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Convolutional Networks
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Convolution

* Given array u; and wy, their convolution is a function s
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Convolution can be seen as a sort of localised

noise filtering (a moving average in 1d).
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Convolutional Layers

They are the standard approach for input data distributed in a grid, e.g. images.
They work also for sequence data and 3D datfa.
Convolution layers are the core of convolutional networks.

The same convolution is applied to each Convolutional layer, < m X k edges
possible subset of the image.

(Zero padding may be used at boundaries) ‘ Q G @

(One can impose a stride in each direction)

T4 Iy

Multiple convolutional layers: larger receptive field °

It enforces:
° a ° ° - sparse connectivity

- parameter sharing

° ° 6 e (kernels are localised and shared)




Convolutional Layers

Colored image = tensor of shape (height, width, channels)

Convolutions are usually computed for each channel and summed:

28x28x3
24x24
5X5x3 z///////

28x28x3
@ 24x24x4
/ 5x5x3x4 /

2
(k % im©ry = Z kS % im" /
c=0

Typically, multiple convolutions
are applied in parallel




CNN - Detector Stage and Pooling

Each convolution layer applies three operations (or can Ne":"‘y‘”

be seen as three layers, like in Keras):

1. convolution with a local kernel (linear filter) Convolutional Layer

2. application of a non-linear activation function Pooling stage
(detector stage) A

Detector stage:

3. pooling the values in a neighbourhood of pixels

Nonlinearity
e.g., rectified linear

A

Pooling (e.g. max or averaging in a neighbourhood) Convolution stage:

Affine transform
enforces invariance to small translations of the input.
Useful also to deal with images of different sizes.
Large POOLING STAGE

Large response Large response
in pooling unit in pooling unit
Large
response

response
in detector, in detector
unit 3

unit 1

A

Input to layer

(s DETECTOR STAGE




CNN - An example of architecture

LeNet-5

* Proposed in “Gradient-based learning applied to document

recognition”, by Yann LeCun, Leon Bottou, Yoshua Bengio and Patrick Haffner,
in Proceedings of the IEEE, 1998

« Apply convolution on 2D images (MNIST) and use backpropagation

« Structure: 2 convolutional layers (with pooling) + 3 fully connected layers
* |Input size: 32x32x1
« Convolution kernel size: 5x5
* Pooling: 2x2



CNN - An example of architecture

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT
6@28x28
S2: f. maps C5: layer F6 layer OUTpUT

32x32
6@14x14 120

LASONN

Full coanectnon | Gaussuan connections
Convolutions Subsampling Convolutlons Subsampllng Full connection




CNN - An example of architecture

Pooling 2x2 :
Filter 5x5, stride 1x1 stride 2 Weight: 120x84

#filters 6

Weight: 400x120
C3: f. maps 16@10x10 /
S4: f. maps 16@5x5

S2: f. maps r CS5: layer pg. lajer OUTPUT

C1: feature maps

INPUT
39%32 6@)28x28

r"r

Full coanection | Gaussian connections
onvolutions Subsampling Full connection

Convolutions Subsampling

: : _ Weight: 84x10
Filter 5x5x6, stride 1x1 Pooling 2x2
#filters 16 stride 2




CNN - An example of architecture

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

INPUT
6@28x28
@ S2: f. maps C5: layer

32x32
6@14x14 120

Convolutions Subsampling Convolutions Subsampllng Full connectlon

F6 layer OUTPUT

FuII conAectnon Gaussnan connections

input_1image = Input(shape=(28, 28, 1))

Conv2D(32, 5, activation='relu')(input_1image)
MaxPool2D(2, strides=2)(x)

Conv2D(64, 3, activation='relu')(x)
MaxPool2D(2, strides=2)(x)

Flatten()(x)

Dense(256, activation='relu')(x)

Dense(10, activation='softmax')(x)

convnet = Model(inputs=input_image, outputs=x)

1
X
X
X
X
X
X



Hierarchical representation

Low-Level Mid-Level| [High-Level Trainable
Feature Feature Feature Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]



Architecture: VGG-16

224 x224x3 224 X224 xX64

112 %128

56| 56 x 256
28X 28x 512 5I2><7><512
e 1x1x4096 1x1x 1000

€

@ convolution+RelLU

@ max pooling
@ fully connected+ReLU

@ softmax

Simonyan, Karen, and Zisserman. "Very deep convolutional networks for large-scale image
recognition." (2014)



Architecture: VGG-16 in Keras

model.add(Convolution2D(64, 3, 3, activation='relu',input_shape=(3,224,224)))
model.add(Convolution2D(64, 3, 3, activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))

model.add(Convolution2D(128, 3, 3, activation='relu'))
model.add(Convolution2D(128, 3, 3, activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))

model.add(Convolution2D(256, 3, 3, activation='relu'))
model.add(Convolution2D(256, 3, 3, activation='relu'))
model.add(Convolution2D(256, 3, 3, activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))

model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))

model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(Convolution2D(512, 3, 3, activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))

model.add(Flatten())

model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(4096, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1000, activation='softmax'))



