere

FUNCTION SPACE VIEW

- In order to construct such priors, one possibility would be to construct a countable sequence of basis functions. We can partition the full Rⁿ in compact sets, and define a finite number of basis functions supported in each compact set so that the variance in each point of the state space is a constant (partition of unity).
- This approach, called the *weights space view*, is unpractical, but it demonstrates the existence of truly infinite dimensional Gaussian Processes.
- In general, it is more useful to take the dual point of view, and work with kernels rather than with basis functions.

2 GAUSSIAN PROCESSES

GP DEFINITION

- A Gaussian Process (GP) is a stochastic process indexed by a continuous variable x s.t. all finite dimensional marginals are multivariate Gaussian
- A GP is uniquely defined by its *mean* and *covariance* functions, denoted by μ(x) and k(x, x'):

$$f \sim \mathcal{GP}(\mu, k) \leftrightarrow \mathbf{f} = (f(x_1), \dots, f(x_N)) \sim \mathcal{N}(\mu, K),$$

$$\mu = (\mu(x_1), \dots, \mu(x_N)), \quad K = (k(x_i, x_j))_{i,j}$$

 The covariance function must satisfy some conditions (Mercer's theorem), essentially it needs to evaluate to a symmetric positive definite function for all sets of input points

AN EXAMPLE

Consider a 1-dimensional GP with mean function $\mu(x) \equiv 0$, and with Gaussian covariance function:

$$k(x, x') = \exp\left[-\frac{1}{2}|x - x'|^2\right]$$

The variance at each point *x* is k(x, x) = 1. If we consider a test set $X^* = x_1, \dots, x_n$, then the joint distribution of $\mathbf{f}^* = (f(x_1), \dots, f(x_n))$ is

$$\mathbf{f}^* \sim \mathcal{N}(\mathbf{0}, \mathcal{K}(X^*, X^*))$$

where $K(X^*, X^*)$ is the Gram matrix, $K_{ij} = k(x_i, x_j)$, which is symmetric and positive definite.

NOISE-FREE PREDICTION

1 · · ·

- Suppose now to observe the exact value of the GP at *N* different points, $X = x_1, ..., x_N$, with observations $\mathbf{f} = f(x_1), ..., f(x_N)$.
- Consider also the test points $X^* = x_1, ..., x_n$, with function values $\mathbf{f}^* = (f(x_1), ..., f(x_n))$ (unobserved, to be estimated).
- The joint prior distribution of f on inputs X and test points X* is

$$\begin{bmatrix} \mathbf{f} \\ \mathbf{f}_* \end{bmatrix} \sim \mathcal{N}\left(\mathbf{0}, \begin{bmatrix} K(X,X) & K(X,X_*) \\ K(X_*,X) & K(X_*,X_*) \end{bmatrix}\right).$$
(2.18)

 If we observe the values at X, then we need to condition on these values. Hence the conditional f*|f is

$$\mathbf{f}_*|X_*, X, \mathbf{f} \sim \mathcal{N}(K(X_*, X)K(X, X)^{-1}\mathbf{f}, \\
K(X_*, X_*) - K(X_*, X)K(X, X)^{-1}K(X, X_*)).$$
(2.19)

which is obtained by the standard formula for the conditional of a Gaussian.

AN EXAMPLE

Consider again the 1-dimensional GP with mean function $\mu(x) \equiv 0$, and with Gaussian covariance function:

$$k(x,x') = \exp\left[-\frac{1}{2}|x-x'|^2\right]$$

NOISY PREDICTIONS

 Suppose we cannot observe the values **f** of a GP at points X, but a perturbed version of them:

$$y(\mathbf{x}) = f(\mathbf{x}) + \varepsilon,$$

where $\varepsilon \sim \mathcal{N}(0, \sigma^2)$

- Then the covariance of observations is $cov(\mathbf{y}) = K(X, X) + \sigma^2 I$
- The prior between observations X and test points X* is then

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{f}_* \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} K(X,X) + \sigma_n^2 I & K(X,X_*) \\ K(X_*,X) & K(X_*,X_*) \end{bmatrix} \right).$$
(2.21)

