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Introduction

Algebraic Geometry is the field of mathematics that studies the sets of so-
lutions of systems of algebraic equations, i.e. of equations given by polynomials.
The origins of Algebraic Geometry go back to the Ancient Babylonians and Greeks
and, since them, this fascinating subject has attracted mathematicians of every
times and countries. During the 19th and the beginning of last century, important
progress has been made, mainly by the so-called Italian School of Algebraic Ge-
ometry. Then, starting from 1950, the subject was completely refounded, taking
into account the advent of Modern Algebra. This work was initiated by Oscar
Zariski (1899-1986), a mathematician of Russian origin, who studied in Italy and
then moved to the USA, and pushed on mainly by the French mathematician
Alexander Grothendieck (1928-2014). In the last fifty years, important results
and answers to classical problems have been given.

An asterisk * near an exercise denotes that it is quoted in the text.
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1. A�ne and projective space.

Let K be a field. By definition, the a�ne space of dimension n over K is simply
the set Kn : on it, the additive group of Kn acts naturally by translation. The
a�ne space will be denoted An

K or simply An. So the points of An
K are n�tuples

(a1, . . . , an), where ai 2 K for i = 1, . . . , n.
The natural action of Kn on An

K , is the map t defined by

t : Kn ⇥ An
K �! An

K

((x1, . . . , xn), (a1, . . . , an)) �! (x1 + a1, . . . , xn + an).

Note that: t(0, P ) = P, where 0 is the zero vector of Kn and P 2 An
K , and

t(w, t(v, P )) = t(v + w,P ), for v, w 2 Kn and P 2 An
K .

The action of a vector v on a point P is “ by translation”. The point t(v, P )
will be denoted P + v. The action t is faithful and transitive: this means that,
for any choice of P,Q 2 An

K , there exists one and only one v 2 V such that
Q = t(v, P ): for this vector, the notation Q� P will be sometimes used.

Let Q 2 An
K be a point, and W ⇢ Kn be a vector subspace. We define the

a�ne subspace of An
K passing through Q with orienting space W (or of direction

W ) as follows:

S = {P 2 An
K | P = Q+ w,w 2 W}.

S can be seen as “W translated in Q”. Note that a�ne subspaces of An
K do not

necessarily pass through the origin. Two a�ne subspaces of An with a common
orienting space are called parallel. If dimW = m, we also define dimS = m. The
subspaces of dimension 1 are called lines, those of dimension 2 planes, those of
dimension n� 1 (or of codimension 1) hyperplanes.

The points of an a�ne subspace of An can be characterized as solutions of a
system of equations. These are of two types:
a) Parametric equations of a subspace.

Let S be the subspace passing through Q(y1, . . . , yn) with orienting space W , and
let w1, . . . , ws be a basis of W , with wi = (wi1, . . . , win). Then P (x1, . . . , xn) 2 S
if and only if there exist t1, . . . , ts 2 K such that

(x1, . . . , xn) = (y1, . . . , yn) + t1w1 + . . .+ tsws,

or equivalently 8
><

>:

x1 = y1 + t1w11 + . . .+ tsws1

x2 = y2 + t1w12 + . . .+ tsws2

. . .

. . .

As (t1, . . . , ts) varies in Ks we get in this way all points of S.
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For example, if S is the line through Q of direction W = hwi, with w =
(b1, . . . , bn), then 8

><

>:

x1 = y1 + tb1
x2 = y2 + tb2
. . .
xn = yn + tbn

are parametric equations of S.
b) Cartesian equations of a subspace.

Let s = dimW , W ⇢ Kn, a vector subspace. Then W is the set of vectors
whose coordinates are solutions of a homogeneous linear system of rank n � s in
n indeterminates z1, . . . , zn:

( a11z1 + . . .+ a1nzn = 0
. . .
an�s,1z1 + . . .+ an�s,nzn = 0.

Hence P (x1, . . . , xn) belongs to S if and only if P = Q+ w, where w is a solution
of the previous system, i.e. if and only if the following equations are satisfied:

8
<

:

a11(x1 � y1) + . . .+ a1n(xn � yn) = 0
. . .
an�s,1(x1 � y1) + . . .+ an�s,n(xn � yn) = 0

i.e. (x1, . . . , xn) is a solution of the system:

8
<

:

a11x1 + . . .+ a1nxn + b1 = 0
. . .
an�s,1x1 + . . .+ an�s,nxn + bn

= 0

where we have put bi = �(ai1y1 + . . .+ ainyn), for i = 1, . . . , n� s. For example a
hyperplane is represented by a unique linear equation of the form:

a1x1 + . . .+ anxn + b = 0.

Let V be a K�vector space, of dimension n + 1. Let V ⇤ = V \ {0} be the
subset of non–zero vectors. The following relation in V ⇤ is an equivalence relation
(relation of proportionality):

v ⇠ v0 if and only if 9� 6= 0,� 2 K such that v0 = �v.
The quotient set V ⇤/⇠ is called the projective space associated to V and

denoted P(V ). The points of P(V ) are the lines of V (through the origin) deprived
of the origin. In particular, P(Kn+1) is denoted Pn

K (or simply Pn) and called the
numerical projective n-space. By definition, the dimension of P(V ) is equal to
dimV � 1.
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There is a canonical surjection p : V ⇤ ! P(V ) which takes a vector v to its
equivalence class [v]. If (x0, . . . , xn) 2 (Kn+1)⇤, then the corresponding point of
Pn is denoted [x0, . . . , xn]. So [x0, . . . , xn]=[x0

0, . . . , x
0
n] if and only if 9� 2 K⇤ such

that x0
0 = �x0, . . . , x0

n = �xn.
If a basis e0, . . . , en of V is fixed, then a system of homogeneous coordinates

is introduced in V , in the following way: if v = x0e0 + . . .+ xnen, then x0, . . . , xn

are called homogeneous coordinates of the corresponding point P =[v]= p(v) in
P(V ). We also write P [x0, . . . , xn]. Note that homogeneous coordinates of a point
P are not uniquely determined by P , but are defined only up to multiplication
by a non–zero constant. If dimV = n + 1, a system of homogeneous coordinates
allows to define a bijection

P(V ) �! Pn

P = [v] �! [x0, . . . , xn]

where v = x0e0 + . . .+ xnen.
The points E0[1, 0, . . . , 0], . . . , En[0, 0, . . . , 1] are called the fundamental points

and U [1, . . . , 1] the unit point for the given system of coordinates.
A projective (or linear) subspace of P(V ) is a subset of the form P(W ), where

W ⇢ V is a subspace.
Assume that dimW = s + 1 and that W is represented by a linear homoge-

neous system

(⇤)
( a10x0 + . . .+ a1nxn = 0
. . .
an�s,0x0 + . . .+ an�s,nxn = 0.

Note that a (n + 1)-tuple (x̄0, . . . , x̄n) is a solution of the system if and only
if (�x̄0, . . . ,�x̄n) is, with � 6= 0. So these solutions can also be interpreted as
representing the points of P(W ) and the equations (*) as a system of Cartesian
equations of P(W ). To write down parametric equations of P(W ) it is enough to
fix a basis of W , formed by vectors w0, . . . , ws. Then a general point of P(W ) is
parametrically represented by [�0w0 + . . .+ �sws], as �0, . . . ,�s vary in Ps.

If W,U are vector subspaces of V , the following Grassmann relation holds:

dimU + dimW = dim(U \W ) + dim(U +W ).

From this relation, observing that P(U \W ) = P(U) \ P(W ), we get in P(V ):

dimP(U) + dimP(W ) = dim(P(U) \ P(W )) + dimP(U +W ).

Note that P(U +W ) is the minimal linear subspace of P(V ) containing both P(U)
and P(W ): it is denoted P(U) + P(W ).

1.1. Example. Let V = K3, P(V ) = P2, U,W ⇢ K3 subspaces of dimension
2. Then P(U),P(V ) are lines in the projective plane. There are two cases:
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(i) U = W = U +W = U \W ;

(ii) U 6= W , dimU \W = 1, U +W = K3.

In case (i) the two lines in P3 coincide; in case (ii) P(U)\P(W ) = P(U \W ) = [v],
if v 6= 0 is a vector generating U \W. Observe that never P(U) \ P(W ) = ;.

Let T ⇢ P(V ) be a non–empty set. The linear span hT i of T is the intersection
of the projective subspaces of P(V ) containing T , i.e. the minimum subspace
containing T . For example, if T = {P1, . . . , Pt}, a finite set, then hP1, . . . , Pti =
P(W ), where W is the vector subspace of V generated by vectors v1, . . . , vt such
that P1 = [v1], . . . , Pt = [vt]. So dimhP1, . . . , Pti  t� 1 and equality holds if and
only if v1, . . . , vt are linearly independent; in this case, also the points P1, . . . , Pt

are called linearly independent. In particular, for t = 2, two points are linearly
independent if they generate a line, for t = 3, three points are linearly independent
if they generate a plane, etc. It is clear that, if P1, . . . , Pt are linearly independent,
then t  n + 1, and any subset of {P1, . . . , Pt} is formed by linearly independent
points.

