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Stochastic Gradient Descent
Gradient Descent is an iterative method to find local minima of E(w) 
following the negative gradient direction -∇E(w). Start from w0 and iterate: 

For learning problems, E(w)  is typically the cross-entropy w.r.t. the 
empirical distribution of data:  


                   E(w) = 1/n ∑En(w), 


where the sum is over observations. 

Stochastic Gradient Descent replaces ∇E(w) by a statistical estimate, 
averaging over a small number m of randomly chosen observations:

wk+1 = wk - 𝜂k ∑n=1..m ∇En(wk)/m

wk+1 = wk - 𝜂k ∇E(wk)



Stochastic Gradient Descent
Stochastic Gradient Descent replaces ∇E(w) by a statistical estimate, 
averaging over a small number m of randomly chosen observations:

wk+1 = wk - 𝜂k ∑n=1..m ∇En(wk)

• the m observations used to estimate ∇E(w) are called a minibatch. 
Typically, m=20,50,100, but m=1 can be used as well (slower convergence, 
online algorithm). 


• if we would have a huge dataset (never use twice an observation), then 
SGD will give us an estimate of the gradient of the cross-entropy w.r.t. 
the true data distribution. 


• Typically, datasets are not so large, and we need to pass several times 
through all data points: each pass is called an epoch of the SGD. 


• At the beginning of each epoch, the dataset should be reshuffled, to 
have unbiased estimated of the gradient. 



SGD: Learning Rate
The learning rate 𝜂k is a crucial hyperparameter of the SGD approach. It has to be 
decreased during the iterations to guarantee convergence to a local minimum (due to 
noise in the estimation of the gradient).

Conditions for convergence: 

Typical choice: 
with 𝜏 number of iterations for T epochs.
T=100 for  very deep models, otherwise T=5-10.  
𝜂𝜏 = 0.01𝜂0  and 𝜂0 being set by experimenting. 

The choice of 𝜂0  is crucial: too large and the algorithm will diverge, too small and it 
will get stuck or take forever to converge. 

Strategy: monitor the first 50-100 iterations, experimenting with different 𝜂0 to find an 
optimal one, i.e. the one decreasing the most the error function. Choose a larger one, 
but not unstable. 



SGD: initialisation 
The initial point w0 of the algorithm is also a crucial parameter: we would like to 
start from a point in a large basin of attraction of a good minimum!
It is recommended to try multiple initial points (random restart)

Due to symmetries in the weight space, it is recommended to use an asymmetric 
initial point, to break symmetries in the weight. 

One way to achieve this is to sample w0 randomly. Good choices of distribution are 
the uniform and a Gaussian one, with zero mean. Range of the initialisation 
distribution is important: if it is too large, this can create instabilities (like very large 
gradients). If too small, variation may be too little.

Normalised initialisation for a layer 

with m outputs and n inputs: 

Cliffs are common for deep models  

Gradient 
clipping: 
rescale 
gradient 
to a max 
length v.  



SGD: Momentum
Gradient Descent suffers when local minima have ill-conditioned Hessian matrices

(high curvature in near the minimum, only along some directions).
Momentum is a strategy to circumvent these problems, and helps also when gradient  
estimation is noisy. 
Idea: compute an exponentially decaying 
average of the new gradient and the previous 
one. Typically, 𝛼=0.5, 0.9, 0.99

v can be seen as a velocity of a particle moving in the w space, subject to potential 
E(w) and to viscous friction (proportional to v itself). 



SGD: Nesterov Momentum
Nesterov Momentum evaluates the gradient at an intermediate point.

It can be shown to improve standard GD convergence rate to O(1/k2).
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Nesterov momentum evaluates the gradient in an
intermediate point. It can be shown that it modifies
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 Compute gradient (at interim point): g ← 1
m∇θ̃
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 CHAPTER 8. OPTIMIZATION FOR TRAINING DEEP MODELS

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 that the gradient can continue to cause motion until a minimum is reached, but
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SGD: Why Momentum Works?

