Deep Learning
SGD and regqularization

Luca Bortolussi

DMG, University of Trieste, IT
Modelling and Simulation, Saarland University, DE

DSSC, Summer Semester 2018

Stochastic Gradient Descent

Gradient Descent is an iterative method to find local minima of E(w)
following the negative gradient direction -VE(w). Start from wo and iterate:

Wk+1 = Wk - 1k VE(Wk)

For learning problems, E(w) is typically the cross-entropy w.r.t. the
empirical distribution of dafta:

E(w) = 1/n > En(w),

where the sum is over observations.

Stochastic Gradient Descent replaces VE(W) by a statistical estimate,
averaging over a small number m of randomly chosen observations:

Wk+1 = Wk - 7k D n=1..m VEn(Wk)/m

Stochastic Gradient Descent

Stochastic Gradient Descent replaces VE(w) by a statistical estimate,
averaging over a small number m of randomly chosen observations:

Wk+1 = Wk - 7k D n=1..m VEn(Wk)

* the m observations used to estimate VE(w) are called a minibatch.

Typically, m=20,50,100, but m=1 can be used as well (slower convergence,
online algorithm).

 if we would have a huge dataset (never use twice an observation), then

SGD will give us an estimate of the gradient of the cross-entropy w.r.t.

the true data distribution.
e Typically, datasets are not so large, and we need to pass several times

through all data points: each pass is called an epoch of the SGD.

* At the beginning of each epoch, the dataset should be reshuffled, to
have unbiased estimated of the gradient.

SGD: Learning Rate

The learning rate nkis a crucial hyperparameter of the SGD approach. It has to be

decreased during the iterations to guarantee convergence to a local minimum (due to
noise in the estimation of the gradient).

Conditions for convergence: »'7mx=o and 72 <o
k=1 k=1

with 7 number of iterations for T epochs.

Typical choice: 7k = (1 - %)no + “n. T=100 for very deep models, otherwise T=5-10.

ne=0.01170 and nobeing set by experimenting.

The choice of 5o is crucial: too large and the algorithm will diverge, too small and it
will get stuck or take forever to converge.

Strategy: monitor the first 50-100 iterations, experimenting with different 7o to find an

optimal one, i.e. the one decreasing the most the error function. Choose a larger one,
but not unstable.

SGD: initialisation

The initial point wo of the algorithm is also a crucial parameter: we would like to
start from a point in a large basin of attraction of a good minimum!

It is recommended to try multiple initial points (random restart)

Due to symmetries in the weight space, it is recommended fo use an asymmetric
initial point, to break symmetries in the weight.

One way to achieve this is to sample wo randomly. Good choices of distribution are
the uniform and a Gaussian one, with zero mean. Range of the initialisation
distribution is important: if it is too large, this can create instabilities (like very large
gradients). If too small, variation may be too little.

K Cliffs are common for deep models x

N?rmalised inifialisa’rio.n for a layer Gradient
with m outputs and n inpufs:

Without clipping With clipping

clipping:

6 6 rescale
Wij ~U (“V man\ m+n) gradient
to a max

Kleng’rh V.

SGD: Momentum

Gradient Descent suffers when local minima have ill-conditioned Hessian matrices
(high curvature in near the minimum, only along some directions).

Momentum is a strategy fo circumvent these problems, and helps also when gradient
estimation is noisy.

Idea: compute an exponentially decaying v ov —eVg (l iL(f(m(i);g)’y(i)))
average of the new gradient and the previous M =1
one. Typically, a=0.5, 0.9, 0.99 0+ 0 +wv.

v can be seen as a velocity of a particle moving in the w space, subject to potential
E(w) and to viscous friction (proportional to v itself).

Algorithm 8.2 Stochastic gradient descent (SGD) with momentum

20 . :
Require: Learning rate ¢, momentum parameter a.

Require: Initial parameter 6, initial velocity v.

while stopping criterion not met do
Sample a minibatch of m examples from the training set {z!!),..., 2™} with
corresponding targets y(f).
Compute gradient estimate: g « 2Vy 3~ L(f (z;0),y")
Compute velocity update: v ¢+ av — €g
Apply update: 6 + 6 + v

end while

10

0

10

20

30

' A
30 ~20 <10 0O 10 20

SGD: Nesterov Momentum

Nesterov Momentum evaluates the gradient at an intermediate point.
It can be shown to improve standard GD convergence rate to O(1/k2).

v+ av —€Vy 77% zm:L(f(a:(i);H + ow),y(i))
i=1

0+ 0+ v,

Algorithm 8.3 Stochastic gradient descent (SGD) with Nesterov momentum

Require: Learning rate ¢, momentum parameter o.
Require: Initial parameter 8, initial velocity v.
while stopping criterion not met do

Sample a minibatch of m examples from the training set {z(1, ... x(™} with
corresponding labels y®,
Apply interim update: 0+ 0+ av

20 Compute gradient (at interim point): g +— =V >, L(f(z'V; 6),y")

w0 \ L Compute velocity update: v < av — €g

T30 -20 -10 0 10 20 Apply update: 6 < 0 + v

end while

20)

10

0

10

SGD: Why Momentum Works?