P1, . . . , Pt are said to be in general position if either t  n + 1 and they are
linearly independent or t > n + 1 and any n + 1 points among them are linearly
independent.

1.2. Proposition. The fundamental points E0, . . . , En and the unit point

U of a system of homogeneous coordinates on Pn
are n + 2 points in general

position. Conversely, if P0, . . . , Pn, Pn+1 are n + 2 points in general position,

then there exists a system of homogeneous coordinates in which P0, . . . , Pn are the

fundamental points and Pn+1 is the unit point.

Proof. If e0, . . . , en is a basis, then clearly the n+ 1 vectors e0, . . . , êi, . . . , en, e0 +
. . .+ en are linearly independent: this proves the first claim. To prove the second
claim, we fix vectors v0, . . . , vn+1 such that Pi = [vi] for all i. So v0, . . . , vn is a
basis and there exist �0, . . . ,�n in K such that vn+1 = �0v0 + . . . + �nvn. The
assumption of general position easily implies that �0, . . . ,�n are all di↵erent from 0,
hence �0v0, . . . ,�nvn is a new basis such [�ivi] = Pi and Pn+1 is the corresponding
unit point. ⇤

Let H0 = hE1, . . . , Eni, H1 = hE0, E2, . . . , Eni, . . . , Hn = hE0, . . . , En�1i be
n+1 hyperplanes in Pn. Note that the equation ofHi is simply xi = 0. These hyper-
planes are called the fundamental hyperplanes. Let Ui = Pn\Hi = {P [x0, . . . , xn] |
xi 6= 0}. Note that Pn = U0 [ U1 [ . . . [ Un, because no point in Pn has all
coordinates equal to zero. There is a map �0 : U0 �! An(= Kn) defined by
�0([x0, . . . , xn]) = (x1

x0
, . . . , xn

x0
). �0 is bijective and the inverse map is j0 : An �! U0

such that j0(y1, . . . , yn) = [1, y1, . . . , yn].

So �0 and j0 establish a bijection between the a�ne space An and the subset U0

of the projective space Pn. There are other similar maps �i and ji for i = 1, . . . , n.
So Pn is covered by n+ 1 subsets, each one in natural bijection with An.
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There is a natural way of thinking of Pn as a completion of An; this is done
by identifying An with Ui via �i, and by interpreting the points of Hi(= Pn \ Ui)
as points at infinity of An, or directions in An. We do this explicity for i = 0. First
of all we identify An with U0 via �0 and j0. So if P [a0, . . . , an] 2 Pn, either a0 6= 0
and P 2 An, or a0 = 0 and P [0, a1, . . . , an] /2 An. Then we consider in An the line
L, passing through O(0, . . . , 0) and of direction given by the vector (a1, . . . , an).
Parametric equations for L are the following:

8
><

>:

x1 = a1t
x2 = a2t
. . .
xn = ant

with t 2 K. The points of L are identified with points of U0 (via j0) with homoge-
neous coordinates x0, . . . , xn given by:

8
><

>:

x0 = 1
x1 = a1t
x2 = a2t
. . .

or equivalently, if t 6= 0, by: 8
><

>:

x0 =
1
t

x1 = a1

x2 = a2

. . .

.

Now, roughly speaking, if t tends to infinity, this point goes to P [0, a1, . . . , an].
Clearly this is not a rigorous argument, but just a hint to the intuition.

In this way Pn can be interpreted as An with the points at infinity added,
each point at infinity corresponding to one direction in An.

Exercise to §1.
1*. Let V be a vector space of finite dimension over a fieldK. Let V̌ denote the

dual of V . Prove that P(V̌ ) can be put in bijection with the set of the hyperplanes
of P(V ) (hint: the kernel of a non-zero linear form on V is a subvector space of V
of codimension one).

2. Algebraic sets.

Roughly speaking, algebraic subsets of the a�ne or of the projective space are
sets of solutions of systems of algebraic equations, i.e. common roots of sets of
polynomials.

Examples of algebraic sets are: linear subspaces of both the a�ne and the pro-
jective space, plane algebraic curves, quadrics, graphics of polynomials functions,
. . .
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Algebraic geometry is the branch of mathematics which studies algebraic sets
(and their generalizations). Our first aim is to give a formal definition of algebraic

sets.
Let K[x1, . . . , xn] be the polynomial ring in n variables over the field K. If

P (a1, . . . , an) 2 An, and F = F (x1, . . . , xn) 2 K[x1, . . . , xn], we can consider the
value of F at P , i.e. F (P ) = F (a1, . . . , an) 2 K. We say that P is a zero of F if
F (P ) = 0.

For example the points P1(1, 0), P2(�1, 0), P3(0, 1) are zeroes of F = x2
1 +

x2
2 � 1 over any field. If G = x2

1 + x2
2 + 1 then G has no zeroes in A2

R , but it does
have zeroes in A2

C .

2.1. Definition. A subset X of An
K is an a�ne algebraic set if X is the set of

common zeroes of a family of polynomials of K[x1, . . . , xn].

This means that there exists a subset S ⇢ K[x1, . . . , xn] such that

X = {P 2 An | F (P ) = 0 8 F 2 S}.

In this case X is called the zero set of S and is denoted V (S) (or in some books
Z(S), e.g. this is the notation of Hartshorne’s book). In particular, if S = {F},
then V (S) will be simply denoted by V (F ).

2.2. Examples and remarks.
1. S = K[x1, . . . , xn]: then V (S) = ;, because S contains non–zero constants.
2. S = {0}: then V (S) = An.
3. S = {xy � 1} : then V (xy � 1) is the hyperbola.
4. If S ⇢ T , then V (S) � V (T ).

Let S ⇢ K[x1, . . . , xn] be a set of polynomials, let ↵ := hSi be the ideal generated
by S. Recall that ↵ = {finite sums of products of the form HF where F 2 S, H 2
K[x1, . . . , xn]}.

2.3. Proposition. V (S) = V (↵).

Proof. If P 2 V (↵), then F (P ) = 0 for any F 2 ↵; in particular for any F 2 S
because S ⇢ ↵.

Conversely, if P 2 V (S), let G =
P

i HiFi be a polynomial of ↵ (Fi 2 S 8 i).
Then G(P ) = (

P
HiFi)(P ) =

P
Hi(P )Fi(P ) = 0. ⇤

The above Proposition is important in view of the following:

Hilbert’ Basis Theorem. If R is a Noetherian ring, then the polynomial ring

R[x] is Noetherian.

Proof. Assume by contradiction that R[x] is not Noetherian. Let I ⇢ R[x] be a
not finitely generated ideal. Let f1 2 I be a non-zero polynomial of minimum
degree. We define by induction as follows a sequence {fk}k2N of polynomials: if
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fk (k � 1) has already been chosen, let fk+1 be a polynomial of minimum degree
in I \hf1, . . . , fki. Let nk be the degree of fk and ak be its leading coe�cient. Note
that, by the very choice of fk, the chain of the degrees is increasing: n1  n2  . . ..

We will prove now that ha1i ⇢ ha1, a2i ⇢ . . . is a chain of ideals, that
does not become stationary: this will give the required contradiction. Indeed,
if ha1, . . . , ari = ha1, . . . , ar, ar+1i, then ar+1 =

Pr
i=1 biai, for suitable bi 2 R. In

this case, we consider the element g := fr+1 � Pr
i=1 bix

nr+1�nifi: g belongs to
I, but g /2 hf1, . . . , fri, and its degree is strictly lower than the degree of fr+1:
contradiction. ⇤

2.4. Corollary. Any a�ne algebraic set X ⇢ An
is the zero set of a finite

number of polynomials, i.e. there exist F1, . . . , Fr 2 K[x1, . . . , xn] such that X =
V (F1, . . . , Fr).

⇤
Note that V (F1, . . . , Fr) = V (F1)\. . .\V (Fr), so every algebraic set is a finite

intersection of algebraic sets of the form V (F ), i.e. zeroes of a unique polynomial
F . If F = 0, then V (0) = An; if F = c 2 K \ {0}, then V (c) = ;; if deg F > 0,
then V (F ) is called a hypersurface.

2.5. Proposition. The a�ne algebraic sets of An
satisfy the axioms of the

closed sets of a topology, called the Zariski topology.

Proof. It is enough to check that finite unions and arbitrary intersections of alge-
braic sets are again algebraic sets.

Let V (↵), V (�) be two algebraic sets, with ↵,� ideals of K[x1, . . . , xn]. Then
V (↵) [ V (�) = V (↵ \ �) = V (↵�), where ↵� is the product ideal, defined by:

↵� = {
X

fin

aibi | ai 2 ↵, bi 2 �}.

In fact: ↵� ⇢ ↵ \ � so V (↵ \ �) ⇢ V (↵�), and both ↵ \ � ⇢ ↵ and ↵ \ � ⇢ �
so V (↵) [ V (�) ⇢ V (↵ \ �). Assume now that P 2 V (↵�) and P /2 V (↵): hence
9F 2 ↵ such that F (P ) 6= 0; on the other hand, if G 2 � then FG 2 ↵� so
(FG)(P ) = 0 = F (P )G(P ), which implies G(P ) = 0.

