Deep Learning
-an introduction-

Luca Bortolussi

DMG, University of Trieste, IT
Modelling and Simulation, Saarland University, DE

DSSC, Summer Semester 2018

What is deep learning?

Deep learning is a particular kind of
machine learning that achieves great power
and flexibility by learning to represent the
world as a nested hierarchy of concepts
[representation learning], with each concept
defined in relation fo simpler concepts, and
more abstract representations computed in
terms of less abstract ones.

Output
(object identity)

3rd hidden layer
(object parts)

N

‘_ | .- 2nd hidden layer

] . (corners and

The mainstream tool in j | contours)
deep learning are
(Artificial) Neural

- 1st hidden layer
Networks, also called Y (edges)

Multi-Layer Perceptrons.

Visible layer
(input pixels)

Why deep learning?

Most of the concepts and ideas of
deep learning have a long tradition.
This is the third wave of Neural
Networks. Why now?

Availability of very large datasets

g 0000250 Y

£ — cybermetics ;

o 121 " . . . M = =am= -

. LonuoH (eomneerionism | nenral networks) | TN -

< : : : . . L~

Z AT 001] .,,/, -

z f : ' : g :

= 0.0D0100 : : j : L

5 0B000S0)= s sscfronnsersifiaciancinrasnansy

= 0.000000 == == oo) i
140 1950 1864 1970 1980 1990 2000

Year

. Availability of large computational power, in ¢ ¢

particular GPU clusters, which allows us il S S i

. . 108} : | Public SVHN | m— :
to train larger and deeper models. £ oor | (Outminate) U (R, - JALSVAGET
Some improvements in the science and e J (ST (ClEaR-10)
technology of NN (ReLU, improved SGD, otk (e G) - (RO WG
. C . £ 10t} ; He (ol ;
improved regularisation). e S Lo

1900 1850 18K85 2000 2015

)

3 108 4—| Human
L [LLN S = 20 . J
EETC 1 } '
5 :"l‘ 4 16| 19 &« | Oclopus
= U 1 3\
710 /’ *—(Frug
210 — o
- 10 F i 1w .| Bee
3 10% _,\ Ant'

é 11:‘3 = \ - [L;.:l., 1

S o f e
5 10! @ 121 15 [Roundviorm
5 10" F g . :
Ei _ 10

~ |].I;.'_- = @ 7 =

ERRTUR: A | Sponge
- 1951 TERS 2000 2015 20156

As of 2016, a rough rule of thumb is that a
supervised deep learning algorithm will
generally achieve acceptable performance
with around 5,000 labeled examples per
category, and will match or exceed human
performance when trained with a dataset
containing at least 10 million labeled examples

Deep Learning: reshaping Al

Deep Learning has many impressive achievements in computer vision

8 x 8 mput 32 x 32 samples ground truth

Colorado National Park, 1941 Textile Mill. June 1937 Hamillon, 1936

Colouring black and white pictures

Another field in which deep learning is having a

profound impact is natural language processing

Face reconstruction from low
resolution images

LA '\/4’ V-ﬂ/@mi 2 0T 1’2- lfﬂ_aﬂfld/tﬂﬂ"; 8’ V (} T»’w@b% OU Jouno

Handwritten text generated by deep learning

Deep Learning: reshaping Al

Image recognition and automatic captioning

‘man in b ack shirt i3 playing ‘construction worker in orangc “two young gir'e arc playing with
guitar” safety vest is working on road.” legc tov.’

e

i . & . ‘v . "'.]
'g:, \ \ i

‘girl in pink dress is jumping in 'black and white dog jumps over "yourg girl in pink shirtis

air. bar. swinging cn swing.'

Deep Learning: reshaping Al

Automatic text recognition and translation in images

MOT kK

Advanced image
recognition in
automatically
controlled systems...