Starting Point

Optimum

O

Solution

Step-size a = 0.0030 Momentum B = 0.0 We often think of Momentum as a means of dampening oscillations and
speeding up the iterations, leading to faster convergence. But it has other
® ® interesting behavior. It allows a larger range of step-sizes to be used, and
creates its own oscillations. What is going on?

https://distill.pub/2017/momentum/

SGD: Why Momentum Works?

Starting Point

Optimum

O

Solution

Step-size a = 0.0030 Momentum P = 0.60 We often think of Momentum as a means of dampening oscillations and
o o speeding up the iterations, leading to faster convergence. But it has other

interesting behavior. It allows a larger range of step-sizes to be used, and
creates its own oscillations. What is going on?

SGD: Why Momentum Works?

Starting Point

Optimum

Solution

Step-size a = 0.0030 Momentum P = 0.80 We often think of Momentum as a means of dampening oscillations and

® @ speeding up the iterations, leading to faster convergence. But it has other
interesting behavior. It allows a larger range of step-sizes to be used, and
creates its own oscillations. What is going on?

SGD: Why Momentum Works?

Step-size a = 0.0030
@

Starting Point

Momentum 8 = 0.90

tion

We often think of Momentum as a means of dampening oscillations and
speeding up the iterations, leading to faster convergence. But it has other
interesting behavior. It allows a larger range of step-sizes to be used, and
creates its own oscillations. What is going on?

SGD: adaptive learning rates

Basic idea: adapt the learning rate for each parameter by taking into account an
estimation of the curvature parameter-wise.

AdaGrad: good for convex problems. Rescales the learning rate inversely
proportionally to the square root of the sums of the squares of all historical
gradient values.

Algorithm 8.4 The AdaGrad algorithm

Require: Global learning rate ¢
Require: Initial parameter 6
Require: Small constant 4, perhaps 107, for numerical stability
Initialize gradient accumulation variable r = 0
while stopping criterion not met do
Sample a minibatch of m examples from the training set {z'",..., 2™} with
corresponding targets y'¥.
Compute gradient: g + ;,%Vo > L(f(z'¥; 8),y'")
Accumulate squared gradient: 7+ r+g®g
Compute update: Af —ﬁ;_ ® g. (Division and square root applied

element-wise)
Apply update: 8 «+ @ + A6
end while

SGD: adaptive learning rate

RMSProp: improved method for non-convex problems. Gradient accumulation is
replaced by an exponentially weighted moving average.

Algorithm 8.5 The RMSProp algorithm

Require: Global learning rate ¢, decay rate p.
Require: Initial parameter 8
Require: Small constant 4, usually 10°%, used to stabilize division by small
numbers.
Initialize accumulation variables r =0
while stopping criterion not met do
Sample a minibatch of m examples from the training set {z'!),..., (™} with
corresponding targets y'?).
Compute gradient: g « Vo 3. L(f(z;0), y'")

m

Accumulate squared gradient: 7 + pr + (1 —p)g® g
. —_— € 1 . .
Compute parameter update: A@ = -7 @9 (m applied element-wise)
Apply update: 6 + 6 + A@
end while

SGD: adaptive learning rate

Adam: integrates RMSProp with momentum, and uses a second-oder correction to
correct the bias in the estimate of gradient and curvature, caused by exponential
averaging. It is considered quite stable w.r.t. choice of parameters (not learning rate).

