
Programmazione C++ per la Fisica

Mail : ramona.lea@ts.infn.it www.ts.infn.it/~lea/cpp2018.html

Ramona Lea
Università degli studi di Trieste

Laurea Magistrale in Fisica
A.A. 2018/2019

Moodle: https://moodle2.units.it/course/view.php?id=4172
Corsi 2018/2019 - 739SM - PROGRAMMAZIONE C++ PER LA FISICA 2018

http://www.ts.infn.it/~lea/
https://moodle2.units.it/course/view.php?id=4172

 2

References

● Slides and other material:
● http://www.ts.infn.it/~lea/cpp2018.html

● Moodle UniTs

• On line resources:

http://www.learncpp.com

http://www.cplusplus.com

http://root.cern.ch

● Book
● “Programming with C++” John R. Hubbard, Schaum’s outlines

● “C++ How to Program- Fourth Edition”, by H. M. Deitel, P. J. Deitel, Prentice Hall, New
Jersey, 2003, ISBN: 0-13-038474.

● “The C++ programming language” Bjarne Stroustrup, Addison-Wesley Professional, 3
edition (1997), ISBN: 978-0201889543

● “Scientific and Engineering C++: An Introduction with Advanced Techniques and
Examples”, John J. Barton, Lee R. Nackam, Addison Wesley (1994), ISBN: 978-
0201533934

http://www.ts.infn.it/~lea/cpp2018.html
http://www.cplusplus.com/
http://root.cern.ch/

 3

Timetable and final examination

Place: here: Aula T21

• Timetable:

(almost) each Friday from 14.00 to ~17.30

● Lessons that will be missed:

● 29/03/19 : I’ll be away for a conference

● 19/04/19 : Easter break

● 26/04/19 : Physics Department closed

● Lectures structure: (a bit of) theory and (a lot of) programming will
be mixed during the afternoon

● Examination, two steps:

– “written part” coding an analysis program (at home)

– “oral part”: running and discussion of the code

Introduction

 5

Computers in Physics

●Remote control, slow control

●Data acquisition

●Data storage

●Data reduction (from raw data to observable)

●Data analysis

●Detectors simulation

●Data and information exchange

●Info's research

●Publications

 6

Linux

● Linux is an Operating System
● Linux is the kernel code

● Linux is POSIX (Portable Operating System Interface) compliant, is a Unix standardization

● Other OS are: Windows, OS-X, Android,…

● Linux kernel + additional software to interface to humans for any needed
task

• Many flavors including:

‒Debian

‒Slackware

‒RedHat (Fedora Core, Enterprise)

‒Suse

‒Mandrake

‒Gentoo

‒Ubuntu

‒Scientific Linux

 7

X-interface

XFree86 is the open source X-windows manager in most (all?)
distributions

• ... then we need a “windows manager”

– twm
– fwm

– ...

• ... or even better a “desktop manager”

– ICE

– KDE

– GNOME

– ...

 8

Basic interface, the shell

● OK, with X windows we can do many things but the basic interface
to the OS is the shell

● The shell is a command line interpreter, it reads the user input and
execute the given command(s)

● The “command prompt” is the line where the user writes
command

● The shell (usually) runs inside a terminal window

● Most common shells:

‒ sh: Bourne Shell

‒ csh: C Shell

‒ ksh: Korn Shell

‒ tcsh: Enhanced C Shell

‒ bash: Bourne Again Shell

 9

The file system

● The file system represents the way information are stored on the
mass memory

● Where are data? in a hierarchical organization of directories and
files, a “tree”

● The hierarchical tree develop from a “root”, the name of the “root”
is a single character: /

● Directories are files which contain other files and directories;
directories are files which contain the infos of their content, the
“filenames”

● The “filenames” are the names of the files in a directory. “/” is not
allowed as character in the filenames

 10

The Linux file system

/ -

|- /bin -- all basics executable

|- /boot -- files needed to boot the system

|- /home -- users home directories

|- /usr -- everything needed by a user

|- /usr/local binaries, libraries, include files etc. etc. etc.

|- /usr/bin

|- /usr/lib

|- /usr/include

|- /include -- system headers files

|- /lib -- system libraries and driver modules

|- /etc -- system configuration files

|-..........