Architecture: VGG-16 - parameters

INPUT:
CONV3-64:
CONV3-64:
POOL2:

CONV3-128:
CONV3-128:

POOL2:

CONV3-256:
CONV3-256:
CONV3-256:

POOL2:

CONV3-512:
CONV3-512:
CONV3-512:

POOL2:

CONV3-512:
CONV3-512:
CONV3-512:

POOL?2:
FC:
FC:
FC:

TOTAL activations:
TOTAL parameters: 138M x

Activation maps

[224x224%3]
[224x224x64 ]
[224x224x64 ]
[112x112x64 ]
[112x112x128]
[112x112x128]
[ 56x56x128]
[ 56Xx56x256 ]
[ 56Xx56x256 ]
[ 56Xx56x256 ]
[28x28x256]
[28x28x512]
[28x28x512]
[28x28x512]
[14x14x512]
[14x14x512]
[14x14x512]
[14x14x512]
[ 7x7x512]

[ 1x1x4096 ]

[ 1x1x4096 ]
[1x1x1000]

24M X

s g

150K
3.2M
3.2M
800K
1.6M
1.6M
400K
800K
800K
800K
200K
400K
400K
400K
100K
100K
100K
100K

25K
4096
4096
1000

bytes ~=
bytes ~=

Parameters

0

(3x3x3)x64
(3x3x64)x64

0
(3x3x64)x128
(3x3x128)x128
0]
(3x3x128)x256
(3x3x256)x256
(3x3x256)x256
0]
(3x3x256)%x512
(3x3x512)x512
(3x3x512)x512
0
(3x3x512)x512
(3x3x512)x512
(3x3x512)x512
0
IX7x512x4096
4096x4096
4096x1000

93MB / image
552MB (x2 for

1,728
36,864

73,728
147,456

294,912
589,824
589,824

1,179,648
2,359,296
2,359,296

2,359,296
2,359,296
2,359,296

102,760,448
16,777,216
4,096,000

(x2 for backward)
plain SGD, x4 for Adam)



Architecture: ResNet

Even deeper models: X

weight layer

Y

34, 50, 101, 152 layers

relu
\ 4 X

weight layer identity

Figure 2. Residual learning: a building block.

ResNet50 Compared to VGG:

Superior accuracy in all vision tasks
5.25% top-5 errorvs 7.1%

Less parameters
25M vs 138M

Computational complexity
3.8B Flops vs 15.3B Flops

Fully Convolutional until the last layer

He, Kaiming, et al. "Deep residual
learning for image recognition.”" CVPR.
2016.
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Deeper is better

ImageNet experiments

28.2
25.8
(152 Iayers]
A
\
\
\
\ 16.4
\
\
\
v 11.7
l 22 layers 19 layers
\\ 6.7 7.3
3.57 I I 8 layers H 8 layers shallow

ILSVRC'15  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)



The right architecture

e Finding right architectures: Active area or research

Model Params X+ 1/5-Acc (%)
Inception V3 23.8M  5.772B  78.0/93.9
Xception 22.8M  837B  79.0/94.5

Inception ResNet V2 55.8M  13.2B 80.4/95.3
ResNeXt-101 (64x4d) 83.6M 31.5B 80.9/95.6

PolyNet 92.0M 34.7B 81.3/95.8
Dual-Path-Net-131 79.5M  32.0B 81.5/95.8
Squeeze-Excite-Net 145.8M  42.3B  82.7/96.2
GeNet-2 156M — 72.1/90.4
Block-QNN-B, N=3 — — 75.7192.6
Hierarchical (2, 64) 64M — 79.7/94.8
. . PNASNet-5 (4, 216) 86.1IM  25.0B 82.9/96.1
Automated Architecture search: NASNet-A (6, 168) 88.9M 23.8B  82.7/96.2
AmoebaNet-B (6, 190) 84.0M  22.3B 82.3/96.1
; ; AmoebaNet-C (6, 168) 85.5M  22.5B 82.7/96.1
°
FEIHFO rcement learnlng AmoebaNet-A (6, 190) 86.7M  23.1B 82.8 /96.1
° evolutionary algorithms AmoebaNet-A (6,204) 99.6M  26.2B 82.8/96.2
0 =sep. 3x3
1 =sep. 5x5
2 =sep. 7X7
3 =none
4 = avg. pool
5 = max pool
6 = dil. 3x3

7= 1x7+7x1



Pre-trained models

Training a model on ImageNet from scratch takes days or weeks.

Many models trained on ImageNet and their weights are publicly
available!