Alternative optimizers

SGD (with Nesterov momentum)

Simple to implement

Very sensitive to initial value of $\eta$

Need learning rate scheduling

Why Momentum Really Works



SGD: adaptive learning rates
Basic idea: adapt the learning rate for each parameter by taking into account an 
estimation of the curvature parameter-wise.


AdaGrad: good for convex problems. Rescales the learning rate inversely 
proportionally to the square root of the sums of the squares of all historical 
gradient values. 




SGD: adaptive learning rate
RMSProp: improved method for non-convex problems. Gradient accumulation is 
replaced by an exponentially weighted moving average. 



SGD: adaptive learning rate
Adam: integrates RMSProp with momentum, and uses a second-oder correction to 
correct the bias in the estimate of gradient and curvature, caused by exponential 
averaging. It is considered quite stable w.r.t. choice of parameters (not learning rate).  



Regularisation of deep NN
Deep Neural Networks, with many layers and many nodes, typically have a 
very large model capacity. This can cause severe overfitting. 

𝑡 = sin 2𝜋𝑥 + 𝜖

Figure from Machine Learning 
and Pattern Recognition, Bishop

Overfitting example: regression using polynomialsOverfitting example: regression using polynomials

Figure from Machine Learning 
and Pattern Recognition, Bishop



Regularisation of deep NN
Deep Neural Networks, with many layers and many nodes, typically have a 
very large model capacity. This can cause severe overfitting. 
Either there is a huge amount of data to train the model, or we need to 
regularise the learning algorithm. 

Recommendation 

use a model with very large capacity and regularise it well. 

Classic regularisation:

* Typically operates on weights, in three different ways

* Hard constraint: ||w||p < r

* Soft constraint: add a penalty term to cross entropy, depending on ||w||p

* Bayesian view: place a prior on parameters and do MAP inference. 



Regularisation of deep NN

Weight (soft) regularisation: add a penalty term to the likelihood/ cross 
entropy, penalising large weights. 

LINEAR REGRESSION MODELS BAYESIAN LINEAR REGRESSION DUAL REPRESENTATION AND KERNELS 16 / 40

REGULARISED MAXIMUM LIKELIHOOD

A more general form of the penalty term is

EW (w) =
1
2

X

j

|wj |q

q = 2 is the ridge regression, while q = 1 is the lasso regression.
Lasso regression has the property that it produces sparse
models as some coefficients tend to be set to zero. However, it
has no analytic solution.146 3. LINEAR MODELS FOR REGRESSION

Figure 3.4 Plot of the contours
of the unregularized error function
(blue) along with the constraint re-
gion (3.30) for the quadratic regular-
izer q = 2 on the left and the lasso
regularizer q = 1 on the right, in
which the optimum value for the pa-
rameter vector w is denoted by w�.
The lasso gives a sparse solution in
which w�

1 = 0.

w1

w2

w�

w1

w2

w�

For the remainder of this chapter we shall focus on the quadratic regularizer
(3.27) both for its practical importance and its analytical tractability.

3.1.5 Multiple outputs
So far, we have considered the case of a single target variable t. In some applica-

tions, we may wish to predict K > 1 target variables, which we denote collectively
by the target vector t. This could be done by introducing a different set of basis func-
tions for each component of t, leading to multiple, independent regression problems.
However, a more interesting, and more common, approach is to use the same set of
basis functions to model all of the components of the target vector so that

y(x,w) = WT�(x) (3.31)

where y is a K-dimensional column vector, W is an M � K matrix of parameters,
and �(x) is an M -dimensional column vector with elements �j(x), with �0(x) = 1
as before. Suppose we take the conditional distribution of the target vector to be an
isotropic Gaussian of the form

p(t|x,W, �) = N (t|WT�(x), ��1I). (3.32)

If we have a set of observations t1, . . . , tN , we can combine these into a matrix T
of size N � K such that the nth row is given by tT

n . Similarly, we can combine the
input vectors x1, . . . ,xN into a matrix X. The log likelihood function is then given
by

ln p(T|X,W, �) =
N�

n=1

ln N (tn|WT�(xn), ��1I)

=
NK

2
ln

�
�

2�

�
� �

2

N�

n=1

��tn � WT�(xn)
��2

. (3.33)

• L2 Norm: 𝜴(w) = 𝛼||w||22. Keeps weights 
small, corresponds to a Bayesian MAP 
with Gaussian prior. In NN: biases 
(constant terms) are not regularised, 
better to use one hyperparameter per 
layer.  


