
Cyber-Physical Systems

Laura Nenzi
Università degli Studi di Trieste

II Semestre 2018

Lecture 2: Continuous Modeling

Examples of type of modeling that for CPS components:

Ø Modeling physical phenomena – differential equations

Ø Feedback control systems – time-domain modeling

Ø Modeling modal behavior – FSMs, hybrid automata, …

Ø Modeling sensors and actuators – models that help with calibration, noise elimination,

Ø Modeling hardware and software – capture concurrency, timing, power, …

Ø Modeling networks – latencies, error rates, packet loss,

Models: abstractions of system dynamics

Dynamic Systems

• Most natural model for describing most physical systems

• Continuous/discrete systems that continuously evolve over time

• It is represents by equation that involve the rates of change of quantities

• Quantities describe the state of the phenomena, modeled as state variables
• Pressure, Temperature, Velocity, Acceleration, Current, Voltage, etc.

• Could include algebraic relations between state variables

Differential Equation

Simple example

After drinking a cup of coffee, the amount C of caffeine in person’s body follows the
differential equation:

dC

dt
= �↵C

<latexit sha1_base64="8Kfir8tPWQ3Lv9AmxMebLBdiluk=">AAACBXicbVDLSsNAFJ3UV62vqEtdDBbBjSVRQTdCsRuXFewDmlAmk0k7dPJg5kYoIRs3/oobF4q49R/c+TdO2yy09cC9HM65l5l7vERwBZb1bZSWlldW18rrlY3Nre0dc3evreJUUtaisYhl1yOKCR6xFnAQrJtIRkJPsI43akz8zgOTisfRPYwT5oZkEPGAUwJa6puHTiAJzXzcyHWDHF/jU+wQkQwJbvTNqlWzpsCLxC5IFRVo9s0vx49pGrIIqCBK9WwrATcjEjgVLK84qWIJoSMyYD1NIxIy5WbTK3J8rBUfB7HUFQGeqr83MhIqNQ49PRkSGKp5byL+5/VSCK7cjEdJCiyis4eCVGCI8SQS7HPJKIixJoRKrv+K6ZDoWEAHV9Eh2PMnL5L2Wc0+r9l3F9X6TRFHGR2gI3SCbHSJ6ugWNVELUfSIntErejOejBfj3fiYjZaMYmcf/YHx+QMMRJb8</latexit>

C(t) = C0e
�at

<latexit sha1_base64="zOUJOfu547fDg71qXU3pQDBdbfY=">AAAB/nicbVDLSsNAFJ3UV62vqLhyM1iEurAkKuhGKHbjsoJ9QBvDZDpph04mYeZGKKHgr7hxoYhbv8Odf+P0sdDWAxcO59zLvfcEieAaHOfbyi0tr6yu5dcLG5tb2zv27l5Dx6mirE5jEatWQDQTXLI6cBCslShGokCwZjCojv3mI1Oax/IehgnzItKTPOSUgJF8+6CKS3CCr6u+gxl+yE4xwTDy7aJTdibAi8SdkSKaoebbX51uTNOISaCCaN12nQS8jCjgVLBRoZNqlhA6ID3WNlSSiGkvm5w/wsdG6eIwVqYk4In6eyIjkdbDKDCdEYG+nvfG4n9eO4Xwysu4TFJgkk4XhanAEONxFrjLFaMghoYQqri5FdM+UYSCSaxgQnDnX14kjbOye1527y6KlZtZHHl0iI5QCbnoElXQLaqhOqIoQ8/oFb1ZT9aL9W59TFtz1mxmH/2B9fkDNF6TFA==</latexit>

The state of the system is characterized by state variables, which describe the system. The rate of change is
(usually) expressed with respect to time

Order Differential Equation
All derivatives are with respect to single independent variable, often representing time.

Order of ODE is determined by highest-order derivative of state variable function appearing
in ODE

ODE with higher-order derivatives can be transformed into equivalent first-order system.