Deep Learning: success stories

ImageNet Large Scale Visual Recognition
Challenge (ILSVRC), recognising more
than 1000 different kinds of objects
(superhuman performance, i.e. below
average human error rate, around 4%)

Other success stories:

Speech recognition

a

€

ILSVRC classification error rat

0.10

0.U9

Il 1

0.00
2010

Pedestrian detection and image segmentation

Traffic sign classification (superhuman)

Image captioning and description
Machine translation

Neural Turing machines and self-programming

Reinforcement Learning (AlphaGO)

2011 2012 2013 2014 2013

ARTICLE

doi:10.1038/nature16961

Mastering the game of Go with deep
neural networks and tree search

David Silver'*, Aja Huang'#, Chris J. Maddison!, Arthur Guez!, Laurent Sifre', George van den Driessche',

Julian Schrittwieser!, Toannis Antonoglou!, Veda Panneershelvam', Marc Lanctot!, Sander Dieleman!, Dominik Grewe!,
John Nham?, Nal Kalchbrenner!, Ilya Sutskever?, Timothy Lillicrap!, Madeleine Leach!, Koray Kavukcuoglu',

Thore Graepel' & Demis Hassabis'

The game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to its
enormous search space and the difficulty of evaluating board positions and moves. Here we introduce a new approach
to computer Go that uses ‘value networks’ to evaluate board positions and ‘policy networks’ to select moves. These deep
neural networks are trained by a novel combination of supervised learning from human expert games, and reinforcement
learning from games of self-play. Without any lookahead search, the neural networks play Go at the level of state-
of-the-art Monte Carlo tree search programs that simulate thousands of random games of self-play. We also introduce a
new search algorithm that combines Monte Carlo simulation with value and policy networks. Using this search algorithm,
our program AlphaGo achieved a 99.8°% winning rate against other Go programs, and defeated the human European Go
champion by 5 games to 0. This is the first time that a computer program has defeated a human professional player in the
full-sized game of Go, a feat previously thought to be at least a decade away.

Features and Representation Learning

Color Histogram

Extract build .
features — . hypothesis Y = W ¢ (x)

B Red M Green HBlue

Nonlinear model

A
[& 23 \
4 X
o T T~ « X
X| X 2| % X
X t X .
X X 5‘ X X ’N build ”
% —_—
{Om A0 _ 01090 _ hvooth y =w"¢(x)
X0o o o 2 o5 —— ypothesis
&o x X1 o 99 24
X IX
x X

Linear model

Features: (polynomial) basis functions

y = sign(w" ¢ (x) + b)

Fixed ¢ (x)

Features and Representation Learning

 Why don’ | .\

y =w'¢p(x)
=wl(x)

Adaptive Basis Functions

* View each dimension of ¢(x) as something to be learned

“

@

@
@

X

¢ (x)

Linear functions ¢;(x) = 8/ x don’t work: need some nonlinearity

y =w'¢p(x)

Typically, set ¢;(x) = r(6/ x) where r(-) is some nonlinear function

Hence, basis functions ‘adapt’ to data.

The model above is a (simple) feedforward neural network

Feedforward Neural Networks

A FNN is visually described by an acyclic graph. Nodes are of three
categories:

* input units/nodes (layer O)

e output units/nodes (layer n)

* hidden units/nodes (inner layers) ~ hidden units

1w

Feedforward Neural Networks

Each unit on an hidden layer takes an A 1 hidden layer NN with linear output
affine combination of values of input represents a linear combination of
nodes, and then applies a non-linear parametric non-linear basis functions,
activation function h. but learns also their parameters. This

greatly enhances expressivity.

a; = z:'w(l):rz + w(l) z; = h(a;).

hidden units

Output nodes work similarly, but they
apply an output activation function o.

A = E wkaj

Yr(X, W) =0 (Zw(z)h (Zw T; +w]0) +w,(c20))

Input Units

* Represented as a vector

* Sometimes require some

preprocessing, e.g.,
e Subtract mean
* Normalize to [-1,1]

Data normalisation is a crucial step! Dont forget it!