Basic shell commands and scripting

http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html

 12

Bash

● Bash is an acrimonious for Bourne-Again shell from the classic
Bourne shell

● Bash is the “de facto” standard for shell scripting on many UNIX
flavors

● Possible things you can do:
● I/O Redirection

● Pipe

● Expansion

● Define variables

● cp, mv, ls, mkdir, cd, pwd

● Write some script to let the computer do boring operations

 13

Learning bash

Some basic commands:

● create a new directory (mkdir)

● enter the directory (cd)

● use a text editor (vi, nano, emacs...) to create a script that will
print out on the STDOUT a sentence (any)

● run the script and redirect the STDOUT to a file (> or >>)

● run again and redirect to a file with a different name

● change the filenames adding the string “_test.txt” (pippo.txt ->
pippo.txt_text.txt , ...) using a loop in a single line command (bash
commands: for, do, done, mv,...)

 14

How to...

● ... move in the filesystem?

command “cd”

● ... list directory content?

command “ls”

./ means “this directory”

../ means “the upper directory”

● get help for a command: usually

command –h (command --help)

or

man command (“man” stands for manual)

● ... look inside a file?

cat filename

less filename

more filename

 15

Some other commands

● cp - copy files and directories

cp [OPTION]... [-T] SOURCE DEST

cp [OPTION]... SOURCE... DIRECTORY

-f, -i, -r

● mv - move (rename) files

mv [OPTION]... [-T] SOURCE DEST

mv [OPTION]... SOURCE... DIRECTORY

-f, -i

● ls - list directory contents

ls [OPTION]... [FILE]...

-a, -d, -h, -l

● mkdir - make directories

mkdir [OPTION] DIRECTORY...

-p

● pwd - print name of current/working directory

pwd [OPTION]

 16

Basics bash commands

Under unix any files can be:

● r – read

● w – written

● x – executed

by:

● o – others, anybody, the world

● g – group

● u – user only, owner of the file

http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html

ramona@ramona-SVS13A1X9ES~$ ls -lrth /home/ramona/>filelist.txt

prompt command options I/O instruction

 17

Basics bash commands

ramona@ramona-SVS13A1X9ES ~ $ ls -lrth ~/pippo

-rw-r--r-- 1 ramona ramona 11 set 17 2014 /home/ramona/pippo

 18

Basics bash commands

ramona@ramona-SVS13A1X9ES ~ $ ls -lrth ~/pippo

-rw-r--r-- 1 ramona ramona 11 set 17 2014 /home/ramona/pippo

owner perm
issions

group perm
issions

other perm
issions

username

group name

size dateType of the elem
ent

Type of element: d (directory), l (symbolic link), - (file)
Permissions: r = read; w = write; x = execute

 19

Basics bash commands

ramona@ramona-SVS13A1X9ES ~ $ ls -lrth ~/pippo

-rw-r--r-- 1 ramona ramona 11 set 17 2014 /home/ramona/pippo

owner perm
issions

group perm
issions

other perm
issions

username

group name

size dateType of the elem
ent

Type of element: d (directory), l (symbolic link), - (file)
Permissions: r = read; w = write; x = execute

How to change permissions : chmod

Symbolic Notation

chmod a=rwx namefile

a (all)
u (owner)
g (group)
o (other users)

Octal Notation

chmod 777 namefile

7 corresponds to rwx
6 corresponds to rw
5 corresponds to rx
4 corresponds to r

3 corresponds to wx
2 corresponds to w
1 corresponds to x
0 access denied

 20

Basics bash commands

ramona@ramona-SVS13A1X9ES ~ $ ls -lrth ~/pippo

-rw-r--r-- 1 ramona ramona 11 set 17 2014 /home/ramona/pippo

owner perm
issions

group perm
issions

other perm
issions

username

group name

size dateType of the elem
ent

Type of element: d (directory), l (symbolic link), - (file)
Permissions: r = read; w = write; x = execute