Conditioning on observations y, we get

$$\mathbf{f}_*|X, \mathbf{y}, X_* \sim \mathcal{N}(\bar{\mathbf{f}}_*, \operatorname{cov}(\mathbf{f}_*)), \text{ where}$$
 (2.22)

$$\bar{\mathbf{f}}_* \triangleq \mathbb{E}[\mathbf{f}_*|X, \mathbf{y}, X_*] = K(X_*, X)[K(X, X) + \sigma_n^2 I]^{-1} \mathbf{y}, \qquad (2.23)$$

$$\operatorname{cov}(\mathbf{f}_*) = K(X_*, X_*) - K(X_*, X) [K(X, X) + \sigma_n^2 I]^{-1} K(X, X_*). \quad (2.24)$$

COMMENTS: LINEAR PREDICTOR

• For a single point **x***, the predictive distribution reads

$$\bar{f}_* = \mathbf{k}_*^\top (K + \sigma_n^2 I)^{-1} \mathbf{y},$$
 (2.25)

$$\mathbb{V}[f_*] = k(\mathbf{x}_*, \mathbf{x}_*) - \mathbf{k}_*^\top (K + \sigma_n^2 I)^{-1} \mathbf{k}_*.$$
(2.26)

where
$$\mathbf{k}_{*} = (k(\mathbf{x}^{*}, \mathbf{x}_{1}), \dots, k(\mathbf{x}^{*}, \mathbf{x}_{N}))$$

 It can be seen that the average prediction is a linear combination of the kernels evaluated on the input points:

$$\bar{f}(\mathbf{x}^*) = \sum_{i=1}^{N} \alpha_i k(\mathbf{x}^*, \mathbf{x_i})$$

where $\alpha = (K + \sigma^2 I)^{-1} \mathbf{y}$.

COMMENTS: POSTERIOR GP

 It is easy to see that the posterior process f|y is again a Gaussian process, with mean

$$\mathbb{E}[f(\mathbf{x})|\mathbf{y}] = K(\mathbf{x}, X)(K + \sigma^2 I)^{-1}\mathbf{y}$$

and covariance

$$k(\mathbf{x},\mathbf{x}') = k(\mathbf{x},\mathbf{x}') - K(\mathbf{x},X)(K + \sigma^2 I)^{-1}K(X,\mathbf{x}')$$

OUTLINE

KERNELS

 The notion of kernel comes from the theory of integral operators on a space X with measure μ. A real kernel k : X × X → ℝ defines an integral operator T_k (applied to integrable f) as:

$$(T_k f)(\mathbf{x}) = \int_X k(\mathbf{x}, \mathbf{y}) f(\mathbf{y}) d\mu(\mathbf{y})$$

• A kernel is positive semidefinite if, for all $f \in L_2(X, \mu)$:

$$\int_{X \times X} k(\mathbf{x}, \mathbf{y}) f(\mathbf{x}) f(\mathbf{y}) d\mu(\mathbf{x}) d\mu(\mathbf{y}) \ge 0$$

- Equivalently, a kernel is positive (semi)definite if for any collection of *n* points {x_i | *i* = 1,..., *n*}, the Gram matrix *K*, K_{ij} = *l*(x_i, x_j) is positive (semi)definite (Mercer's theorem).
- The Gram matrix of a symmetric kernel, $k(\mathbf{x}, \mathbf{y}) = k(\mathbf{y}, \mathbf{x})$, is symmetric.

•

EIGENFUNCTIONS

• An eigenfunction ϕ with eigenvalue λ of k satisfies

$$\int k(\mathbf{x},\mathbf{y})\phi(\mathbf{x})d\mu(\mathbf{x}) = \lambda\phi(\mathbf{y})$$

- There can be an infinite number of eigenfunctions, which can be ordered w.r.t. decreasing eigenvalues, and they can be chosen orthogonal, i.e. such that ∫ φ_i(**x**)φ_j(**x**)dμ(**x**) = δ_{ij}
- A kernel can be decomposed using eigenfunctions:

Theorem 4.2 (Mercer's theorem). Let (\mathcal{X}, μ) be a finite measure space and $k \in L_{\infty}(\mathcal{X}^2, \mu^2)$ be a kernel such that $T_k : L_2(\mathcal{X}, \mu) \to L_2(\mathcal{X}, \mu)$ is positive definite (see eq. (4.2)). Let $\phi_i \in L_2(\mathcal{X}, \mu)$ be the normalized eigenfunctions of T_k associated with the eigenvalues $\lambda_i > 0$. Then:

1. the eigenvalues $\{\lambda_i\}_{i=1}^{\infty}$ are absolutely summable

2.

$$k(\mathbf{x}, \mathbf{x}') = \sum_{i=1}^{\infty} \lambda_i \phi_i(\mathbf{x}) \phi_i^*(\mathbf{x}'), \qquad (4.37)$$

holds μ^2 almost everywhere, where the series converges absolutely and uniformly μ^2 almost everywhere.