Let V (↵i), i 2 I, be a family of algebraic sets, ↵i ⇢ K[x1, . . . , xn]. Then
\i2IV (↵i) = V (

P
i2I ↵i), where

P
i2I ↵i is the sum ideal of ↵0

is. In fact ↵i ⇢P
i2I ↵i 8i, hence V (

P
i ↵i) ⇢ V (↵i) 8i and V (

P
i ↵i) ⇢ \iV (↵i). Conversely, if

P 2 V (↵i) 8i, and F 2 P
i ↵i, then F =

P
i
Fi; therefore F (P ) =

P
Fi(P ) = 0.

⇤

2.6. Examples.
1. The Zariski topology of the a�ne line A1.
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Let us recall that the polynomial ring K[x] in one variable is a PID (principal
ideal domain), so every ideal I ⇢ K[x] is of the form I = hF i. Hence every closed
subset of A1 is of the form X = V (F ), the set of zeroes of a unique polynomial
F (x). If F = 0, then V (F ) = A1, if F = c 2 K⇤, then V (F ) = ;, if degF = d > 0,
then F can be decomposed in linear factors in polynomial ring over the algebraic
closure of K; it follows that V (F ) has at most d points.

We conclude that the closed sets in the Zariski topology of A1 are: A1, ; and
the finite sets.

2. If K = R or C, then the Zariski topology and the Euclidean topology on
An can be compared, and it results that the Zariski topology is coarser. Indeed
every open set in the Zariski topology is open also in the usual topology. Let
X = V (F1, . . . , Fr) be a closed set in the Zariski topology, and U := An \ X; if
P 2 U , then 9 Fi such that Fi(P ) 6= 0, so there exists an open neighbourhood of
P in the usual topology in which Fi does not vanish.

Conversely, there exist closed sets in the usual topology which are not Zariski
closed, for example the balls. The first case, of an interval in the real a�ne line,
follows from part 1.

We want to define now the projective algebraic sets in Pn. LetK[x0, x1, . . . , xn]
be the polynomial ring in n + 1 variables. Fix a polynomial G(x0, x1, . . . , xn) 2
K[x0, x1, . . . , xn] and a point P [a0, a1, . . . , an] 2 Pn: then, in general,

G(a0, . . . , an) 6= G(�a0, . . . ,�an),

so the value of G at P is not defined.

2.7. Example. Let G = x1 +x0x1 +x2
2 , P [0, 1, 2] = [0, 2, 4] 2 P2

R . So G(0, 1, 2) =
1 + 4 6= G(0, 2, 4) = 2 + 16. But if Q = [1, 0, 0] = [�, 0, 0], then G(1, 0, 0) =
G(�, 0, 0) = 0 for all �.

2.8. Definition. Let G 2 K[x0, x1, . . . , xn]: G is homogeneous of degree d, or G
is a form of degree d, if G is a linear combination of monomials of degree d.

2.9. Lemma. If G is homogeneous of degree d, G 2 K[x0, x1, . . . , xn], and t is a
new variable, then G(tx0, . . . , txn) = tdG(x0, . . . , xn).

Proof. It is enough to prove the equality for monomials, i.e. for

G = axi0
0 xi1

1 . . . xin
n with i0 + i1 + . . .+ in = d :

G(tx0, . . . , txn) = a(tx0)i0(tx1)i1 . . . (txn)in = ati0+i1+...+inxi0
0 xi1

1 . . . xin
n =

= tdG(x0, . . . , xn).
⇤
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2.10. Definition. Let G be a homogeneous polynomial of K[x0, x1, . . . , xn]. A
point P [a0, . . . , an] 2 Pn is a zero of G if G(a0, . . . , an) = 0. In this case we write
G(P ) = 0.

Note that by Lemma 2.9 if G(a0, . . . , an) = 0, then

G(�a0, . . . ,�an) = �degGG(a0, . . . , an) = 0

for every choice of � 2 K⇤.

2.11. Definition. A subset Z of Pn is a projective algebraic set if Z is the set
of common zeroes of a set of homogeneous polynomials of K[x0, x1, . . . , xn].

If T is such a subset of K[x0, x1, . . . , xn], then the corresponding algebraic set
will be denoted by VP (T ).

Let ↵ = hT i be the ideal generated by the (homogeneous) polynomials of T .
If F 2 ↵, then F =

P
i HiFi, Fi 2 T : if P 2 VP (T ), and P [a0, . . . , an], then

F (a0, . . . , an) =
P

Hi(a0, . . . , an)Fi(a0, . . . , an) = 0, for any choice of coordinates
of P , regardless if F is homogeneous or not. We say that P is a projective zero of
F .

If F is a polynomial, then F can be written in a unique way as a sum of
homogeneous polynomials, called the homogeneous components of F : F = F0 +
F1 + . . .+ Fd. More in general, we give the following:

2.12. Definition. Let A be a ring. A is called a graded ring over Z if there exists
a family of additive subgroups {Ai}i2Z such that A = �i2ZAi and AiAj ⇢ Ai+j

for all pair of indices.
The elements of Ai are called homogeneous of degree i and Ai is the homoge-

neous component of degree i. The standard example of graded ring is the polyno-
mial ring with coe�cients in a ring R. In this case the homogeneous components
of negative degrees are all zero.

2.13 Proposition - Definition. Let I ⇢ A be an ideal of a graded ring. I is

called homogeneous if the following equivalent conditions are fulfilled:

(i) I is generated by homogeneous elements;

(ii) I = �k2Z(I \Ak), i.e. if F = ⌃k2ZFk 2 I, then all homogeneous components

Fk of F belong to I.

Proof of the equivalence.
“ (ii))(i)”: given a system of generators of I, write each of them as sum of its

homogeneous components: Fi = ⌃k2ZFik. Then a set of homogeneous generators
of I is formed by all the elements Fik.

“ (i))(ii)”: let I be generated by a family of homogeneous elements {G↵},
with degG↵ = d↵. If F 2 I, then F is a combination of the elements G↵ with
suitable coe�cients H↵; write each H↵ as sum of its homogeneous components:
H↵ = ⌃H↵k. Note that the product H↵kG↵ is homogeneous of degree k+ d↵. By
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the unicity of the expression of F as sum of homogeneous elements, it follows that
all of them are combinations of the generators {G↵} and therefore they belong to
I. ⇤

Let I ⇢ K[x0, x1, . . . , xn] be a homogeneous ideal. Note that, by the noethe-
rianity, I admits a finite set of homogeneous generators.

Let P [a0, . . . , an] 2 Pn. If F 2 I, F = F0 + . . .+ Fd, then F0 2 I, . . . , Fd 2 I.
We say that P is a zero of I if P is a projective zero of any polynomial of I or,
equivalently, of any homogeneous polynomial of I. This also means that P is a
zero of any homogeneous polynomial of a set generating I. The set of zeroes of I
will be denoted VP (I): all projective algebraic subsets of Pn are of this form.

As in the a�ne case, the projective algebraic subsets of Pn satisfy the axioms
of the closed sets of a topology called the Zariski topology of Pn (see also Exercise
3).

Note that also all subsets of An and Pn have a structure of topological space,
with the induced topology, which is still called the Zariski topology.

Exercises to §2.
1. Let F 2 K[x1, . . . , xn] be a non–constant polynomial. The set An \ V (F )

will be denoted An
F . Prove that {An

F |F 2 K[x1, . . . , xn] \ K} is a topology basis
for the Zariski topology.

2. Let B ⇢ Rn be a ball. Prove that B is not Zariski closed.

3*. Let I, J be homogeneous ideals of K[x0, x1, . . . , xn]. Prove that I + J , IJ
and I \ J are homogeneous ideals.

4*. Prove that the map � : A1 ! A3 defined by t ! (t, t2, t3) is a homeomor-
phism between A1 and its image, for the Zariski topology.

5. Let X ⇢ A2
R be the graph of the map R ! R such that x ! sinx. Is X

closed in the Zariski topology? (hint: intersect X with a line....)

3. Examples of algebraic sets.

a) In the Zariski topology both of An and of Pn all points are closed.
If P (a1, . . . , an) 2 An: P = V (x1 � a1, . . . , xn � an). If P [a0, . . . , an] 2 Pn:

P = VP (haixj � ajxiii,j=0,...,n).
Note that in the projective case the polynomials defining P as closed set are

homogeneous. They can be seen as minors of order 2 of the matrix
✓
a0 a1 . . . an

x0 x1 . . . xn

◆

with entries in K[x0, x1, . . . , xn].

b) Hypersurfaces.
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Let us recall that the polynomial ring K[x1, . . . , xn] is a UFD (unique fac-
torization domain), i. e. every non-constant polynomial F can be expressed in
a unique way (up to the order and up to units) as F = F r1

1 F r2
2 . . . F rs

s , where
F1, . . . , Fs are irreducible polynomials, two by two distinct, and ri � 18 i =
1, . . . , s. Hence the hypersurface of An defined by F is

X := V (F ) = V (F r1
1 F r2

2 . . . F rs
s ) = V (F1F2 . . . Fs) = V (F1) [ V (F2) [ . . . [ V (Fs).