Transfer learning

e Use pre-trained weights, remove last layers to compute
representations of images

e Train a classification model from these features on a new
classification task

e The network is used as a generic feature extractor

e Better than handcrafted feature extraction on natural images



Fine-tuning

Retraining the (some) parameters of the network (given enough data)

e Truncate the last layer(s) of the pre-trained network

e Freeze the remaining layers weights

e Add a (linear) classifier on top and train it for a few epochs

e Then fine-tune the whole network or the few deepest layers
e Use a smaller learning rate when fine tuning



Data Augmentation

from keras.preprocessing.image import ImageDataGenerator

image_gen = ImageDataGenerator(
rescale=1. / 255,
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal flip=True,
channel_shift_range=9,
fill_mode='nearest'

)

train_flow = image _gen.flow_from directory(train_folder)
model.fit_generator(train_flow, train_flow.n)



Adversarial Examples

+.007 X 5

: T +
¥ sign(VaJ(0,2,9)) esign(VgJ(0,x,y))
y ="'panda” “nematode” “oibbon”
w/ b7.7% w/ 8.2% w/ 99.3 %
confidence confidence confidence

Adversarial examples are often generated from white-box models, following
the gradient at a given image to maximise the loss.

Training on adversarial examples is mostly intfended to improve security,
but can sometimes provide generic regularisation.



Computer Vision with CNN

multiple
objects

Instance Segmentation Object Detection Semantic Segmentation



Example: classification + localisation

class scores

CNN n

7X7x2048
conv feature map

box coordinates

e Use a pre-trained CNN on ImageNet (ex. ResNet)

e The "localisation head" is trained seperately with regression
e Possible end-to-end finetuning of both tasks

o At test time, use both heads



Recurrent Neural Networks

They are the mainstream approach for time series data, or sequence data (like
sentences in natural language).
We can observe input/output pairs xt),y® at each time step t.

The basic idea is that of keeping a form of memory depending on the sequence of
symbols/ inputs x(),... . xt1) seen up to time t, in the form of an hidden state h(t1),
which is then combined with the input x() at time t to compute a new hidden state,
and from it the output o).

Formally, we define a dynamical system by a recurrent equation

h® = f(RED ). g)

oLIRG o orers
f‘ 2
f Unfold




Recurrent Neural Networks

Recurrent NN produce an output for each time-step, and then compute a loss
from an observed output.

Networks are trained by unfolding the graph in tfime and evaluating the
gradient with backpropagation on the unfolded graph: this is called

backpropagation through time.

cJCXC
O CRONG S
—>

Unfold % %

| 4
SN W w w W ox—
[ g L ol State
\ / \ /
N7 NS o7
U U U

SROXS nput

Figure from Deep Learning, by Goodfellow, Bengio and Courville



Recurrent Neural Networks

Deep RNN are commonly used to improve model capacity.

()
Advantages e‘

- Hidden state keeps info about the past

- Shared functions and params across time: reduce model capacity, e‘
good for generalization.
- Still powerful: RNN of finite size are Turing complete (they can 0

emulate any Turing Machine.

Downsides
- long-term dependencies tend to be forgotten in h() exponentially fast.
- Tend to have very small (or very large) gradients.

- Gradient clipping is often used.



RNN Variants

Example: use the output at th

G @ ,(@ @ orevious step
B DQRQ.
e

V |74 \

woo— 3 -
Unfold | h(

U U U U

’ @ 0 @ Figure from Deep Learning,

Goodfellow, Bengio and Courville




RNN Variants

Example: only output at the end

Figure from Deep Learning,
Goodfellow, Bengio and Courville



RNN Variants

Bidirectional RNN tackle the problem
of output dependency on the whole
input sequence, like for speech
recognition.

They have two recurrent equations,
one going forward and one backward
in time.

The graph unfolded in time is still
acyclic, hence back propagation in time
still works.

T OO-0-C
‘:eeee
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Gated Recurrent Neural Networks

A way to improve the ability of RNNs to keep a long term memory is fo use gated

RNNs. Gated units control how information is accumulated or forgotten, in an input
dependent way.

The most common gRNN is the Long-Short Term Memory (LSTM) NN.

output

The core unit is a leaky unit,
namely a node that accumulate
information linearly, with an
exponential decaying factor close
to one:

self-loop

input . input gate orget gate

S S A VA




Gated Recurrent Neural Networks

In LSTM networks, leaky units have a decay rate controlled by a forget gate f, and
modulated by the input and the hidden states. There are also input gates g and
output gates q controlling the state and the hidden layer. A)

output

sz(t) = fz-(t)sz(t_l) + g,gt)a (bi + Z Ui,j:rg-t) -+ ZWi,jhgt_l))

J J

(t) _ f f (b f 1 (t-1)
i —U(bz' "‘ZUzy Z; Zw;yha )

¢ =0 (bf+ZUfj §t wajhgt 1)

MO h( (t)) (t) s - state of the LSTM cell
P h - output of the LSTM cell
I RGN o (=) f - forget gate
-’ ( Z it Z i ) g - input gate
q - output gate



Neural Turing Machines

Another way to keep track of long term effects is to have an explicit memory,
which can be read or written.

Neural Turing Machines extend a Memory cells
NN with an array of memory cells,
and with mechanisms to read and
write on them.

Reading and writing are done via

soft addressing, namely each cell ~ Writing
is read with a certain weight, or BGchAIgn
probability, which can be a
function of the cell content
(content-based addressing).

Reading

mechanism

Y

Task network,

Soft read and write rules can be
learned during tfraining using a
SGD approach.

controlling the memory

Variants of such memory are heavily used for sequence
modelling, under the umbrella of attention mechanisms.