REPRODUCING KERNEL HILBERT SPACES

Definition 6.1 (Reproducing kernel Hilbert space). Let \mathcal{H} be a Hilbert space of real functions f defined on an index set \mathcal{X} . Then \mathcal{H} is called a reproducing kernel Hilbert space endowed with an inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ (and norm $||f||_{\mathcal{H}} = \sqrt{\langle f, f \rangle_{\mathcal{H}}}$) if there exists a function $k : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ with the following properties:

- 1. for every $\mathbf{x},\,k(\mathbf{x},\mathbf{x}')$ as a function of \mathbf{x}' belongs to $\mathcal{H},$ and
- 2. k has the reproducing property $\langle f(\cdot), k(\cdot, \mathbf{x}) \rangle_{\mathcal{H}} = f(\mathbf{x}).$

See e.g. Schölkopf and Smola [2002] and Wegman [1982]. Note also that as $k(\mathbf{x}, \cdot)$ and $k(\mathbf{x}', \cdot)$ are in \mathcal{H} we have that $\langle k(\mathbf{x}, \cdot), k(\mathbf{x}', \cdot) \rangle_{\mathcal{H}} = k(\mathbf{x}, \mathbf{x}')$.

The RKHS uniquely determines k, and vice versa, as stated in the following theorem:

Theorem 6.1 (Moore-Aronszajn theorem, Aronszajn [1950]). Let \mathcal{X} be an index set. Then for every positive definite function $k(\cdot, \cdot)$ on $\mathcal{X} \times \mathcal{X}$ there exists a unique RKHS, and vice versa.

RKHS AND **EIGENFUNCTIONS**

- The functions belonging to the RKHS associated with a kernel k can be written as a linear combination of the eigenfunctions ϕ_j of k: $f(\mathbf{x}) = \sum_j f_j \phi_j(\mathbf{x})$, with $\sum_j f_j^2 / \lambda_j < \infty$ (this is a smoothness constraint).
- Such functions define an Hilbert space *H* with inner product $\langle f, g \rangle_H = \sum_j \frac{f_j g_j}{\lambda_j}$
- This Hilbert space is the RKHS corresponding to kernel k:

$$\langle f(\cdot), k(\cdot, \mathbf{x}) \rangle_{\mathcal{H}} = \sum_{i=1}^{N} \frac{f_i \lambda_i \phi_i(\mathbf{x})}{\lambda_i} = f(\mathbf{x}).$$
 (6.2)

Similarly

$$\langle k(\mathbf{x},\cdot), k(\mathbf{x}',\cdot) \rangle_{\mathcal{H}} = \sum_{i=1}^{N} \frac{\lambda_i \phi_i(\mathbf{x}) \lambda_i \phi_i(\mathbf{x}')}{\lambda_i} = k(\mathbf{x}, \mathbf{x}').$$
(6.3)

Furthermore, the norm of k(x, ⋅) is k(x, x) < ∞: it belongs to H.</p>

KERNEL FUNCTIONS: CLASSIFICATION

A kernel $k(\mathbf{x}, \mathbf{y})$ can be classified w.r.t dependence on \mathbf{x} and \mathbf{y} .

- Stationary kernel: it is a function of x y (invariant to translations).
- Isotropic kernel: it is a function of ||x y|| (invariant to rigid motions).
- Dot-product kernel: it is a function of x^Ty (invariant w.r.t. rotations with respect to the origin).

Continuity properties of the GPs and kernels *k*.

- Continuity in mean square of a process *f* at **x**: for each **x**_k → **x**, it holds that E[||*f*(**x**_k) *f*(**x**)||²] → 0.
- A process is continuous in m.s. at x iff k is continuous at k(x, x).
 For stationary kernels, k must be continuous at zero.
- If k is 2kth differentiable, than f is kth differentiable (in m.s.).