Algorithm 8.7 The Adam algorithm

Require: Step size € (Suggested default: 0.001)
Require: Exponential decay rates for moment estimates, p; and ps in [0, 1).
(Suggested defaults: 0.9 and 0.999 respectively)
Require: Small constant § used for numerical stabilization. (Suggested default:
10-9)
Require: Initial parameters 6
Initialize 1st and 2nd moment variables s =0, r =0
Initialize time step £t = 0
while stopping criterion not met do
Sample a minibatch of m examples from the training set {m“],. e a:("‘)} with
corresponding targets y'%.
Compute gradient: g + Vg >, L(f(z';6),y")
t—t+1
Update biased first moment estimate: 8 < p;8+ (1 — py)g
Update biased second moment estimate: r - por + (1 - p2)g® g

Correct bias in first moment: 8§ - —"’—1 p
M1

-
6T g
Compute update: A8 = —¢ v,:‘ - (operations applied element-wise)
Apply update: 8 « 8+ A8
end while

Correct bias in second moment: 7 -

Regularisation of deep NN

Deep Neural Networks, with many layers and many nodes, typically have a
very large model capacity. This can cause severe overfitting.

t =sin(2mx) + €

—©— Training
—O— Test

057

Frws

Regularisation of deep NN

Deep Neural Networks, with many layers and many nodes, typically have a
very large model capacity. This can cause severe overfitting.

Either there is a huge amount of data to train the model, or we need to
reqularise the learning algorithm.

Recommendation
use a model with very large capacity and regularise it well.

Classic regularisation:

* Typically operates on weights, in three different ways

* Hard constraint: ||w|lp< r

* Soft constraint: add a penalty term to cross entropy, depending on ||W||p
* Bayesian view: place a prior on parameters and do MAP inference.

Regularisation of deep NN

Weight (soft) regularisation: add a penalty term to the likelihood/ cross
entropy, penalising large weights.

e L2 Norm: Q(w) = a||w||22. Keeps weights
small, corresponds to a Bayesian MAP
with Gaussian prior. In NN: biases
(constant terms) are not regularised, <@ <@
better to use one hyperparameter per " W
layer. /

e L1 Norm: Q(w) = a||w||1. Encourages k/ " \/ "

sparsity of coefficients, corresponds to
Bayesian MAP with Laplace prior.

Regularisation of deep NN

Noise-based regularisation: add noise to improve generalisation.

* Augment dataset by perturbed observations (good for classification
problems with known invariance properties).

* Perturb input points to enhance robustness of learned solutions. One can
also perturb weights or hidden layers (dropout).

* Perturb weights to enhance stability of learned solutions.

Other typical forms of regularisation are:

* Early Stopping which is the cheapest form of regularisation (self tuning
hyperparameter)

* Dropout is a ensemble method inspired by bagging.

* Gradient clipping to avoid gradient explosion in SGD (skip connections
help gradient vanishing).

Noise injection on inputs

Suppose there are multiple solufions,
maybe because data are linearly

separable.
Adding noise on inputs, makes the
learning more stable.

Class +1

Class -1
Prefer w, (higher confidence) B g
0
0
Class +1 O °
H B o
. ° . . ‘
But not foo much noise, otherwise 0 ° Class -1
| - ass -
points may cross the boundary o ° o
o [

Prefer w, (higher confidence)

Noise injection on inputs

Noise injection on inpufs is equivalent to weight decay with L2 norm!

* Suppose the hypothesis is f(x) = w!x, noise is e~N (0, AI)
e After adding noise, the loss is

L(f) = [Ex,y,e[f(x +€) — y]z — [Ex,y,e[f(x) +wle — 3’]2

L(f) :Ex,y,e [f (x) — 3’]2 ZIEx,y,e [WTE(f(X) -yl IEx,y,e [WTE]Z

L(f) =Eyy [f(X) — y1% + AW’

Noise injection on weights

* For the loss on each data point, add a noise term to the weights
before computing the prediction

e~NO,nD),w =w+e€

* Prediction: f,/(x) instead of f, (x)

* Loss becomes
L(f) = [Ex,y,e [fw+e (X) — Y]z

Noise injection on weights

* Loss becomes
L(f) = [Ex,y,e[fw+e (x) — Y]Z
* To simplify, use Taylor expansion

 fuve () = fy () + €T7F (x) + L

* Plug in

° L(f) ~ [E[fw(x) o y]z + n[F[(fw(x) _JY)szw(x)] + 77\E||Vfw(x)|/|2
Small so czjm be ignored Regulaliization term

Noise injection on weights penalises functions varying foo much locally.
DNN are indeed affected by high local variability.

Data Augmentation

When we know predictions should be invariant to certain input
transformations, we can generate many transformed copies of the

input!
Horizontal Flip
- EEER

Figure from Image Classification with Pyramid Representation
and Rotated Data Augmentation on Torch 7, by Keven Wang

We need to be careful, as some transformations may not be invariant
(e.g. rotation of 180 degrees for handwritten digits.

wa

Early Stopping

One of the most common regularisation strategies. It is very simple but effective and
computationally cheap.