The equation F1F2 . . . Fs = 0 is called the reduced equation of X. Note
that F1F2 . . . Fs generates the radical

p
F . If s = 1, X is called an irreducible

hypersurface; by definition its degree is the degree of its reduced equation. Any
hypersurface is a finite union of irreducible hypersurfaces.

In a similar way one defines hypersurfaces of Pn, i. e. projective algebraic
sets of the form Z = VP (G), with G 2 K[x0, x1, . . . , xn], G homogeneous. Since
the irreducible factors of G are homogeneous (see Exercise 3.6), any projective
hypersurface Z has a reduced equation (whose degree is, by definition, the degree
of Z) and Z is a finite union of irreducible hypersurfaces. The degree of a projective
hypersurface has the following important geometrical meaning.

3.1. Proposition. Let K be an algebraically closed field. Let Z ⇢ Pn
be a

projective hypersurface of degree d. Then a line of Pn
, not contained in Z, meets

Z at exactly d points, counting multiplicities.

Proof. Let G be the reduced equation of Z and L ⇢ Pn be any line.
We fix two points on L: A = [a0, . . . , an], B = [b0, . . . , bn]. So L admits

parametric equations of the form

8
><

>:

x0 = �a0 + µb0
x1 = �a1 + µb1
. . .
xn = �an + µbn

The points of Z \L are obtained from the homogeneous pairs [�, µ] which are
solutions of the equation G(�a0 + µb0, . . . ,�an + µbn) = 0. If L ⇢ Z, then this
equation is identical. Otherwise, G(�a0 +µb0, . . . ,�an +µbn) is a non-zero homo-
geneous polynomial of degree d in two variables. Being K algebraically closed, it
can be factorized in linear factors:

G(�a0 + µb0, . . . ,�an + µbn) = (µ1�� �1µ)
d1(µ2�� �2µ)

d2 . . . (µr�� �rµ)
dr

with d1 + d2 + . . . + dr = d. Every factor corresponds to a point in Z \ L, to be
counted with the same multiplicity as the factor. ⇤

If K is not algebraically closed, considering the algebraic closure of K and
using Proposition 3.1, we get that d is un upper bound on the number of points
of Z \ L.



Introduction to algebraic geometry 13

c) A�ne and projective subspaces.
The subspaces introduced in §1, both in the a�ne and in the projective case,

are examples of algebraic sets.

d) Product of a�ne spaces.
Let An, Am be two a�ne spaces over the field K. The cartesian product

An⇥Am is the set of pairs (P,Q), P 2 An, Q 2 Am: it is in natural bijection with
An+m via the map

� : An ⇥ Am �! An+m

such that �((a1, . . . , an), (b1, . . . , bm)) = (a1, . . . , an, b1, . . . , bm).
From now on we will always identify An ⇥ Am with An+m. We get two

topologies on An ⇥ Am: the Zariski topology and the product topology.

3.1. Proposition. The Zariski topology is strictly finer than the product topol-

ogy.

Proof. If X = V (↵) ⇢ An, ↵ ⇢ K[x1, . . . , xn] and Y = V (�) ⇢ Am, � ⇢
K[y1, . . . , ym], then X ⇥ Y ⇢ An ⇥ Am is Zariski closed, precisely X ⇥ Y =
V (↵ [ �) where the union is made in the polynomial ring in n + m variables
K[x1, . . . , xn, y1, . . . , ym]. Hence, if U = An \X, V = Am \ Y are open subsets of
An and Am in the Zariski topology, then U⇥V = An⇥Am\((An⇥Y )[(X⇥Am))
is open in An ⇥ Am in the Zariski topology.

Conversely, we prove that A1 ⇥ A1 = A2 contains some subsets which are
Zariski open but are not open in the product topology. The proper open subsets
in the product topology are of the form A1 ⇥A1 \ { finite unions of “ vertical” and
“ horizontal” lines}.

– Fig. 1 –
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Let X = A2 \V (x�y): it is Zariski open but does not contain any non-empty
subset of the above form, so it is not open in the product topology. There are
similar examples in An ⇥ Am for any n,m. ⇤

Note that there is no similar construction for Pn ⇥ Pm.

e) Embedding of An in Pn.
Let Hi be the hyperplane of Pn of equation xi = 0, i = 0, . . . , n; it is closed

in the Zariski topology, and the complementar set Ui is open. So we have an open
covering of Pn: Pn = U0 [ U1 [ . . . [ Un. Let us recall that for all i there is a
bijection �i : Ui ! An such that �i([x0, . . . , xi, . . . , xn]) = (x0

xi
, . . . , 1̂, . . . , xn

xi
). The

inverse map is ji : An ! Ui such that ji(y1, . . . , yn) = [y1, . . . , 1, . . . , yn].

3.2. Proposition. The map �i is a homeomorphism, for i = 0, . . . , n.

Proof. Assume i = 0 (the other cases are similar).
We introduce two maps:
(i) dehomogeneization of polynomials with respect to x0.
It is a map a : K[x0, x1, . . . , xn] ! K[y1, . . . , yn] such that

a(F (x0, . . . , xn)) =
aF (y1, . . . , yn) := F (1, y1, . . . , yn).

Note that a is a ring homomorphism.
(ii) homogeneization of polynomials with respect to x0.
It is a map h : K[y1, . . . , yn] ! K[x0, x1, . . . , xn] defined by

h(G(y1, . . . , yn)) =
hG(x0, . . . , xn) := xdegG

0 G(
x1

x0

, . . . ,
xn

x0

)

.
hG is always a homogeneous polynomial of the same degree as G. The map h

is clearly not a ring homomorphism. Note that always a(hG) = G but in general
h(aF ) 6= F ; what we can say is that, if F (x0, . . . , xn) is homogeneous, then 9r � 0
such that F = xr

0(
h(aF )).

Let X ⇢ U0 be closed in the topology induced by the Zariski topology of
the projective space, i.e. X = U0 \ VP (I) where I is a homogeneous ideal of
K[x0, x1, . . . , xn]. Define aI = {aF | F 2 I}: it is an ideal of K[y1, . . . , yn]
(because a is a ring homomorphism). We prove that �0(X) = V (aI). For:
let P [x0, . . . , xn] be a point of U0; then �0(P ) = (x1

x0
, . . . , xn

x0
) 2 �0(X) ()

P [x0, . . . , xn] = [1, x1
x0
, . . . , xn

x0
] 2 X = VP (I) () F (1, x1

x0
, . . . , xn

x0
) = 0 8 aF 2

aI () �0(P ) 2 V (aI).
Conversely: let Y = V (↵), ↵ ideal of K[y1, . . . , yn], be a Zariski closed set

of An. Let h↵ be the homogeneous ideal of K[x0, x1, . . . , xn] generated by the set
{hG | G 2 ↵}. We prove that ��1

0 (Y ) = VP (h↵) \ U0. In fact: [1, x0, . . . , xn] 2
��1

0 (Y ) () (x1, . . . , xn) 2 Y () G(x1, . . . , xn) = hG(1, x1, . . . , xn) = 0 8 G 2
↵() [1, x1, . . . , xn] 2 VP (h↵). ⇤
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From now on we will often identify An with U0 via �0 (and similarly with Ui

via �i). So if P [x0, . . . , xn] 2 U0, we will refer to x0, . . . , xn as the homogeneous
coordinates of P and to x1

x0
, . . . , xn

x0
as the non–homogeneous or a�ne coordinates

of P .

Exercises to §3.
1*. Let n � 2. Prove that, if K is an algebraically closed field, then in An

K

both any hypersurface and any complementar set of a hypersurface have infinitely
many points.

2. Prove that the Zariski topology on An is T1.

3*. Let F 2 K[x0, x1, . . . , xn] be a homogeneous polynomial. Check that its
irreducible factors are homogeneous. (hint: consider a product of two polynomials
not both homogeneous...)

4. The ideal of an algebraic set and the Hilbert Nullstellensatz.

Let X ⇢ An be an algebraic set, X = V (↵), ↵ ⇢ K[x1, . . . , xn]. The ideal ↵
defining X is not unique: for example, let X = {0} ⇢ A2; then 0 = V (x1, x2) =
V (x2

1 , x2) = V (x2
1 , x

3
2) = V (x2

1 , x1, x2, x2
2) = . . . Nevertheless, there is an ideal we

can canonically associate to X, i.e. the biggest one. Precisely:

4.1. Definition. Let Y ⇢ An be any set.
The ideal of Y is I(Y ) = {F 2 K[x1, . . . , xn] | F (P ) = 0 for any P 2 Y } =

{F 2 K[x1, . . . , xn] | Y ⇢ V (F )}: it is formed by all polynomials vanishing on Y .
Note that I(Y ) is in fact an ideal.

For instance, if P (a1, . . . , an) is a point, then I(P ) = hx1 � a1, . . . , xn � ani.
Indeed all its polynomials vanish on P , and, on the other side, it is maximal.