Output units

The design of output units and their activation functions is driven by what we want
to learn with our network. Typically, we want fo learn a conditional probability

distribution pmodei(Y|X), optimising the cross-entropy:
J(O) — -Ex,yrvﬁdata logpmodel (y | iI:)

Output layer
I

* Regression: y = w'h + b

* Linear units: no nonlinearity

Output units

The design of output units and their activation functions is driven by what we want
to learn with our network. Typically, we want fo learn a conditional probability

distribution pmodei(Y|X), optimising the cross-entropy:
J(O) - -IEx,yNﬁdata 1ngmodel (y | w)

Output layer

* Multi-dimensional regression: y = W' h + b A

/ |

* Linear units: no nonlinearity

Output units

The design of output units and their activation functions is driven by what we want
to learn with our network. Typically, we want fo learn a conditional probability

distribution pmodei(Y|X), optimising the cross-entropy:

J(0) = —Ex,y~pyaen 108 Pmodel (¥ | @)

Output layer
I

* Binary classification: y = a(w'h + b)

* Corresponds to using logistic regression on h

Output units

The design of output units and their activation functions is driven by what we want
to learn with our network. Typically, we want fo learn a conditional probability

distribution pmodei(Y|X), optimising the cross-entropy:

J(8) = —Ex,y~pyass 108 Pmodel (¥ | @)

Output layer

 Multi-class classification: A

e y = softmax(z) wherez =W'h + b
e Corresponds to using multi-class

/ |

logistic regression on h

Output units

The design of output units and their activation functions is driven by what we want
to learn with our network. Typically, we want fo learn a conditional probability

distribution pmodei(Y|X), optimising the cross-entropy:

J(0) = —Ex ynpyon 108 Prmodel (¥ |)

More general output units can be obtained by selecting more complex pPmodel(y|X).
Example: pmodel(Y|X) Gaussian, with heteroschedastic variance

Mixture density Neural Network: pmodel(y|X) is
a mixture of Gaussians

p(y |) ch—ZIw pl(z), 2O ()

meni

Output units for mixture components are softmax, linear for the mean and the
(factor of the) covariance matrix. This is typically assumed diagonal.

Hidden Units

Hidden units have typically non-linear activation functions (otherwise
the NN becomes a linear model).

There are different choices of activation functions, driven by
architectural constraints but also easiness in the learning phase.

ey =r(wl'x + b)

* Typical activation function r
+ Threshold t(z) = [z > 0] r(-)

e Sigmoido(z) = 1/(1 + exp(—2)) X
e Tanh tanh(z) = 20(2z) — 1

Hidden Units

Hidden units have typically non-linear activation functions (otherwise

the NN becomes a linear model).

There are different choices of activation functions, driven by k= h(
architectural constraints but also easiness in the learning phase.

* Problem: saturation

Too small gradient

=5 0 S

Figure borrowed from Pattern Recognition and Machine Learning, Bishop

Hidden Units

Hidden units have typically non-linear activation functions (otherwise
the NN becomes a linear model).

There are different choices of activation functions, driven by 2k = h (Zw‘“jzj)
architectural constraints but also easiness in the learning phase. :

e Activation function ReLU (rectified linear unit)
e ReLU(z) = max{z, 0}

Gradient O The Rectified Linear Activation Function

max{0, z }

9(2)

Hidden Units

Hidden units have typically non-linear activation functions (otherwise

the NN becomes a linear model).

There are different choices of activation functions, driven by k= h(
architectural constraints but also easiness in the learning phase.

* Generalizations of ReLU gReLU(z) = max{z, 0} + a min{z, 0}
* Leaky-ReLU(z) = max{z, 0} + 0.01 min{z, 0}
e Parametric-ReLU(2): « learnable

A

gReLU(z)

Hidden Units

Hidden units have typically non-linear activation functions (otherwise

the NN becomes a linear model).

There are different choices of activation functions, driven by k= h(
architectural constraints but also easiness in the learning phase.

Maxout Unit: computes k affine transformations

of the inpuf, and than takes the max: _ merer
b = IN¢ ij gl]
@)=JmN 7 =

Can have multidimensional oufput.