How to change ownership: chown

chown owername:groupname filename
chown owername filename

 21

I/O Redirection

There are three types of file descriptors:

1)standard input: stdin

2)standard output: stdout (1)

3)standard error: stderr (2)

command < file.in

The input is taken from file.in instead of from stdin

command > file.out

The output is redirected from stdout to file.out (file.out, if present, is
overwritten)

command >> file.out

The output is redirected from stdout to file.out (if file.out is present, the
output is added at the end of the file)

 22

Pipe

● command1 | command2

command1 is executed and the stdout of command1 is used as
stdin of command2

● Multiple commands can be chained

cat *.txt | sort | uniq > result-file

Sorts the output of all the .txt files and
deletes duplicate lines

finally saves results to "result-file"

 23

Executables

● Any executables is run calling its name:

/home/lea/test.exe

/usr/local/bin/mozilla

./my_print

● So why do we call “ls, cat, etc.” and not “/bin/ls,
/bin/cat, /bin/etc.”?

● bash uses ENVIRONMENTAL VARIABLES to make life easier

 24

Bash environmental variables

● If full path is not given, any executables is searched in the
directories listed in the environmental variable called “PATH”.

● How to print an environmental variable?

ramona@ramona-HP-ZBook-14u-G5:~$ echo $PATH

/usr/local/sbin:/usr/local/bin:/usr/sbin:/
usr/bin:/sbin:/bin:/usr/games:/usr/local/
games

● Directories are separated by colons “:”

● How to add a directory?

export PATH=/home/ramona/bin:$PATH

 25

Bash environmental variables

● Libraries contain code and data that provide services to independent
programs. This encourages the sharing and changing of code and data in a
modular fashion, and eases the distribution of the code and data. Library
files are not executable programs.

● A shared library or shared object is a file that is intended to be shared by
executable files and further shared objects files. Modules used by a program
are loaded from individual shared objects into memory at load time load or
run time

● Shared libraries are searched at load time or run time in the directories listed
in the environmental variable called “LD_LIBRARY_PATH”.

● How to print shared libraries?

ramona@ramona-SVS13A1X9ES ~ $ echo $LD_LIBRARY_PATH
● directories are separated by colons “:”

● How to add a directory?

export LD_LIBRARY_PATH=/home/ramona/lib:$LD_LIBRARY_PATH

 26

Bash scripting

● Bash script: list of bash commands written in a text file usually
having suffix “.sh”

● Scripts can be run with:

● prompt> source script.sh

● prompt>.script.sh (within current shell session)

● prompt>./script.sh (but first you must make script.sh executable) it
opens a new session

 27

Bash scripting

● Bash script: list of bash commands written in a text file usually
having suffix “.sh”

● Scripts can be run with:

● prompt> source script.sh

● prompt>.script.sh (within current shell session)

● prompt>./script.sh (but first you must make script.sh executable) it
opens a new session

● Minimal bash script:
● edit a new file, let’s say test.sh and write:

#!/bin/bash

echo “This is test file!”

● run it with in the three possible ways.

 28

Bash scripting

● Now change it to:

#!/bin/bash

cd /tmp

pwd

echo “This is test file!”
● run it with in the three possible ways.

● Now create, inside the $HOME/test folder the file test.sh

#!/bin/bash

echo “This is test2 file!”

● Make it executable:

chmod +x test.sh

● In the shell type:

export PATH=$PATH:~/test

● Now you should be able to run your script just typing

|prompt> test.sh

 29

Variables

The name of the variable is the container of its value, the memorized data. The
reference to this value is called “substitution”

bash ~ $ variabile=23

bash ~ $ echo variabile

variabile

bash ~ $ echo $variabile

23

Some particular variables:

bash ~ $ $RANDOM

Contains a pseudo-casual number

In a script:

$0, $1, $2,... Positional parameters

$@ All the positional parameters (but $0)

$# Numbers of Positional parameters (but $0)

 30

Expansions

After the “words recognition”, the Bash interpreter does the
expansions

Order of expansions:

brace expansion, tilde expansion, parameter, variable and arithmetic expansion
and command substitution (done in a left-to-right fashion), word splitting, and
pathname expansion.