• L1 Norm: 𝜴(w) = 𝛼||w||1. Encourages 
sparsity of coefficients, corresponds to 
Bayesian MAP with Laplace prior. 



Regularisation of deep NN
Noise-based regularisation: add noise to improve generalisation.

• Augment dataset by perturbed observations (good for classification 

problems with known invariance properties). 

• Perturb input points to enhance robustness of learned solutions. One can 

also perturb weights or hidden layers (dropout). 

• Perturb weights to enhance stability of learned solutions. 

Other typical forms of regularisation are: 

• Early Stopping which is the cheapest form of regularisation (self tuning 

hyperparameter)

• Dropout is a ensemble method inspired by bagging.

• Gradient clipping to avoid gradient explosion in SGD (skip connections 

help gradient vanishing). 



Noise injection on inputs

Suppose there are multiple solutions, 
maybe because data are linearly 
separable. 

Adding noise on inputs, makes the 
learning more stable.

Add noise to the input

Class +1

Class -1

𝑤2

Prefer 𝑤2 (higher confidence)

Multiple optimal solutions?

Class +1

Class -1

𝑤2 𝑤3𝑤1

Prefer 𝑤2 (higher confidence)

But not too much noise, otherwise 
points may cross the boundary



Noise injection on inputs
Noise injection on inputs is equivalent to weight decay with L2 norm!

Equivalence to weight decay

• Suppose the hypothesis is 𝑓 𝑥 = 𝑤𝑇𝑥, noise is 𝜖~𝑁(0, 𝜆𝐼)
• After adding noise, the loss is

𝐿(𝑓) = 𝔼𝑥,𝑦,𝜖 𝑓 𝑥 + 𝜖 − 𝑦 2 = 𝔼𝑥,𝑦,𝜖 𝑓 𝑥 + 𝑤𝑇𝜖 − 𝑦 2

𝐿(𝑓) =𝔼𝑥,𝑦,𝜖 𝑓 𝑥 − 𝑦 2 + 2𝔼𝑥,𝑦,𝜖 𝑤𝑇𝜖 𝑓 𝑥 − 𝑦 + 𝔼𝑥,𝑦,𝜖 𝑤𝑇𝜖 2

𝐿(𝑓) =𝔼𝑥,𝑦,𝜖 𝑓 𝑥 − 𝑦 2 + 𝜆 𝑤 2



Noise injection on weights
Add noise to the weights

• For the loss on each data point, add a noise term to the weights 
before computing the prediction

𝜖~𝑁(0, 𝜂𝐼), 𝑤′ = 𝑤 + 𝜖

• Prediction: 𝑓𝑤′ 𝑥 instead of 𝑓𝑤 𝑥
• Loss becomes

𝐿(𝑓) = 𝔼𝑥,𝑦,𝜖 𝑓𝑤+𝜖 𝑥 − 𝑦 2



Noise injection on weights
Add noise to the weights

• Loss becomes
𝐿(𝑓) = 𝔼𝑥,𝑦,𝜖 𝑓𝑤+𝜖 𝑥 − 𝑦 2

• To simplify, use Taylor expansion

• 𝑓𝑤+𝜖 𝑥 ≈ 𝑓𝑤 𝑥 + 𝜖𝑇𝛻𝑓 𝑥 + 𝜖𝑇𝛻2𝑓 𝑥 𝜖
2

• Plug in
• 𝐿 𝑓 ≈ 𝔼 𝑓𝑤 𝑥 − 𝑦 2 + 𝜂𝔼[ 𝑓𝑤 𝑥 − 𝑦 𝛻2𝑓𝑤 𝑥 ] + 𝜂𝔼||𝛻𝑓𝑤(𝑥)||2

Small so can be ignored Regularization term

Noise injection on weights penalises functions varying too much locally.