GAUSSIAN KERNEL

The Gaussian or Squared Exponential kernel is defined by

$$k(\mathbf{x}, \mathbf{y}) = \alpha \exp\left[-\frac{\|\mathbf{x} - \mathbf{y}\|^2}{\lambda^2}\right]$$

- α is called the amplitude, it regulates the magnitude of variance at each point x. λ, instead, is the characteristic length-scale, which regulates the speed of decay of the correlation between points.
- The Gaussian kernel is isotropic and among the most used in computational statistics, and its RKHS is dense in the space of continuous functions over a compact set in Rⁿ.
- The Automatic-Relevance Detection Gaussian Kernel generalises the GK as

$$k(\mathbf{x}, \mathbf{y}) = \alpha \exp\left[-\sum_{j} \frac{|x_j - y_j|^2}{\lambda_j^2}\right]$$

MATÉRN KERNEL

The Matérn kernel is defined by

$$k_{\text{Matern}}(r) = \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\frac{\sqrt{2\nu}r}{\ell}\right)^{\nu} K_{\nu}\left(\frac{\sqrt{2\nu}r}{\ell}\right), \qquad (4.14)$$

with positive parameters ν and ℓ , where K_{ν} is a modified Bessel function

- If v > h, then the process with Matérn kernel is h times differentiable (in m.s.) For v → ∞, then the MK becomes the GK.
- Examples of Matern Kernel:

MATÉRN AND EXPONENTIAL KERNEL

• Typical choice for MK is v = p + 1/2, giving

$$k_{\nu=p+1/2}(r) = \exp\left(-\frac{\sqrt{2\nu}r}{\ell}\right) \frac{\Gamma(p+1)}{\Gamma(2p+1)} \sum_{i=0}^{p} \frac{(p+i)!}{i!(p-i)!} \left(\frac{\sqrt{8\nu}r}{\ell}\right)^{p-i}.$$
 (4.16)

It is possible that the most interesting cases for machine learning are $\nu = 3/2$ and $\nu = 5/2$, for which

$$k_{\nu=3/2}(r) = \left(1 + \frac{\sqrt{3}r}{\ell}\right) \exp\left(-\frac{\sqrt{3}r}{\ell}\right), k_{\nu=5/2}(r) = \left(1 + \frac{\sqrt{5}r}{\ell} + \frac{5r^2}{3\ell^2}\right) \exp\left(-\frac{\sqrt{5}r}{\ell}\right),$$
(4.17)

• for v = 1/2, we get the Exponential Kernel

$$k(\mathbf{x}, \mathbf{y}) = \exp\left[\|\mathbf{x} - \mathbf{y}\|/\lambda\right]$$

which in one dimension corresponds to the Ornstein-Ulembeck process (the model of velocity of a particle undergoing Brownian motion), which is continuous but nowhere differentiable.

POLYNOMIAL KERNEL

Simple dot-products kernels are the polynomial kernel, for p integer:

$$k(\mathbf{x},\mathbf{x}') = (\mathbf{x}^T \mathbf{x}')^p$$

 This corresponds to a kernel obtained by a set of polynomial basis functions:

$$k(\mathbf{x}, \mathbf{x}') = (\mathbf{x} \cdot \mathbf{x}')^{p} = \left(\sum_{d=1}^{D} x_{d} x'_{d}\right)^{p} = \left(\sum_{d_{1}=1}^{D} x_{d_{1}} x'_{d_{1}}\right) \cdots \left(\sum_{d_{p}=1}^{D} x_{d_{p}} x'_{d_{p}}\right)$$
$$= \sum_{d_{1}=1}^{D} \cdots \sum_{d_{p}=1}^{D} (x_{d_{1}} \cdots x_{d_{p}}) (x'_{d_{1}} \cdots x'_{d_{p}}) \triangleq \phi(\mathbf{x}) \cdot \phi(\mathbf{x}').$$
(4.23)

The basis functions φ_m are given by all monomials of degree p,
 i.e. ∑ m_j = p:

$$\phi_{\mathbf{m}}(\mathbf{x}) = \sqrt{\frac{p!}{m_1! \cdots m_D!}} x_1^{m_1} \cdots x_D^{m_D}.$$
(4.24)

COMPOSITION OF KERNELS

Kernels can be composed according to certain rules, giving rise to new kernels.