Other types of hidden units include: cosine, Gaussian Radial Basis Functions,
softplus or smoothed rectifier g(a) = ((a) = log(1+¢€?)

Architecture Design

The architecture design, a part from output and hidden units, requires to

choose the number of units, and how they are arranged: width and depth of
the network.

MLP with one hidden layer and sigmoid activation functions (and others) are
universal approximators, meaning that the set of functions that can be
represented by such a MLP (with n hidden nodes, n unbounded) is dense in
the set of measurable functions.

However: we need to fix the number of nodes. One may need exponentially
many of them (there are bounds but very loose).

And there is a No free lunch theorem: there is no universal machine
learning algorithm.

Other things can also go wrong: SGD may fail, overfitting.

Architecture Design

Advantage of depth > 1: MLP with depth d
and RelLU can learn piecewise linear
functions with a number of regions
exponential in d. Hence depth can reduce
parameters considerably.

Statistical argument for deep networks: o6
a deep MLP expresses the belief that our '
model must be composed by the composition
of many simple functions.

| | |
3 1 f 5 7 8 9 10 11

Skip connections: connect directly layer j+1

with layer j-1, i.e. the input fo layer j+l1 Example: accuracy vs depth

becomes zj.1 = hi(z)) + z; for multi digit transcription.

(this reduces vanishing gradient problem)

Computing Gradients: Backpropogation

MLP are typically trained by Stochastic Gradient Descent (with multistart):
wlt) = w(—9VE,(w(”) (updates each training point in sequence)

The error function is usually given by cross-entropy: J(0) = —Ex y~p,... 108 Pmodel (¥ |).

Warning: the learning problem is highly non-convex. Many local minima, also due to
the presence of many symmetries in the weight space.

Computing Gradients: Backpropogation

The error function is usually given by cross-entropy:
J(0) = —Ex,y~pyars 108 Pmodel (Y | T).

The gradient of E(0)=J(0) can be computed efficiently by backpropagation

Backpropagation is a dynamic programming algorithm that computes the
gradient by going from output nodes back to input nodes in the network.

It has two steps:

1. Forward propagate input X, computing the value of all hidden and output
nodes.

2. Backward propagate the gradient from output nodes to input ones.

Computing Gradients: Backpropogation

hidden units

D

1 1

a; = ng-i)xi + wg-o) Z4j = h(aj).
i=1

: M
i , + outputs 2 o ‘
: ;0P ar = E wfc j) Zj + wl(co) Zi
: OL j=1
I

M D
2 1 1 2
Ye(x, W) =0 (E w,(cj)h (E wgi)x,- + w§0)> + w,io))
j=1 i=1

9E, OE, da, oo, | oE. .

J

We have

For linear output nodes: 6. = yx —tx For other nodes: §; =

3En . E)En 6ak
6(1_7' N ; Bak Baj

Now, as ak = 3 wijh(@j) it holds that d; =h'(a;) Y wisdk
k

Frameworks for DL

B® Microsoft

CNTK

j\ fheane m
dmlic

PYTORCH Sare [hynet

gensim spaCy

Automatic differentiation: TensorFlow, MXnet, CNTK, Theano
Dynamic and high level: Torch & PyTorch , Chainer, MinPy, DyNet...

Keras: high level frontend for TensorFlow, mxnet, theano, cntk

Computational Graphs

Neural network = parametrized, non-linear function

Computational Graphs

. H(sz@ag?a@a F(x)

W, W

Computation graph: Directed graph of functions, depending on
parameters (neuron weights)

Computational Graphs

Input tensor

linear

v/ operator

W,

X @@@

W,

non linear
operator

)

parameter
«— tensor

Combination of linear (parametrized) and non-linear functions

Computational Graphs

T
ONO
XZC?L@ @

W,

Qo

Not only sequential application of functions

Computational Graphs

X @1’ f(x)
{

W, W

Automatic computation of gradients: all modules are differentiable!
Tensorflow, theano, etc. build a static computation graph
Torch, pytorch, etc. rely on dynamic differentiable modules

All frameworks enable parallel computation on CPU and GPU