The following relations follow immediately by the definition:
(i) if Y ⇢ Y 0, then I(Y ) � I(Y 0);
(ii) I(Y [ Y 0) = I(Y ) \ I(Y 0);
(iii) I(Y \ Y 0) � I(Y ) + I(Y 0).

Similarly, if Z ⇢ Pn is any set, the homogeneous ideal of Z is, by def-
inition, the homogeneous ideal of K[x0, x1, . . . , xn] generated by the set {G 2
K[x0, x1, . . . , xn] | G is homogeneous and VP (G) � Z}. It is denoted Ih(Z).

Relations similar to (i),(ii),(iii) are satisfied. Ih(Z) is also the set of polyno-
mials F (x0, . . . , xn) such that every point of Z is a projective zero of F .

Let ↵ ⇢ K[x1, . . . , xn] be an ideal. Let
p
↵ denote the radical of ↵, i.e. the

ideal {F 2 K[x1, . . . , xn] | 9r � 1 s.t. F r 2 ↵}. Note that always ↵ ⇢ p
↵; if

equality holds, then ↵ is called a radical ideal.

4.2. Proposition.
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1) For any X ⇢ An
, I(X) is a radical ideal.

2) For any Z ⇢ Pn
, Ih(Z) is a homogeneous radical ideal.

Proof. 1) If F 2 p
I(X), let r � 1 such that F r 2 I(X): hence if P 2 X, then

(F r)(P ) = 0 = (F (P ))r in the base field K. Therefore F (P ) = 0.
2) is similar, taking into account that Ih(Z) is a homogeneous ideal (see

Exercise 4.7.). ⇤

We can interpret I as a map from P(An), the set of subsets of the a�ne space,
to P(K[x1, . . . , xn]). On the other hand, V can be seen as a map in the opposite
sense. We have:

4.3. Proposition. Let ↵ ⇢ K[x1, . . . , xn] be an ideal, Y ⇢ An
be any subset.

Then:

(i) ↵ ⇢ I(V (↵));
(ii) Y ⇢ V (I(Y ));
(iii) V (I(Y )) = Y : the closure of Y in the Zariski topology of An

.

Proof. (i) If F 2 ↵ and P 2 V (↵), then F (P ) = 0, so F 2 I(V (↵)).
(ii) If P 2 Y and F 2 I(Y ), then F (P ) = 0, so P 2 V (I(Y )).
(iii) Taking closures in (ii), we get: Y ⇢ V (I(Y )) = V (I(Y )). Conversely,

let X = V (�) be any closed set containing Y : X = V (�) � Y . Then I(Y ) �
I(V (�)) � � by (i); we apply V again: V (�) = X � V (I(Y )) so any closed set
containing Y contains V (I(Y )) so Y � V (I(Y )). ⇤

Similar properties relate homogeneous ideals of K[x0, x1, . . . , xn] and subsets
of Pn; in particular, if Z ⇢ Pn, then VP (Ih(Z)) = Z, the closure of Z in the Zariski
topology of Pn.

There does not exist any characterization of I(V (↵)) in general. We can only
say that it is a radical ideal containing ↵, so it contains also

p
↵. To characterize

I(V (↵)) we need some extra assumption on the base field.

4.4. Hilbert Nullstellensatz (Theorem of zeroes). LetK be an algebraically

closed field. Let ↵ ⇢ K[x1, . . . , xn] be an ideal. Then I(V (↵)) =
p
↵.

Remark. The assumption on K is necessary. Let me recall that K is alge-
braically closed if any non–constant polynomial of K[x] has at least one root in K,
or, equivalently, if any irreducible polynomial of K[x] has degree 1. So if K is not
algebraically closed, there exists F 2 K[x], irreducible of degree d > 1. Therefore
F has no zero in K, hence V (F ) ⇢ A1

K is empty. So I(V (F )) = I(;) = {G 2
K[x] | ; ⇢ V (G)} = K[x]. But hF i is a maximal ideal of K[x], and hF i ⇢ phF i.
If hF i 6= phF i, by the maximality

phF i = h1i, so 9r � 1 such that 1r = 1 2 hF i,
which is false. Hence

phF i = hF i 6= K[x] = I(V (F )).
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We will deduce the proof of Hilbert Nullestellensatz, after several steps, from
another very important theorem, known as the “Emmy Noether normalization
Lemma”.

We start with some definitions.
Let K ⇢ E be fields, K a subfield of E. Let {zi}i2I be a family of elements

of E.
4.5.Definition. The family {zi}i2I is algebraically free over K or, equivalently,
the elements zi’s are algebraically independent over K if there does not exist
any non–zero polynomial F 2 K[xi]i2I , the polynomial ring in a set of variables
indexed on I, such that F vanishes in the elements of the family {zi}.

For example: if the family is formed by one element z, {z} is algebraically
free over K if and only if z is transcendental over K. The family {⇡,p⇡} is not
algebraically free over Q: it satisfies the non–trivial relation x2

1 � x2 = 0.
By convention, the empty family is free over any field K.

Let S be the set of the families of elements of E, which are algebraically free
over K. S is a non–empty set, partially ordered by inclusion and inductive. By
Zorn’s lemma, there exist in S maximal elements, i.e. algebraically free families
such that they do not remain free if any element of E is added. Any such maxi-
mal algebraically free family is called a transcendence basis of E over K. It can
be proved that, if B,B0 are two transcendence bases, then they have the same
cardinality, called the transcendence degree of E over K. It is denoted tr.d.E/K.

4.6. Definition. A K–algebra is a ring A containing (a subfield isomorphic to)
K.

Let y1, . . . , yn be elements of E: the K–algebra generated by y1, . . . , yn is,
by definition, the minimum subring of E containing K, y1, . . . , yn: it is denoted
K[y1, . . . , yn] and its elements are polynomials in the elements y1, . . . , yn with co-
e�cients in K. Its quotient field K(y1, . . . , yn) is the minimum subfield of E
containing K, y1, . . . , yn.

A finitely generatedK–algebraA is aK–algebra such that there exist elements
of A y1, . . . , yr which verify the condition A = K[y1, . . . , yr].

4.7. Proposition. There exists a transcendence basis of K(y1, . . . , yn) over K
contained in the set {y1, . . . , yn}.
Proof. Let S be the set of the subfamilies of {y1, . . . , yn} formed by algebraically
independent elements: S is a finite set so it possesses maximal elements with
respect to the inclusion. We can assume that {y1, . . . , yr} is such a maximal family.
Then yr+1, . . . , yn are each one algebraic over K(y1, . . . , yr) so K(y1, . . . , yn) is an
algebraic extension of K(y1, . . . , yr). If z 2 K(y1, . . . , yn) is any element, then z is
algebraic over K(y1, . . . , yr), so the family {y1, . . . , yr, z} is not algebraically free.
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⇤

4.8. Corollary. tr.d.K(y1, . . . , yn)/K  n. ⇤

Let now A ⇢ B be rings, A a subring of B. Let b 2 B: b is integral over A if
it is a root of a monic polynomial of A[x], i.e. there exist a1, . . . , an 2 A such that

bn + a1b
n�1 + a2b

n�2 + . . .+ an = 0.

Such a relation is called an integral equation for b over A.
Note that, if A is a field, then b is integral over A if and only if b is algebraic

over A.
B is called integral over A, or an integral extension of A, if and only if b is

integral over A for every b 2 B.

We can state now the
4.9. Normalization Lemma. Let A be a finitely generated K–algebra and

an integral domain. Let r := tr.d.K(y1, . . . , yn)/K. Then there exist elements

z1, . . . , zr 2 A, algebraically independent over K, such that A is integral over

K[z1, . . . , zr].

Proof. See, for instance, Lang [6]. ⇤

We start now the proof of the Nullstellensatz.

1st Step.
Let K be an algebraically closed field, let M ⇢ K[x1, . . . , xn] be a maximal

ideal. Then, there exist a1, . . . , an 2 K such that M = hx1 � a1, . . . , xn � ani.
Proof. Let K 0 be the quotient ring K[x1,...,xn]

M : it is a field because M is maximal,
and a finitely generated K–algebra (by the residues in K 0 of x1, . . . , xn). By the
Normalization Lemma, there exist z1, . . . , zr 2 K 0, algebraically independent over
K 0, such that K 0 is integral over A := K[z1, . . . , zr]. We claim that A is a field:
let f 2 A, f 6= 0; f 2 K 0 so there exists f�1 2 K 0, and f�1 is integral over A; we
fix an integral equation for f�1 over A:

(f�1)s + as�1(f
�1)s�1 + . . .+ a0 = 0

where a0, . . . , as�1 2 A. We multiply this equation by fs�1:

f�1 + as�1 + . . .+ a0f
s�1 = 0

hence f�1 2 A. So A is both a field and a polynomial ring over K, so r = 0
and A = K. Therefore K 0 is an algebraic extension of K, which is algebraically
closed, so K 0 ' K. Let us fix an isomorphism  : K[x1,...,xn]

M
⇠�!K and let p :

K[x1, . . . , xn] ! K[x1,...,xn]
M be the canonical epimorphism.
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Let ai =  (p(xi)), i = 1, . . . , n. The kernel of  �p isM, and xi�ai 2 ker( �p)
for any i. So hx1 � a1, . . . , xn � ani ⇢ ker( � p) = M. Since hx1 � a1, . . . , xn � ani
is maximal (see Exercise 4.5.), we conclude the proof of the 1st Step.