Techniques for Constructing New Kernels.

Given valid kernels $k_1(\mathbf{x}, \mathbf{x}')$ and $k_2(\mathbf{x}, \mathbf{x}')$, the following new kernels will also be valid:

$$k(\mathbf{x}, \mathbf{x}') = ck_1(\mathbf{x}, \mathbf{x}') \tag{6.13}$$

$$k(\mathbf{x}, \mathbf{x}') = f(\mathbf{x})k_1(\mathbf{x}, \mathbf{x}')f(\mathbf{x}')$$
(6.14)

$$k(\mathbf{x}, \mathbf{x}') = q(k_1(\mathbf{x}, \mathbf{x}')) \tag{6.15}$$

$$k(\mathbf{x}, \mathbf{x}') = \exp(k_1(\mathbf{x}, \mathbf{x}'))$$
(6.16)

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}') + k_2(\mathbf{x}, \mathbf{x}')$$
 (6.17)

$$c(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}')k_2(\mathbf{x}, \mathbf{x}')$$
(6.18)

$$k(\mathbf{x}, \mathbf{x}') = k_3(\boldsymbol{\phi}(\mathbf{x}), \boldsymbol{\phi}(\mathbf{x}'))$$
(6.19)

$$k(\mathbf{x}, \mathbf{x}') = \mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}' \tag{6.20}$$

$$k(\mathbf{x}, \mathbf{x}') = k_a(\mathbf{x}_a, \mathbf{x}'_a) + k_b(\mathbf{x}_b, \mathbf{x}'_b)$$
(6.21)

$$k(\mathbf{x}, \mathbf{x}') = k_a(\mathbf{x}_a, \mathbf{x}'_a)k_b(\mathbf{x}_b, \mathbf{x}'_b)$$
(6.22)

where c > 0 is a constant, $f(\cdot)$ is any function, $q(\cdot)$ is a polynomial with nonnegative coefficients, $\phi(\mathbf{x})$ is a function from \mathbf{x} to \mathbb{R}^M , $k_3(\cdot, \cdot)$ is a valid kernel in \mathbb{R}^M , \mathbf{A} is a symmetric positive semidefinite matrix, \mathbf{x}_a and \mathbf{x}_b are variables (not necessarily disjoint) with $\mathbf{x} = (\mathbf{x}_a, \mathbf{x}_b)$, and k_a and k_b are valid kernel functions over their respective spaces.

OUTLINE

MARGINAL LIKELIHOOD

- In order to do model selection (e.g. between different kernels) we can use the marginal likelihood.
- This can be used also to set hyperparameters of the kernel functions, like the amplitude or the lengthscale of the Gaussian kernel.
- For GP, we can compute the marginal likelihood analytically:

$$\mathcal{L} = \log p(\mathbf{y}|X) = \log \int p(\mathbf{f}|X)p(\mathbf{y}|\mathbf{f},X)d\mathbf{f}$$

which gives

$$\mathcal{L} = -\frac{1}{2}\mathbf{y}^{T}(\mathbf{K} + \sigma^{2}\mathbf{I})^{-1}\mathbf{y} - \frac{1}{2}\log|(\mathbf{K} + \sigma^{2}\mathbf{I})| - \frac{N}{2}\log 2\pi$$

• This follows also by observing that $\mathbf{y} \sim \mathcal{N}(\mathbf{0}, K + \sigma^2 I)$.

MARGINAL LIKELIHOOD

The log marginal likelihood

$$\mathcal{L} = -\frac{1}{2}\mathbf{y}^{T}(\mathbf{K} + \sigma^{2}\mathbf{I})^{-1}\mathbf{y} - \frac{1}{2}\log|(\mathbf{K} + \sigma^{2}\mathbf{I})| - \frac{N}{2}\log 2\pi$$

has three terms

•
$$-\frac{1}{2}\mathbf{y}^T(K+\sigma^2 I)^{-1}\mathbf{y}$$
 is the data fit.

•
$$-\frac{1}{2}\log|(K + \sigma^2 I)|$$
 is a complexity penalty.

• $-\frac{N}{2}\log 2\pi$ is a constant.