Order Differential Equation

Position !
Velocity "

Force #

Friction $"

Newton’s law of motion: # = &'()
'*(+ $" ; " =

')
'*

u Let ! represent a set representing time instants, i.e. ! ⊆ ℝ$%

u Input Signal: Function & from ! → ℝ
� Input signal is assumed to be continuous or piecewise-continuous

u Given an initial state ()%, +%) and an input signal &(-), the execution of the system
is defined by state-trajectories) - and + - (from ! to ℝ) that satisfy the initial-
value problem:

�) 0 =)%; + 0 = +%
�)̇ = + - ; +̇ = 2 3 456 3

7

Executions of Car

10

Suppose ∀": $ " = 0, () = 5 m, ,) = 20 m/s, 0 = 1000kg, 4 = 5056/0
u Then, we need to solve:

� (0 = 5; , 0 = 20
� (̇ = ,; ,̇ = − :;

<

u Solution to above differential equation (solve for , first, then ():

u , " = ,)=>
?@
A; (" = <;B

: 1 − =>
?@
A

u Note, as " → ∞, , " → 0, and (" → <;B
:

Sample Execution of Car

11

Sample Execution of Car with constant force

12

u Compute solution using Simulink/Matlab/Breach

u Set ! of real-valued input variables

u Set " or real-valued output variables

u Set # of real-valued (continuous) state variables

u Initialization !$%& specifying a set #'of initial values for states

u Dynamics: for each state variable, (, a real valued expression) over ! and #

u Output Function: for each output variable, *, a real valued expression ℎ over ! and #.

Continuous-Time Component Definition

13

u Convention: ! = #$, #&, … #(,) = (+$, +&, … , +,)
u Given an input signal .: 0 → ℝ, an execution consists of a differentiable

state signal ! t , and an output signal) 4 , such that:
1. ! 0 ∈ 9:
2. For each output variable + and time t, + 4 = ℎ . 4 , # 4
3. For each state variable #, <<= # 4 = >(. 4 , # 4)

Execution Definition

14

Input u(t) Output y(t)x(0) = x0
<latexit sha1_base64="nHmN0XbWEwdjn5MZpRCp/KKoy9U=">AAAB8nicbVBNSwMxEM36WetX1aOXYBHqpeyqoBeh6MVjBfsB26Vk02wbmk2WZFZalv4MLx4U8eqv8ea/MW33oK0PBh7vzTAzL0wEN+C6387K6tr6xmZhq7i9s7u3Xzo4bBqVasoaVAml2yExTHDJGsBBsHaiGYlDwVrh8G7qt56YNlzJRxgnLIhJX/KIUwJW8ke44p7hGzzqut1S2a26M+Bl4uWkjHLUu6WvTk/RNGYSqCDG+J6bQJARDZwKNil2UsMSQoekz3xLJYmZCbLZyRN8apUejpS2JQHP1N8TGYmNGceh7YwJDMyiNxX/8/wUousg4zJJgUk6XxSlAoPC0/9xj2tGQYwtIVRzeyumA6IJBZtS0YbgLb68TJrnVe+i6j1clmu3eRwFdIxOUAV56ArV0D2qowaiSKFn9IreHHBenHfnY9664uQzR+gPnM8fpW+PiA==</latexit>

!̇ = > !, @
) = ℎ(!, @)

u There exists at least one solution !(#) if the function % is continuous

u Definition of continuity uses notion of distance between points
� Euclidean distance: & !, (= ! − (+ = ,- − .- + + ⋯+ ,1 − .1 +

u % is uniformly continuous if for all 2 > 0, there exists a 5 > 0, such that for all
!, (∈ ℝ1, if ! − (+ < 5, then % ! − % (+ < 2.

u Example when solution does not globally exist:

�
9:
9; = <1 if x = 0

0 otherwise

Existence

17

u Solution to initial value problem is unique if ! is Lipschitz continuous
u Lipschitz-continuity is a stronger version of continuity: upper bounds how fast a function can change
u Function ! is Lipschitz-continuous if there exists a constant " (called the Lipschitz constant) such that:

∀$, & ∈ ℝ): ! $ − ! & ≤ " $ − &
u Examples:

� Linear functions (e.g. -. − 3-0) are Lipschitz continuous
� Functions: -0, - are not Lipschitz continuous over ℝ)

u Can restrict 1 and 2 to some bounded and closed set such that ! is piecewise-continuous and Lipschitz to
get unique solutions over such compact domains

u Rely on numerical integration schemes/solvers to obtain solutions
� ode45, ode23, ode15, etc.