2nd Step (Weak Nullstellensatz).
Let K be an algebraically closed field, let ↵ ⇢ K[x1, . . . , xn] be a proper ideal.

Then V (↵) 6= ; i.e. the polynomials of ↵ have at least one common zero in An
K .

Proof. Since ↵ is proper, there exists a maximal ideal M containing ↵. Then
V (↵) � V (M). By 1st Step, M = hx1 � a1, . . . , xn � ani, so V (M) = {P} with
P (a1, . . . , an), hence P 2 V (↵).

3rd Step (Rabinowitch method).
Let K be an algebraically closed field: we will prove that I(V (↵)) ⇢ p

↵.
Since the reverse inclusion always holds, this will conclude the proof.

Let F 2 I(V (↵)), F 6= 0 and let ↵ = hG1, . . . , Gri. The assumption on
F means: if G1(P ) = . . . = Gr(P ) = 0, then F (P ) = 0. Let us consider the
polynomial ring in n + 1 variables K[x1, . . . , xn+1] and let � be the ideal � =
hG1, . . . , Gr, xn+1F � 1i: � has no zeroes in An+1, hence, by Step 1, 1 2 �, i.e.
there exist H1, . . . , Hr+1 2 K[x1, . . . , xn+1] such that

1 = H1G1 + . . .+HrGr +Hr+1(xn+1F � 1).

We introduce the K-homomorphism  : K[x1, . . . , xn+1] ! K(x1, . . . , xn)
defined by H(x1, . . . , xn+1) ! H(x1, . . . , xn,

1
F ).

The polynomials G1, . . . , Gr do not contain xn+1 so  (Gi) = Gi 8 i = 1, . . . , r.
Moreover  (xn+1F � 1) = 0,  (1) = 1. Therefore

1 =  (H1G1 + . . .+HrGr +Hr+1(xn+1F � 1)) =  (H1)G1 + . . .+  (Hr)Gr

where  (Hi) is a rational function with denominator a power of F . By multiplying
this relation by a common denominator, we get an expression of the form:

Fm = H 0
1G1 + . . .+H 0

rGr,

so F 2 p
↵. ⇤

4.10. Corollaries. Let K be an algebraically closed field.

1. There is a bijection between algebraic subsets of An
and radical ideals of

K[x1, . . . , xn]. The bijection is given by ↵ ! V (↵) and X ! I(X). In fact, if X
is closed in the Zariski topology, then V (I(X)) = X; if ↵ is a radical ideal, then

I(V (↵)) = ↵.
2. Let X,Y ⇢ An

be closed sets. Then

(i) I(X \ Y ) =
p

I(X) + I(Y );

(ii) I(X [ Y ) = I(X) \ I(Y ) =
p
I(X)I(Y ).
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Proof. 2. follows from next lemma, using the Nullstellensatz.

4.11. Lemma. Let ↵,� be ideals of K[x1, . . . , xn]. Then

a)

pp
↵ =

p
↵;

b)

p
↵+ � =

pp
↵+

p
�;

c)

p
↵ \ � =

p
↵� =

p
↵ \p

�.

Proof.

a) if F 2
pp

↵, there exists r � 1 such that F r 2 p
↵, hence there exists s � 1

such that F rs 2 ↵.
b) ↵ ⇢ p

↵, � ⇢ p
� imply ↵+ � ⇢ p

↵+
p
� hence

p
↵+ � ⇢

pp
↵+

p
�.

Conversely, ↵ ⇢ ↵+ �, � ⇢ ↵+ � imply
p
↵ ⇢ p

↵+ �,
p
� ⇢ p

↵+ �, hencep
↵+

p
� ⇢ p

↵+ � so
pp

↵+
p
� ⇢

pp
↵+ � =

p
↵+ �.

c) ↵� ⇢ ↵ \ � ⇢ ↵ (resp. ⇢ �) therefore
p
↵� ⇢ p

↵ \ � ⇢ p
↵ \ p

�. If
F 2 p

↵ \ p
�, then F r 2 ↵, F s 2 � for suitable r, s � 1, hence F r+s 2 ↵�, so

F 2 p
↵�. ⇤

Part 2.(i) of 4.10. implies that, iI(X \ Y ) 6= I(X) + I(Y ), if and only if
I(X) + I(Y ) is not radical.

We move now to projective space. There exist proper homogeneous ideals of
K[x0, x1, . . . , xn] without zeroes in Pn, also assuming K algebraically closed: for
example the maximal ideal hx0, x1, . . . , xni. The following characterization holds:

4.12. Proposition. Let K be an algebraically closed field and let I be a

homogeneous ideal of K[x0, x1, . . . , xn].
The following are equivalent:

(i) VP (I) = ;;
(ii) either I = K[x0, x1, . . . , xn] or

p
I = hx0, x1, . . . , xni;

(iii) 9d � 1 such that I � K[x0, x1, . . . , xn]d, the subgroup of K[x0, x1, . . . , xn]
formed by the homogeneous polynomials of degree d.

Proof.

(i))(ii) Let p : An+1 � {0} ! Pn be the canonical surjection. We have:
VP (I) = p(V (I)�{0}), where V (I) ⇢ An+1. So if VP (I) = ;, then either V (I) = ;
or V (I) = {0}. If V (I) = ; then I(V (I)) = I(;) = K[x0, x1, . . . , xn]; if V (I) = {0},
then I(V (I)) = hx0, x1, . . . , xni =

p
I by the Nullstellensatz.

(ii))(iii) Let
p
I = K[x0, x1, . . . , xn], then 1 2 p

I so 1r = 1 2 I(r � 1). Ifp
I = hx0, x1, . . . , xni, then for any variable xk there exists an index ik � 1 such

that xik
k 2 I. If d � i0 + i1 + . . . + in, then any monomial of degree d is in I, so

K[x0, x1, . . . , xn]d ⇢ I.
(iii))(i) because no point in Pn has all coordinates equal to 0. ⇤

4.13. Theorem. Let K be an algebraically closed field and I be a homogeneous
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ideal of K[x0, x1, . . . , xn]. If F is a homogeneous non–constant polynomial such

that VP (F ) � VP (I) (i.e. F vanishes on VP (I), then F 2 p
I.

Proof. We have p(V (I) � {0}) = VP (I) ⇢ VP (F ). Since F is non–constant, we
have also V (F ) = p�1(VP (F )) [ {0}, so V (F ) � V (I); by the Nullstellensatz
I(V (I)) =

p
I � I(V (F )) =

p
(F ) 3 F . ⇤

4.14. Corollary (homogeneous Nullstellensatz). Let I be a homogeneous

ideal of K[x0, x1, . . . , xn] such that VP (I) 6= ;, K algebraically closed. Then

p
I =

Ih(VP (I)). ⇤

4.15. Definition. A homogeneous ideal of K[x0, x1, . . . , xn] such that
p
I =

hx0, x1, . . . , xni is called irrelevant.

4.16. Corollary. Let K be an algebraically closed field. There is a bijec-

tion between the set of projective algebraic subsets of Pn
and the set of radical

homogeneous non–irrelevant ideals of K[x0, x1, . . . , xn]. ⇤

Remark. Let X ⇢ Pn be an algebraic set, X 6= ;. The a�ne cone of
X, denoted C(X), is the following subset of An+1: C(X) = p�1(X) [ {0}. If
X = VP (F1, . . . , Fr), with F1, . . . , Fr homogeneous, then C(X) = V (F1, . . . , Fr).
By the Nullstellensatz, if K is algebraically closed, I(C(X)) = Ih(X).

Exercises to §4.
1. Give a non-trivial example of an ideal ↵ of K[x1, . . . , xn] such that ↵ 6= p

↵.

2. Show that the following closed subsets of the a�ne plane Y = V (x2+y2�1)
and Y 0 = V (y � 1) are such that equality does not hold in the following relation:
I(Y \ Y 0) � I(Y ) + I(Y 0).

3. Let ↵ ⇢ K[x1, . . . , xn] be an ideal. Prove that ↵ =
p
↵ if and only if the

quotient ring K[x1, . . . , xn]/↵ does not contain any non–zero nilpotent.

4. Consider Z ⇢ Q. Prove that if an element y 2 Q is integral over Z, then
y 2 Z.

5. Let a1, . . . an 2 K ( K any field). Prove that the ideal

I = hx1 � a1, . . . , xn � ani

is maximal. (Hint: every polynomial F can be written in the form

F = F (a1, . . . , an) +
X

Fi(a1, . . . , an)(xi � ai) + . . . ,

where Fi is the i-th partial derivative of F . If F /2 I . . .
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Remember that it makes sense to consider derivatives of polynomials over any
field.)