MARGINAL LIKELIHOOD - HYPERPARAMETERS

Data from 1dim example with Gaussian kernels

Figure 5.3: Panel (a) shows a decomposition of the log marginal likelihood into its constituents: data-fit and complexity penalty, as a function of the characteristic length-scale. The training data is drawn from a Gaussian process with SE covariance function and parameters $(\ell, \sigma_f, \sigma_n) = (1, 1, 0.1)$, the same as in Figure 2.5, and we are fitting only the length-scale parameter ℓ (the two other parameters have been set in accordance with the generating process). Panel (b) shows the log marginal likelihood as a function of the characteristic length-scale for different sizes of training sets. Also shown, are the 95% confidence intervals for the posterior length-scales.

MARGINAL LIKELIHOOD - HYPERPARAMETERS

Data from 1dim example with Gaussian kernels

Figure 5.4: Contour plot showing the log marginal likelihood as a function of the characteristic length-scale and the noise level, for the same data as in Figure 2.5 and Figure 5.3. The signal variance hyperparameter was set to $\sigma_f^2 = 1$. The optimum is close to the parameters used when generating the data. Note, the two ridges, one for small noise and length-scale $\ell = 0.4$ and another for long length-scale and noise $\sigma_n^2 = 1$. The contour lines spaced 2 units apart in log probability density.

MARGINAL LIKELIHOOD - HYPERPARAMETERS

Data coming from a sample of a 1dim GP with Gaussian kernel and hyperparameters $\lambda = 1, \alpha = 1,$ $\sigma = 0.1.$

Figure 2.5: (a) Data is generated from a GP with hyperparameters $(\ell, \sigma_f, \sigma_n) =$ (1, 1, 0.1), as shown by the + symbols. Using Gaussian process prediction with these hyperparameters we obtain a 95% confidence region for the underlying function f(shown in grey). Panels (b) and (c) again show the 95% confidence region, but this time for hyperparameter values (0.3, 1.08, 0.00005) and (3.0, 1.16, 0.89) respectively.

HYPERPARAMETER OPTIMISATION

 In order to set the hyperparameters, we can maximise the log marginal likelihood:

$$\mathcal{L} = -\frac{1}{2}\mathbf{y}^{T}(\mathbf{K} + \sigma^{2}\mathbf{I})^{-1}\mathbf{y} - \frac{1}{2}\log|(\mathbf{K} + \sigma^{2}\mathbf{I})| - \frac{N}{2}\log 2\pi$$

• Its derivative w.r.t. an hyperparameter θ is

$$\frac{\partial}{\partial \theta_j} \log p(\mathbf{y}|X, \boldsymbol{\theta}) = \frac{1}{2} \mathbf{y}^\top K^{-1} \frac{\partial K}{\partial \theta_j} K^{-1} \mathbf{y} - \frac{1}{2} \operatorname{tr} \left(K^{-1} \frac{\partial K}{\partial \theta_j} \right) = \frac{1}{2} \operatorname{tr} \left((\boldsymbol{\alpha} \boldsymbol{\alpha}^\top - K^{-1}) \frac{\partial K}{\partial \theta_j} \right) \quad \text{where} \quad \boldsymbol{\alpha} = K^{-1} \mathbf{y}.$$
(5.9)

- The derivative is relatively cheap to compute, once we invert the matrix *K*. Hence we can use gradient methods to optimise *L*.
- Purely Bayesian methods (giving a prior on hyperparameters) are complicated by the in general complex functional form (no conjugate prior).

NON-CONSTANT PRIOR MEAN

- The typical choice for the prior mean is the zero function. Data is processed by subtracting the sample mean from the observations.
- As an alternative, one can either use a deterministic function for the priori mean (and subtract if from data, adding it back to predictions), or use a generalised linear model for the prior mean:

$$g(\mathbf{x}) = f(\mathbf{x}) + \mathbf{h}(\mathbf{x})^{\top} \boldsymbol{\beta}, \text{ where } f(\mathbf{x}) \sim \mathcal{GP}(0, k(\mathbf{x}, \mathbf{x}')),$$
 (2.39)

 If we put a Gaussian prior over coefficients β, we can treat them in a Bayesian way, and get a GP:

$$g(\mathbf{x}) \sim \mathcal{GP}(\mathbf{h}(\mathbf{x})^{\top}\mathbf{b}, k(\mathbf{x}, \mathbf{x}') + \mathbf{h}(\mathbf{x})^{\top}B\mathbf{h}(\mathbf{x}')),$$
 (2.40)