Only brace expansion, word splitting, and pathname expansion can
change the number of words of the expansions; the other expands in
a single world

 31

Expansions

● Brace expansion

bash ~ $ echo a{d,c,b}e

ade ace abe

bash ~ $ echo {x,y,z}

x y z

● Expansion can be nested:

bash ~ $ echo A{b{1,2,4},c,g}FFF

Ab1FFF Ab2FFF Ab4FFF AcFFF AgFFF

 32

Special Characters

● ? any character (one and only one character)

bash ~ $ls .b?shrc

bash ~ $ls .b?shr?c

● * any character, even none

bash ~ $ls .b*

bash ~ $ls .b*shrc

bash ~ $ls .b*rc

bash ~ $ls .b*r*c

 33

Loop

for arg in [list]

do

command(s)...

done

Examples:

for planet in Mercury Venus Earth ;

do echo $planet ; done

for i in $(seq 1 100); do echo $i;

done

 34

Some other commands

grep - print lines matching a pattern

grep [OPTIONS] PATTERN [FILE...]

-i Ignore case distinctions in both the PATTERN and the input files.

-v Invert the sense of matching, to select non-matching lines.

Other options:

man grep or grep –help

wc - print newline, word, and byte counts for each file

wc [OPTION]... [FILE]…

-c print the byte counts

-l print the newline counts

-w print the word counts

tr - translate or delete characters

tr [OPTION]... SET1 [SET2]

SETs are specified as strings of characters.

-d delete characters in SET1, do not translate

-s replace each input sequence of a repeated character that is listed
in SET1 with a single occurrence of that character

 35

Command grep
Example: How to filter out from the command output or from a physical file the lines containing the certain pattern?

Suppose you have this file:

TEST Test test 11test test22

test TEST Test 11test test22

TeST1 TEST1 TESt1 TEST1 TEST1

test TEST Test 11test test

TeST2 TEST2 TEsT2 TEST2 tEST2

With grep command you can do lots of stuff like:

print all lines in the file containing pattern "test"

grep "test" grepExample.txt

print all lines in the file containing pattern "test", and the numbers of those lines:

grep -n "test" grepExample.txt

inverse search: print all lines in the file which does NOT contain the pattern "test"

grep -v "test" grepExample.txt

case insensitive search: print all lines in the file which contain the pattern "test" or "TEST" or
"tEsT", etc.

grep -i "test" grepExample.txt

beginning of the line: print all lines in the file which contain the pattern "test" ONLY at the
beginning of the line

grep "^test" grepExample.txt # => use anchor ^

end of the line: print all lines in the file which contain the pattern "test" ONLY at the end of
the line

grep "test$" grepExample.txt # => use anchor $

 36

Command grep
word begins with the pattern: print all lines in the file which contain the word which begins with the
pattern "test"

grep "\<test" grepExample.txt

word ends with the pattern: print all lines in the file which contain the word which ends with the
pattern "test"

grep "test\>" grepExample.txt

exact match: print all lines in the file which contain the word which is exactly the same to the
pattern "test"

grep "\<test\>" grepExample.txt

OR: print all lines in the file which contain either the pattern "11test" or "test22"

grep "11test\|test22" grepExample.txt # => within grep, OR is represented with \|

AND: print all lines in the file which contain both the pattern "11test" and "test22"

grep "11test" grepExample.txt | grep "test22" # => within grep, there is no built-in AND operator, but
piping saves the day

quiet grep: if you are just interested if a file contains the certain pattern, without actual printout

grep -q "11test" grepExample.txt && echo "yes, file contains pattern 11test" || echo "no, file doesn't
contain pattern 11test"

filter out of lines with the pattern "test" to another file:

grep "test" grepExample.txt 1> grepOutput.log

cat grepOutput.log

 37

Command awk

Example: How to select specified fields (columns), either from a file or from a command output?