6. Let us recall that a prime ideal of a ring R is an ideal P such that a 62 P,
b 62 P implies ab 62 P. Prove that any prime ideal is a radical ideal.

7*. Let I be a homogeneous ideal of K[x1, . . . , xn] satisfying the following
condition: if F is a homogeneous polynomial such that F r 2 I for some positive

integer r, then F 2 I. Prove that I is a radical ideal.

5. The projective closure of an a�ne algebraic set.

Let X ⇢ An be Zariski closed. Fix an index i 2 {0, . . . , n} and embed An into Pn

as the open subset Ui. So X ⇢ An �i
,! Pn.

5.1. Definition. The projective closure of X, X, is the closure of X in the
Zariski topology of Pn.

Since the map �i is a homeomorphism (see Proposition 3.2.), we have: X \
An = X because X is closed in An. The points of X \ Hi, where Hi = VP (xi),
are called the “ points at infinity” of X in the fixed embedding.

Note that, if K is an infinite field, then the projective closure of An is Pn:
indeed, let F be a homogeneous polynomial vanishing along An = U0. We can
write F = F0xd

0+F1x
d�1
0 + . . .+Fd. By assumption, for every P (a1, . . . , an) 2 An,

P 2 VP (F ), i.e. F (1, a1, . . . , an) = 0 = aF (a1, . . . , an). So aF 2 I(An). We
claim that I(An) = (0): if n = 1, this follows from the principle of identity of
polynomials, because K is infinite. If n � 2, assume that F (a1, ..., an) = 0 for
all (a1, ..., an) 2 Kn and consider F (a1, ..., an�1, x): either it has positive degree
in x for some choice of (a1, ..., an), but then it has finitely many zeroes against
the assumption; or it is always constant in x, so F belongs to K[x1, ..., xn�1] and
we can conclude by induction. So the claim is proved. We get therefore that
F0 = F1 = . . . = Fd = 0 and F = 0.

5.2. Proposition. Let X ⇢ An
be an a�ne algebraic set, X be the projective

closure of X. Then

Ih(X) = hI(X) := hhF |F 2 I(X)i.

Proof. Assume An = U0 ⇢ Pn.
Let F 2 Ih(X) be a homogeneous polynomial. If P (a1, . . . , an) 2 X, then

[1, a1, . . . , an] 2 X, so F (1, a1, . . . , an) = 0 = aF (a1, . . . , an). Hence aF 2 X.
There exists k � 0 such that F = (xk

0)
h(aF ) (see Proposition 3.2), so F 2 hI(X).

Hence Ih(X) ⇢ hI(X).
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Conversely, if G 2 I(X) and P (a1, . . . , an) 2 X, then G(a1, . . . , an) = 0 =
hG(1, a1, . . . , an), so hG 2 Ih(X) (here X is seen as a subset of Pn). So hI(X) ⇢
Ih(X). Since Ih(X) = Ih(X) (see Exercise 5.1), we have the claim.

⇤

In particular, if X is a hypersurface and I(X) = hF i, then Ih(X) = hhF i.
Next example will show that, in general, it is not true that, if I(X) =

hF1, . . . , Fri, then hI(X) = hhF1, . . . , hFri. Only in the last twenty years, thanks
to the development of symbolic algebra and in particular of the theory of Groeb-
ner bases, the problem of characterizing the systems of generators of I(X), whose
homogeneization generates hI(X), has been solved.

5.3. Example. The skew cubic.

Let K be an algebraically closed field. The a�ne skew cubic is the following
closed subset of A3: X = V (y � x2, z � x3) (we use variables x, y, z). X is the
image of the map � : A1 ! A3 such that �(t) = (t, t2, t3). Note that � : A1 ! X
is a homeomorphism (see Exercise 2.4). The ideal ↵ = hy � x2, y � x3i defines X
and is prime: indeed the quotient ring K[x, y, z]/↵ is isomorphic to K[x], hence
an integral domain. Therefore ↵ is radical so ↵ = I(X).

Let X be the projective closure of X in P3. We are going to prove that X
is the image of the map  : P1 ! P3 such that  ([�, µ]) = [�3,�2µ,�µ2, µ3]. We
identify A1 with the open subset of P1 defined by � 6= 0 i.e. U0, and A3 with
the open subset of P3 defined by x0 6= 0 (U0 too). Note that  |A1 = �, because
 ([1, t]) = [1, t, t2, t3] = via the identification of A3 with U0 = (t, t2, t3) = �(t).
Moreover  ([0, 1]) = [0, 0, 0, 1]. So  (P1) = X [ {[0, 0, 0, 1]}.

If G is a homogeneous polynomial of K[x0, x1, . . . , x3] such that X ⇢ VP (G),
then G(1, t, t2, t3) = 0 8t 2 K, so G(�3,�2µ,�µ2, µ3) = 0 8µ 2 K, 8� 2 K⇤.
Since K is infinite, then G(�3,�2µ,�µ2, µ3) is the zero polynomial in � and µ, so
G(0, 0, 0, 1) = 0 and VP (G) �  (P1), therefore X �  (P1).

Conversely, it is easy to prove that  (P1) is Zariski closed, in fact that  (P1) =
VP (x2

1 � x0x2, x1x2 � x0x3, x2
2 � x1x3). So  (P1) = X.

The three polynomials F0 := x1x3 � x2
2 , F1 := x1x2 � x0x3, F2 := x0x2 � x2

1

are the 2⇥ 2 minors of the matrix

M =

✓
x0 x1 x2

x1 x2 x3

◆

with entries in K[x0, x1, . . . , x3]. Let F = y�x2, G = z�x3 be the two generators
of I(X); hF = x0x2�x2

1 ,
hG = x2

0x3�x3
1 , hence VP (hF, hG) = VP (x0x2�x2

1 , x
2
0x3�

x3
1) 6= X, because VP (hF, hG) contains the whole line VP (x0, x1).

We shall prove now the non-trivial fact:

5.4. Proposition. Ih(X) = hF0, F1, F2i.
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Proof. For all integer number d � 0, let Ih(X)d := Ih(X) \K[x0, x1, . . . , x3]d: it
is a K-vector space of dimension  �

d+3
3

�
. We define a K-linear map ⇢d having

Ih(X)d as kernel:
⇢d : K[x0, x1, . . . , x3]d ! K[�, µ]3d

such that ⇢d(F ) = F (�3,�2µ,�2µ2, µ3). Since ⇢d is clearly surjective, we compute

dim Ih(X)d =

✓
d+ 3

3

◆
� (3d+ 1) = (d3 + 6d2 � 7d)/6.

For d � 2, we define now a second K-linear map

�d : K[x0, x1, . . . , x3]d�2 �K[x0, x1, . . . , x3]d�2 �K[x0, x1, . . . , x3]d�2 ! Ih(X)d

such that �d(G0, G1, G2) = G0F0 + G1F1 + G2F2. Our aim is to prove that �d is
surjective. The elements of its kernel are called the syzygies of degree d among
the polynomials F0, F1, F2. Two obvious syzygies of degree 3 are constructed by
developing, according to the Laplace rule, the determinant of the matrix obtained
repeating one of the rows of M , for example

0

@
x0 x1 x2

x0 x1 x2

x1 x2 x3

1

A

We put H1 = (x0, x1, x2) and H2 = (x1, x2, x3), they both belong to ker�3. Note
that H1 and H2 give raise to syzygies of all degrees � 3, in fact we can construct
a third linear map

 d : K[x0, x1, . . . , x3]d�3 �K[x0, x1, . . . , x3]d�3 ! ker�d

putting  d(A,B) = H1A+H2B = (x0, x1, x2)A+(x1, x2, x3)B = (x0A+x1B, x1A+
x2B, x2A+ x3B).

Claim.  d is an isomorphism.

Assuming the claim, we are able to compute dimker�d = 2
�
d
3

�
, therefore

dim Im �d = 3

✓
d+ 1

3

◆
� 2

✓
d

3

◆

which coincides with the dimension of Ih(X)d previously computed. This proves
that �d is surjective for all d and concludes the proof of the Proposition.

Proof of the Claim. Let (G0, G1, G2) belong to ker�d. This means that the
following matrix N with entries in K[x0, x1, . . . , x3] is degenerate:

N :=

0

@
G0 G1 G2

x0 x1 x2

x1 x2 x3

1

A
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Therefore, the rows of N are linearly dependent over the quotient field of the
polynomial ring K(x0, . . . , x3). Since the last two rows are independent, there
exist reduced rational functions a1

a0
, b1
b0

2 K(x0, x1, x2, x3), such that

G0 =
a1
a0

x0 +
b1
b0
x1 =

a1b0x0 + a0b1x1

a0b0

and similarly

G1 =
a1b0x1 + a0b1x2

a0b0
, G2 =

a1b0x2 + a0b1x3

a0b0

The Gi’s are polynomials, therefore the denominator a0b0 divides the numerator
in each of the three expressions on the right hand side. Moreover, if p is a prime
factor of a0, then p divides the three products b0x0, b0x1, b0x2, hence p divides b0.
We can repeat the reasoning for a prime divisor of b0, so obtaining that a0 = b0
(up to invertible constants). We get:

G0 =
a1x0 + b1x1

b0
, G1 =

a1x1 + b1x2

b0
, G2 =

a1x2 + b1x3

b0
,

therefore b0 divides the numerators

c0 := a1x0 + b1x1, c1 := a1x1 + b1x2, c2 := a1x2 + b1x3.