NON-CONSTANT PRIOR MEAN

 In this way, we obtain the following predictive distribution at a point x*:

$$\bar{\mathbf{g}}(X_*) = H_*^\top \bar{\boldsymbol{\beta}} + K_*^\top K_y^{-1} (\mathbf{y} - H^\top \bar{\boldsymbol{\beta}}) = \bar{\mathbf{f}}(X_*) + R^\top \bar{\boldsymbol{\beta}}, \operatorname{cov}(\mathbf{g}_*) = \operatorname{cov}(\mathbf{f}_*) + R^\top (B^{-1} + HK_y^{-1}H^\top)^{-1}R,$$

$$(2.41)$$

where the *H* matrix collects the $\mathbf{h}(\mathbf{x})$ vectors for all training (and H_* all test) cases, $\bar{\boldsymbol{\beta}} = (B^{-1} + HK_y^{-1}H^{-1})^{-1}(HK_y^{-1}\mathbf{y} + B^{-1}\mathbf{b})$, and $R = H_* - HK_y^{-1}K_*$.

- The new predictive distribution has mean H^T_{*}β
 (from the linear model) plus a term coming from the GP model of residuals.
- Taking a flat prior (limit for $B^-1 \rightarrow$ matrix of zeros):

$$\bar{\mathbf{g}}(X_*) = \bar{\mathbf{f}}(X_*) + R^\top \bar{\boldsymbol{\beta}}, \operatorname{cov}(\mathbf{g}_*) = \operatorname{cov}(\mathbf{f}_*) + R^\top (HK_y^{-1}H^\top)^{-1}R,$$

$$(2.42)$$

where the limiting $\bar{\boldsymbol{\beta}} = (HK_y^{-1}H^{\top})^{-1}HK_y^{-1}\mathbf{y}$. Notice that predictions under

OUTLINE

FROM LOGISTIC REGRESSION TO GP CLASSIFICATION

 The idea behind GP classification is to extend logistic (or probit) regression, by assuming the following model for the class conditionals:

$$\pi(\mathbf{x}) = p(C_1|\mathbf{x}) = \sigma(f(\mathbf{x}))$$
 where $f \sim GP(\mu, k)$

f is often call latent function. Note that *π* is a random function, as *f* is.

Figure 3.2: Panel (a) shows a sample latent function f(x) drawn from a Gaussian process as a function of x. Panel (b) shows the result of squashing this sample function through the logistic logit function, $\lambda(z) = (1 + \exp(-z))^{-1}$ to obtain the class probability $\pi(x) = \lambda(f(x))$.

GP CLASSIFICATION

- *f* is often call latent or nuisance function. It is not observed directly. We only observe at a point **x** the realisation of a Bernoulli random variable with probability π(**x**).
- Inference at a test point x* is done, as usual in a Bayesian setting, in two steps:

$$p(f_*|X, \mathbf{y}, \mathbf{x}_*) = \int p(f_*|X, \mathbf{x}_*, \mathbf{f}) p(\mathbf{f}|X, \mathbf{y}) \, d\mathbf{f}, \qquad (3.9)$$

with $p(\mathbf{f}|X, \mathbf{y}) = p(\mathbf{y}|\mathbf{f})p(\mathbf{f}|X)/p(\mathbf{y}/X)$ by Bayes theorem. Compute the predictive distribution at \mathbf{x}^*

$$\bar{\pi}_* \triangleq p(y_* = +1 | X, \mathbf{y}, \mathbf{x}_*) = \int \sigma(f_*) p(f_* | X, \mathbf{y}, \mathbf{x}_*) \, df_*.$$
(3.10)

LAPLACE APPROXIMATION

- As in Bayesian logistic regression, the computation of the posterior p(f|X, y) cannot be carried out analytically.
- However, we can do a Laplace approximation of the posterior around the MAP f. The unnormalised log posterior is:

$$\Psi(\mathbf{f}) \triangleq \log p(\mathbf{y}|\mathbf{f}) + \log p(\mathbf{f}|X) = \log p(\mathbf{y}|\mathbf{f}) - \frac{1}{2}\mathbf{f}^{\top}K^{-1}\mathbf{f} - \frac{1}{2}\log|K| - \frac{n}{2}\log 2\pi.$$
(3.12)