Uniqueness

18

Time Invariant System
The system is time invariant because the output does not depend on the particular
time the input is applied.

The underlying physical laws themselves do not typically depend on time.

u Equation of simple car dynamics can be written compactly as:
"̇
#̇ = 0 1

0 −(/*
"
+ 0

1 [-]

u Letting / = 0 1
0 −(/* , 1 = 0

1 , we can re-write above equation in the
form:

u 2̇ = /2 + B4, where 2 = " # , and 4 = -

Linear Systems

21

u Linear components model linear systems
� ! is of the form "#$# + "&$& +⋯+ "($(or compactly, ! = *+
� ℎ is of the form -#.# + -&.& +⋯+ -/./ or compactly, ℎ = 01

u Linear systems have many nice properties:
� Many analysis methods in the frequency domain (using Fourier/Laplace transform

methods)

� Superposition principle (net response to two or more stimuli is the sum of responses to
each stimulus)

Linear Components

22

u Autonomous linear system has no inputs: "̇ = $"

u Solution of autonomous linear system can be fully characterized:
� " % = &'(")
� Computing &' is easy if $ is a diagonal matrix (non-zero elements are only on the

diagonal)

u For a linear system with exogenous inputs?
� * % = &'(*) + ∫)

(&' (-. /0 1 21

u In practice, numerical integration methods outperform matrix exponential

Solutions to Linear Systems

23

State-Space representation

24

"̇ = $ ", &
' = ℎ(", &)

Example:
Convert

Ø It is numerically efficient to solve
Ø It can handle complex systems
Ø It allows for a more geometric understanding of dynamic systems
Ø It forms the basis for much of modern control theory

+̇ = , -
,̇ = . - − 0, -

1

u Property capturing the ability of a system to return to a quiescent state after
perturbation
� Stable systems recover after disturbances, unstable systems may not
� Almost always a desirable property for a system design

u Fundamental problem in control: design controllers to stabilize a system

Stability of Systems

25

u Problem: Inverted Pendulum on a moving cart is inherently
unstable, aim: keep it upright

u Solution Strategy: Move cart in direction in the same direction
as the pendulum’s falling direction

u Design problem: Design a controller to stabilize the system by
computing velocity and direction for cart travel

u System "̇ = $ " with f Lipschitz continuous
u Equilibrium point when $ " is zero (say "∗)
u Equilibrium point "∗ is Lyapunov-stable if:

� For every ' > 0,
� There exists a * > 0, such that

• if " 0 − "∗ < *, then,
• for every . ≥ 0, we have " . − "∗ < '

Lyapunov stability

26

"∗

*-ball

"(0)

'-ball

Solutions starting *close from equilibrium point
must remain close (within ') forever

u System "̇ = $ "
u Equilibrium point "∗ is asymptotically-stable if:

� "∗ is Lyapunov-stable +
� There exists & > 0 s.t. if " 0 − "∗ < &, then lim.→0‖" 2 − "∗‖ = 0

Asymptotic Stability

27

Solutions not only remain close, but also converge to the equilibrium

Solutions not only converge to the equilibrium, but in fact converge at least as
fast as a known exponential rate

� All stable linear systems are exponentially stable
� This need not be true for nonlinear systems!

Exponential Stability

u System "̇ = $ "
u Equilibrium point "∗ is exponentially-stable if:

� "∗is asymptotically stable +
� There exist & > 0, * > 0 s.t. if " 0 − "∗ < -, then for all . ≥ 0:

" . − "∗ ≤ & " 0 − "∗ 2345

Bounded-Input-Bounded-Output (BIBO) stability

29

If the output signal is bounded for all input signals that are bounded.

Example:

� ! 0 = !$; % 0 = %$
� !̇ = % ' ; %̇ =) * +,- *

.