Idea: a good generalisation is not found in a local optimum of cross entropy, but
typically somewhere in the path to it.

u.20 T T T T

Practically: monitor a validation

o— Training set loss

dataset while running SGD, and stop 5 0.15 — Validation set loss
when the validation error starts to } .

increase. 5 o |
Number of steps of SGD becomes an £ o

hyperparameter.

.

u.00

0 al 100 150 200 250

Time {epochs)

(_/C@—i (Intuition: Early stopping (for linear regression)
~So—— - S=—— corresponds to L2 regularisation, but learns

N ” /,/:“:\\\\ Y the optimal weight decay hyperpar on the fly.
RN B Relationship: 7 = 1/ea, where e depends on
\ L7/

N o the eigenvalues of Hessian at minimum.

Early Stopping

Algorithm 7.1 The ecarly stopping meta-algorithm for determining the best
amount of time to train. This meta-algorithm is a general strategy that works
well with a variety of training algorithms and ways of quantifying error on the
validation set.

Let n be the number of steps between evaluations.

Let p be the “patience,” the number of times to observe worsening validation set

error before giving up.

Let @, be the initial parameters.

0« 0,
0
3«0
U 00
g* « 6
it i

while j < p do
Update 6 by running the training algorithm for n steps.
Lé-i+n
v’ « ValidationSetError(0)
if v’ < v then

3«0

g « 0

i1

v v
else

j=3+1
end if

end while
Best parameters are 8, best number of training steps is *

Early Stopping

Validation data costs in terms of dataset size. To improve, one can use early
stopping to identify the number of iterations, and retrain the model with

the whole data.

* How to reuse validation data
1. Start fresh, train with both training data and validation data up to the
previous number of epochs

2. Start from the weights in the first run, train with both training data and
validation data util the validation loss < the training loss at the early

stopping point

Bagging

Bagging (bootstrap aggregation) is an ensemble method/ model averaging strategy:
different models are trained on the same dataset and their average is returned.

Idea: different models typically do different (independent) errors on predictions.
Bagging typically trains the same model on different datasets generated by sampling
with repetition, as in bootstrapping.

Suppose we have k models, each with ot dotnes

error €, with variance E[ei2]=v and '

covariance E[eiej]=c. Then by averaging @ @ .
models, we average errors. The expected 7 rewmpc] dnns

squared error is then: . @ . _) @ _) @

Second resampled dataset Second ensem:ble member

-epleze)] @DO>@=>=O

JFi
1 k1
= VT L.

k k

Dropout

Dropout is a form of bagging, in which we consider all models obtained
by removing all possible subset of the hidden and input nodes. If there

are m such nodes, there are 2m ¢

Dropout simultaneously train
all such modes, sharing their
parameters, by sampling a

mask u each time a new

training point is processed by
SGD: each node is kept with
probability p (typically 0.5 for
hidden, 0.8 for input).

O
X
()

Base networx

R
6ol el &
Gg@ @o 0@ ®
@ e
® ®

Fnsemble of s

1hnetwiorks

Dropout

Inference is performed either by
sampling few masks and averaging, or by

the weight scaling approximation: each
node is multiplied by the masking
probability p during inference.

Dropout can be seen as an intelligent
perturbation of input data (by erasing/
perturbing features rather than inputs).

IT—
: twors

(¥) (¥) (v) (¥)
550G |
ORNORNOREO
() () (9 (1)
O E ® 6 @

O | ® | ®
O, ®

®

Ensemble of subnetworks

Sparse Representation and Batch

Normalisation

Sparse representation: add a term penalising large values of hidden units
after applying the activation function. Using L1 norm bring sparsity on

active hidden units.

Batch normalisation: standardise
hidden units during learning, on a
minibatch of training points.

This has the effect of stabilising the
learning algorithm on a deep

architecture, by fixing the distribution
of each node in each layer, and allows

the use of larger learning rates.

[known phenomenon: covariate shift -

change in distribution of inputs of a
layer makes training unstable.]

Input: Values of x over a mini-batch: B = {x1.. . };
Parameters to be learned: v,
Output: {y; = BN, g(x;)}

1 m
HB Ezliﬁz
1=

1 m
0% o Z(ﬂfi — pB)°
1=1

// mini-batch mean

// mini-batch variance

Ly — UB
\/012g + €

Y; < 7x; + 5 = BN, g(z;)

T; // normalize

// scale and shift