DNN are indeed affected by high local variability.



Data augmentation

Figure from Image Classification with Pyramid Representation 
and Rotated Data Augmentation on Torch 7, by Keven Wang

Data Augmentation 
When we know predictions should be invariant to certain input 
transformations, we can generate many transformed copies of the 
input!

We need to be careful, as some transformations may not be invariant 
(e.g. rotation of 180 degrees for handwritten digits.  



Early Stopping
One of the most common regularisation strategies. It is very simple but effective and 
computationally cheap. 
Idea: a good generalisation is not found in a local optimum of cross entropy, but 
typically somewhere in the path to it.

Practically: monitor a validation 
dataset while running SGD, and stop 
when the validation error starts to 
increase. 

Number of steps of SGD becomes an 
hyperparameter. 

Intuition: Early stopping (for linear regression) 
corresponds to L2 regularisation, but learns 
the optimal weight decay hyperpar on the fly. 

Relationship: 𝜏 ≈ 1/𝜖𝛼, where 𝜖 depends on 
the eigenvalues of Hessian at minimum. 



Early Stopping



Early Stopping

Validation data costs in terms of dataset size. To improve, one can use early 
stopping to identify the number of iterations, and retrain the model with 
the whole data. 

Early stopping

• Strategy to get rid of the disadvantage
• After early stopping of the first run, train a second run and reuse validation 

data

• How to reuse validation data 
1. Start fresh, train with both training data and validation data up to the 

previous number of epochs  
2. Start from the weights in the first run, train with both training data and 

validation data util the validation loss < the training loss at the early 
stopping point



Bagging
Bagging (bootstrap aggregation) is an ensemble method/ model averaging strategy: 
different models are trained on the same dataset and their average is returned. 

Idea: different models typically do different (independent) errors on predictions.

Bagging typically trains the same model on different datasets generated by sampling 
with repetition, as in bootstrapping. 


Suppose we have k models, each with 
error 𝝐i, with variance 𝔼[𝝐i2]=v and 
covariance 𝔼[𝝐i𝝐j]=c. Then by averaging 
models, we average errors. The expected 
squared error is then:



Dropout
Dropout is a form of bagging,  in which we consider all models obtained 
by removing all possible subset of the hidden and input nodes. If there 
are m such nodes, there are 2m different models. 

Dropout simultaneously train 
all such modes, sharing their 
parameters, by sampling a 
mask 𝝁 each time a new 
training point is processed by 
SGD: each node is kept with 
probability p (typically 0.5 for 
hidden, 0.8 for input). 



Dropout
Inference is performed either by 
sampling few masks and averaging, or by 
the weight scaling approximation: each 
node is multiplied by the masking 
probability p during inference. 

Dropout can be seen as an intelligent 
perturbation of input data (by erasing/ 
perturbing features rather than inputs).



Sparse Representation and Batch 
Normalisation

Sparse representation: add a term penalising large values of hidden units 
after applying the activation function. Using L1 norm bring sparsity on 
active hidden units. 

Batch normalisation: standardise 
hidden units during learning, on a 
minibatch of training points. 

This has the effect of stabilising the 
learning algorithm on a deep 
architecture, by fixing the distribution 
of each node in each layer, and allows 
the use of larger learning rates. 