Try to compare the output of

date

date | awk '{print $4}'

date | awk '{print $6}'

To get the entry from the last column, you can also use:

date | awk '{print $NF}'

The default field separator in awk is blank character. If you
want to use another field separator, for instance ":", use:

date | awk 'BEGIN {FS=":"}{print $<column-number>}'

 38

Processes

Two most frequently used commands to handle running processes are top and ps

The top program provides a dynamic real-time view of a running system. It can display
system summary information as well as a list of processes or threads currently being
managed by the Linux kernel. The types of system summary information shown and the
types, order and size of information displayed for processes are all user configurable and that
configuration can be made persistent across restarts.

Quit top: type q

The ps displays information about a selection of the active processes. If you want a repetitive
update of the selection and the displayed information, use top(1) instead.

To see every process on the system using standard syntax:

ps -ef

If you are not the only user of the computer don’t be afraid to use ps with grep (with a pipe)

ps – ef | grep lea

If you want to kill this particular job, you can do

kill process_number

If the program do not stop use rude force

kill -9 process_number

 39

Command find

How to find files or directories on your local hardisk?

Usage: find <where> <what> <optionally-do-something-on-
what-you-have-found>

Example: Find all files in the specified directory

find <path-to-directory> -type f

Example: Find all files with an extension “.pdf” in the specified directory

find <path-to-directory> -type f -name "*.pdf"

Example: Find all files with an extension “.pdf” larger than 10k in the specified
directory

find <path-to-directory> -type f -name "*.pdf" -size
+10k

Editors

 41

File (text) editors

● xemacs

● emacs

● eclipse

● vi/vim

● nano/pico

● office

● word

● more than simple editors

● http://en.wikipedia.org/wiki/Comparison_of_text_editors

in principle any editor is good but...

 42

Editors

● Choose an editor which is good for coding (nedit or gedit ok, there
exists also editors with embedded C++ compiler, I like emacs, even if is
not user-friendly)

● A typical editor designed for coding has a few features that make
programming much easier, including:
● Line numbering. Line numbering is useful when the compiler gives us an error. A

typical compiler error will state “error, line 64′′. Without an editor that shows line
numbers, finding line 64 can be a real hassle.

● Syntax highlighting and coloring. Syntax highlighting and coloring changes the color
of various parts of your program to make it easier to see the overall structure of
your program.

● An unambiguous font. Non-programming fonts often make it hard to distinguish
between the number 0 and the letter O, or between the number 1, the letter l
(lower case L), and the letter I (upper case i). A good programming font will
differentiate these symbols in order to ensure one isn’t accidentally used in place of
the other.

● Indentation capabilities. C/C++ do not care about spaces and code text formatting,
but humans and source code management programs do!!

 43

Editors war

https://xkcd.com/378/

Exercises: Bash

 45

Exercises (Esercitazione0)

● Exercise 1: (mkdirs.sh)
● Write a script that creates five directories named calculation_?, where ? is a number.

● Exercise 2: (parent_script.sh, child_script.sh) → Nested
script

● Write a parent_script.sh that executes the child_script.sh

● Write a child_script.sh that prints out numbers from 0 to 9

● Exercise 3 : (hello_world.sh, hello_world_redirect_1.sh,
hello_world_redirect_2.sh)

● Create a "Hello world"-like script. Copy and alter your script to redirect output to a file
using >.

● Alter your script to use >> instead of >. What effect does this have on its behavior?

● Exercise 4 : (generaz_num.sh)

● Use seq 1 75 > numbers.txt to generate a file containing a list of numbers. Use
the less and more commands to look at it, then use grep to search it for a number.

Use a wc to get an exact the number of lines in the file

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