Differentiating eq. (3.12) w.r.t. f we obtain

$$\nabla \Psi(\mathbf{f}) = \nabla \log p(\mathbf{y}|\mathbf{f}) - K^{-1}\mathbf{f}, \qquad (3.13)$$

$$\nabla \nabla \Psi(\mathbf{f}) = \nabla \nabla \log p(\mathbf{y}|\mathbf{f}) - K^{-1} = -W - K^{-1}, \quad (3.14)$$

where W is diagonal, as observations are i.i.d.

• It can be optimised with a Newton-Rapson scheme:

$$\mathbf{f}^{\text{new}} = \mathbf{f} - (\nabla \nabla \Psi)^{-1} \nabla \Psi = \mathbf{f} + (K^{-1} + W)^{-1} (\nabla \log p(\mathbf{y}|\mathbf{f}) - K^{-1}\mathbf{f})$$
$$= (K^{-1} + W)^{-1} (W\mathbf{f} + \nabla \log p(\mathbf{y}|\mathbf{f})). \quad (3.18)$$

LAPLACE APPROXIMATION

The Laplace approximation around the MAP *î* is a Gaussian *q* with mean

$$\mathbb{E}_q[f_*|X, \mathbf{y}, \mathbf{x}_*] = \mathbf{k}(\mathbf{x}_*)^\top K^{-1} \hat{\mathbf{f}} = \mathbf{k}(\mathbf{x}_*)^\top \nabla \log p(\mathbf{y}|\hat{\mathbf{f}}).$$
(3.21)

and variance

$$\mathbb{V}_{q}[f_{*}|X, \mathbf{y}, \mathbf{x}_{*}] = k(\mathbf{x}_{*}, \mathbf{x}_{*}) - \mathbf{k}_{*}^{\top} K^{-1} \mathbf{k}_{*} + \mathbf{k}_{*}^{\top} K^{-1} (K^{-1} + W)^{-1} K^{-1} \mathbf{k}_{*}$$

= $k(\mathbf{x}_{*}, \mathbf{x}_{*}) - \mathbf{k}_{*}^{\top} (K + W^{-1})^{-1} \mathbf{k}_{*},$ (3.24)

• The prediction π^* can be computed by the integral

$$\bar{\pi}_* \simeq \mathbb{E}_q[\pi_*|X, \mathbf{y}, \mathbf{x}_*] = \int \sigma(f_*) q(f_*|X, \mathbf{y}, \mathbf{x}_*) \, df_*, \qquad (3.25)$$

which can be approximated with the same logit-probit-logit trick used for Bayesian logistic regression.

EXPECTATION PROPAGATION

- A (better) alternative to Laplace approximation is to use a variational method, typically for the probit activation function.
- A first option is to approximate the posterior distribution by a Gaussian q, minimising the (reversed) KL divergence $KL(q(\mathbf{f}|X, \mathbf{y}), p(\mathbf{f}|X, \mathbf{y}))$ (the minimisation of the KL divergence $KL(p(\mathbf{f}|X, \mathbf{y}), q(\mathbf{f}|X, \mathbf{y}))$ is intractable).
- Alternatively, one can use the Expectation Propagation algorithm, which constructs iteratively (over obs *i*, until convergence) a Gaussian approximation of the posterior by
 - taking the current Gaussian approximation and factoring out the term for the *i*-th likelihood p(y_i|f_i), obtaining a distribution for all observations but the *i*-th one.
 - multiplying the cavity by the exact likelihood of the *i*-th observation, and finding a Gaussian approximation by moment matching of such a (non-Gaussian) distribution.
- EP is more accurate than Laplace approximation, and provides also an approximation of the Marginal likelihood.

PITFALLS OF GP PREDICTION

- Addition of a new observation *always* reduces uncertainty at all points → vulnerable to outliers
- Optimisation of hyperparameters often tricky: works well if σ^2 is known, otherwise it can be seriously multimodal
- MAIN PROBLEM: GP prediction relies on a matrix inversion which scales cubically with the number of points!
- Sparsification methods have been proposed but in high dimension GP regression is likely to be tricky nevertheless