[known phenomenon:  covariate shift - 
change in distribution of inputs of a 
layer makes training unstable.  ]

vector, and X be the set of these inputs over the training
data set. The normalization can then be written as a trans-
formation

x̂ = Norm(x,X )

which depends not only on the given training example x
but on all examples X – each of which depends on Θ if
x is generated by another layer. For backpropagation, we
would need to compute the Jacobians

∂Norm(x,X )

∂x
and

∂Norm(x,X )

∂X
;

ignoring the latter term would lead to the explosion de-
scribed above. Within this framework, whitening the layer
inputs is expensive, as it requires computing the covari-
ance matrix Cov[x] = Ex∈X [xxT ] − E[x]E[x]T and its
inverse square root, to produce the whitened activations
Cov[x]−1/2(x − E[x]), as well as the derivatives of these
transforms for backpropagation. This motivates us to seek
an alternative that performs input normalization in a way
that is differentiable and does not require the analysis of
the entire training set after every parameter update.
Some of the previous approaches (e.g.

(Lyu & Simoncelli, 2008)) use statistics computed
over a single training example, or, in the case of image
networks, over different feature maps at a given location.
However, this changes the representation ability of a
network by discarding the absolute scale of activations.
We want to a preserve the information in the network, by
normalizing the activations in a training example relative
to the statistics of the entire training data.

3 Normalization via Mini-Batch
Statistics

Since the full whitening of each layer’s inputs is costly
and not everywhere differentiable, we make two neces-
sary simplifications. The first is that instead of whitening
the features in layer inputs and outputs jointly, we will
normalize each scalar feature independently, by making it
have the mean of zero and the variance of 1. For a layer
with d-dimensional input x = (x(1) . . . x(d)), we will nor-
malize each dimension

x̂(k) =
x(k) − E[x(k)]√

Var[x(k)]

where the expectation and variance are computed over the
training data set. As shown in (LeCun et al., 1998b), such
normalization speeds up convergence, even when the fea-
tures are not decorrelated.
Note that simply normalizing each input of a layer may

change what the layer can represent. For instance, nor-
malizing the inputs of a sigmoid would constrain them to
the linear regime of the nonlinearity. To address this, we
make sure that the transformation inserted in the network
can represent the identity transform. To accomplish this,

we introduce, for each activation x(k), a pair of parameters
γ(k),β(k), which scale and shift the normalized value:

y(k) = γ(k)x̂(k) + β(k).

These parameters are learned along with the original
model parameters, and restore the representation power
of the network. Indeed, by setting γ(k) =

√
Var[x(k)] and

β(k) = E[x(k)], we could recover the original activations,
if that were the optimal thing to do.
In the batch setting where each training step is based on

the entire training set, we would use the whole set to nor-
malize activations. However, this is impractical when us-
ing stochastic optimization. Therefore, we make the sec-
ond simplification: since we use mini-batches in stochas-
tic gradient training, each mini-batch produces estimates
of the mean and variance of each activation. This way, the
statistics used for normalization can fully participate in
the gradient backpropagation. Note that the use of mini-
batches is enabled by computation of per-dimension vari-
ances rather than joint covariances; in the joint case, reg-
ularization would be required since the mini-batch size is
likely to be smaller than the number of activations being
whitened, resulting in singular covariance matrices.
Consider a mini-batch B of size m. Since the normal-

ization is applied to each activation independently, let us
focus on a particular activation x(k) and omit k for clarity.
We havem values of this activation in the mini-batch,

B = {x1...m}.

Let the normalized values be x̂1...m, and their linear trans-
formations be y1...m. We refer to the transform

BNγ,β : x1...m → y1...m

as the Batch Normalizing Transform. We present the BN
Transform in Algorithm 1. In the algorithm, ϵ is a constant
added to the mini-batch variance for numerical stability.

Input: Values of x over a mini-batch: B = {x1...m};
Parameters to be learned: γ, β

Output: {yi = BNγ,β(xi)}

µB ←
1

m

m∑

i=1

xi // mini-batch mean

σ2
B ←

1

m

m∑

i=1

(xi − µB)
2 // mini-batch variance

x̂i ←
xi − µB√
σ2
B
+ ϵ

// normalize

yi ← γx̂i + β ≡ BNγ,β(xi) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.

The BN transform can be added to a network to manip-
ulate any activation. In the notation y = BNγ,β(x), we

3


