Acid	Conj. Base	pKa	Comment
$\begin{aligned} & \mathrm{SO}_{3} / \mathrm{FSO}_{3} \mathrm{H} / \mathrm{SbF}_{5} \\ & \mathrm{HF} / \mathrm{SbF}_{5} \\ & \mathrm{~F}_{3} \mathrm{CSO}_{3} \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{SbF}_{6}- \\ & \mathrm{SbF}_{6}^{-} \\ & \mathrm{F}_{3} \mathrm{CSO}_{3}- \end{aligned}$	-??	Super Acids all too strong to measure
HClO_{4}	$\mathrm{ClO}_{4}{ }^{-}$	-10	
HI	I^{-}	$\stackrel{\circ}{\circ}-10$	
	$\mathrm{R}^{\stackrel{H}{C}} \stackrel{+}{\mathrm{C}}=\stackrel{0}{0} .$		protonated aldehydes
$\stackrel{0}{0}$ © $\mathrm{H}_{2} \mathrm{SO}_{4}$	HSO_{4}^{-}	$\bigcirc-9$	sulfuric acid
HBr	Br^{-}	-9	hydrobromic acid
$\begin{gathered} \mathrm{OR}^{\prime} \\ \mathrm{R}-\mathrm{C}^{\mathrm{C}} \stackrel{\mathrm{O}}{\mathrm{O}}+\mathrm{H} \end{gathered}$	$\begin{gathered} \mathrm{OR}^{\prime} \\ \mathrm{R}-\stackrel{\mathrm{C}}{\mathrm{C}}=\stackrel{0}{0}= \end{gathered}$	-7	protonated esters
HCl	Cl^{-}	-7	hydrochloric acid
	$\begin{gathered} \mathrm{OH} \\ \mathrm{~B}^{\mathrm{C}}=\stackrel{0}{0} \cdot \end{gathered}$	-7	protonated carboxylic acids
		-7 to -6	protonated ketones
		-7	sulfonic acids
	${ }^{x}$	-6	protonated phenols
$\mathrm{R}^{-!^{+}+{ }_{+}^{+}}$	$R^{\circ} \ddot{o}_{R^{\prime}}$	-3	protonated ethers
$\begin{gathered} \mathrm{H} \\ \mathrm{I}_{+}^{+} \\ \mathrm{R}^{+\stackrel{0}{4}_{\mathrm{H}}} \end{gathered}$	$R^{\circ} \ddot{O}_{\cdot}^{\cdot}$	-2	protonated alcohols
$\mathrm{H}_{3} \mathrm{O}^{+}$	$\mathrm{H}_{2} \mathrm{O}$	-1.74	hydronium; $\mathrm{H}^{+}(\mathrm{aq})$
HNO_{3}	$\mathrm{NO}_{3}{ }^{-}$	-1.4	nitric acid
HSO_{4}^{-}	$\mathrm{SO}_{4}{ }^{2-}$	1.99	second H of sulfuric acid
H-F	F^{-}	3.18	hydrofluoric acid
HNO_{2}	$\mathrm{NO}_{2}{ }^{-}$	3.3	nitrous acid
		-6 to +5	anilines; pKa very sensitive to ring substituents

pKa
18-28
anilines; pKa Depends on substitution. Low because it has a conjugated base. Plain aniline has $\mathrm{pKa}=25$

35 benzyl hydrogens; conjugated base
hydrogen gas is a weak acid
allyl hydrogens; conjugated conjugate base.

36 amines: $\mathrm{NH}_{3} \mathrm{pKa}={ }_{38}$

43 vinyl hydrogens; electrons in unconjugated sp^{2} orbital

44 phenyl hydrogens; electrons in unconjugated sp^{2} orbital, not part of aromatic π sextet
cyclopropane H; more vinyl than sp^{3} hybrid (see below.)
methane and hydrogens on sp^{3} carbons
cyclohexyl; weakest acid on this table. $s p^{3}$ conj. base