Hence b0 divides also x1c0 � x0c1 = b1(x2
1 � x0x1) = �b1F2, and similarly x2c0 �

x0c2 = b1F1, x2c1 � x1c2 = �b1F0. But F0, F1, F2 are irreducible and coprime, so
we conclude that b0 | b1. But b0 and b1 are coprime, so finally we get b0 = a0 = 1.
⇤

As a by-product of the proof of Proposition 5.4 we have the minimal free
resolution of the R-module Ih(X), where R = K[x0, x1, . . . , x3]:

0 ! R�2  �! R�3 ��! Ih(X) ! 0

where  is represented by the transposed of the matrix M and � by the triple of
polynomials (F0, F1, F2).

Exercises to §5.
1*. Let X ⇢ An be a closed subset, X be its projective closure in Pn. Prove

that Ih(X) = Ih(X).

2. Find a system of generators of the ideal of the a�ne skew cubic X, such
that, if you homogeneize them, you get a system of generators for Ih(X).

6. Irreducible components.
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6.1. Definition. Let X 6= ; be a topological space. X is irreducible if the
following condition holds: ifX1, X2 are closed subsets ofX such thatX = X1[X2,
then eitherX = X1 orX = X2. Equivalently, X is irreducible if for all pair of non–
empty open subsets U , V we have U \ V 6= ;. By definition, ; is not irreducible.

6.2. Proposition. X is irreducible if and only if any non–empty open subset U
of X is dense.

Proof. LetX be irreducible, let P be a point ofX and IP be an open neighbourhood
of P in X. IP and U are non–empty and open, so IP \ U 6= ;, therefore P 2 U .
This proves that U = X.

Conversely, assume that open subsets are dense. Let U , V 6= ; be open
subsets. Let P 2 U be a point. By assumption P 2 V = X, so V \ U 6= ; (U is
an open neighbourhood of P ). ⇤

Examples.
1. If X = {P} a unique point, then X is irreducible.
2. Let K be an infinite field. Then A1 is irreducible, because proper closed

subsets are finite sets. The same holds for P1.
3. Let f : X ! Y be a continuous map of topological spaces. If X is

irreducible and f is surjective, then Y is irreducible.
4. Let Y ⇢ X be a subset, give it the induced topology. Then Y is irreducible

if and only if the following holds: if Y ⇢ Z1 [ Z2, with Z1 and Z2 closed in X,
then either Y ⇢ Z1 or Y ⇢ Z2; equivalently: if Y \ U 6= ;, Y \ V 6= ;, with U , V
open subsets of X, then Y \ U \ V 6= ;.

6.3. Proposition. Let X be a topological space, Y a subset of X. Y is

irreducible if and only if Y is irreducible.

Proof. Note first that if U ⇢ X is open and U \Y = ; then U \Y = ;. Otherwise,
if P 2 U \Y , let A be an open neighbourhood of P : then A\Y 6= ;. In particular,
U is an open neighbourhood of P so U \ Y 6= ;.

Let Y be irreducible. If U and V are open subsets of X such that U \ Y 6= ;,
V \ Y 6= ;, then U \ Y 6= ; and V \ Y 6= ; so Y \ U \ V 6= ; by irreducibility of
Y . Hence Y \ (U \ V ) 6= ;. So Y is irreducible. If Y is irreducible, we get the
irreducibility of Y in a completely analogous way. ⇤

6.4. Corollary. Let X be an irreducible topological space and U be a non–empty

open subset of X. Then U is irreducible.

Proof. By Proposition 6.2 U = X which is irreducible. By Proposition 6.3 U is
irreducible. ⇤

For algebraic sets (both a�ne and projective) irreducibility can be expressed
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in a purely algebraic way.

6.5. Proposition. Let X ⇢ An
( resp. Pn

) be an algebraic set. X is irreducible

if and only if I(X) (resp. Ih(X)) is prime.

Proof. Assume first that X is irreducible, X ⇢ An. Let F,G polynomials of
K[x1, . . . , xn] such that FG 2 I(X): then

V (F ) [ V (G) = V (FG) � V (I(X)) = X

hence eitherX ⇢ V (F ) orX ⇢ V (G). In the former case, if P 2 X then F (P ) = 0,
so F 2 I(X), in the second case G 2 I(X); hence I(X) is prime.

Assume now that I(X) is prime. Let X = X1[X2 be the union of two closed
subsets. Then I(X) = I(X1) \ I(X2) (see §4). Assume that X1 6= X, then I(X1)
strictly contains I(X) (otherwise V (I(X1)) = V (I(X)). So there exists F 2 I(X1)
such that F 62 I(X). But for every G 2 I(X2), FG 2 I(X1)\I(X2) = I(X) prime:
since F 62 I(X), then G 2 I(X). So I(X2) ⇢ I(X) hence I(X2) = I(X).

If X ⇢ Pn, the proof is similar, taking into account the following:

6.6. Lemma Let P ⇢ K[x0, x1, . . . , xn] be a homogeneous ideal. Then P is prime

if and only if, for every pair of homogeneous polynomials F,G such that FG 2 P,

either F 2 P or G 2 P.

Proof of the Lemma. Let H,K be any polynomials such that HK 2 P. Let
H = H0 +H1 + . . .+Hd, K = K0 +K1 + . . .+Ke (with Hd 6= 0 6= Ke) be their
expressions as sums of homogeneous polynomials. Then HK = H0K0 + (H0K1 +
H1K0) + . . . +HdKe: the last product is the homogeneous component of degree
d+ e of HK. P being homogeneous, HdKe 2 P; by assumption either Hd 2 P or
Ke 2 P. In the former case, HK �HdK = (H �Hd)K belongs to P while in the
second one H(K �Ke) 2 P. So in both cases we can proceed by induction. ⇤

We list now some consequences of the previous Proposition.

1. Let K be an infinite field. Then An and Pn are irreducible, because
I(An) = Ih(Pn) = (0).

2. Let Y ⇢ Pn be closed. Y is irreducible if and only if its a�ne cone C(Y )
is irreducible.

3. Let Y = V (F ) ⇢ An, be a hypersurface over an algebraically closed field
K. If F is irreducible, then Y is irreducible.

4. Let K be algebraically closed. There is a bijection between prime ideals of
K[x1, . . . , xn] and irreducible algebraic subsets of An. In particular, the maximal
ideals correspond to the points. Similarly, there is a bijection between homo-
geneous non–irrelevant prime ideals of K[x0, x1, . . . , xn] and irreducible algebraic
subsets of Pn.
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6.7. Definition. A topological space X is called noetherian if it satisfies the
following equivalent conditions:

(i) the ascending chain condition for open subsets;
(ii) the descending chain condition for closed subsets;
(iii) any non–empty set of open subsets of X has maximal elements;
(iv) any non–empty set of closed subsets of X has minimal elements.

The proof of the equivalence is standard.

Example. An is noetherian: if the following is a descending chain of closed
subsets

Y1 � Y2 � . . . � Yk � . . . ,

then

I(Y1) ⇢ I(Y2) ⇢ . . . ⇢ I(Yk) ⇢ . . .

is an ascending chain of ideals of K[x1, . . . , xn] hence stationary from a suitable m
on; therefore V (I(Ym)) = Ym = V (I(Ym)) = Ym+1 = . . ..

6.8. Proposition. Let X be a noetherian topological space and Y be a non–

empty closed subset of X. Then Y can be written as a finite union Y = Y1 [
. . . [ Yr of irreducible closed subsets. The maximal Yi’s in the union are uniquely

determined by Y and called the “ irreducible components” of Y . They are the

maximal irreducible subsets of Y .

Proof. By contradiction. Let S be the set of the non–empty closed subsets of X
which are not a finite union of irreducible closed subsets: assume S 6= ;. By
noetherianity S has minimal elements, fix one of them Z. Z is not irreducible, so
Z = Z1 [ Z2, Zi 6= Z for i = 1, 2. So Z1, Z2 62 S, hence Z1, Z2 are both finite
unions of irreducible closed subsets, so such is Z: a contradiction.

Now assume that Y = Y1 [ . . . [ Yr, with Yi 6✓ Yj if i 6= j and Yi irreducible
closed for all i. If there is another similar expression Y = Y 0

1 [ . . . [ Y 0
s , Y

0
i 6✓ Y 0

j

for i 6= j, then Y 0
1 ⇢ Y1 [ . . . Yr, so Y 0

1 =
Sr

i=1(Y
0
1 [ Yi), hence Y 0

1 ⇢ Yi for some
i, and we can assume i = 1. Similarly, Y1 ⇢ Y 0

j , for some j, so Y 0
1 ⇢ Y1 ⇢ Y 0

j ,

so j = 1 and Y1 = Y 0
1 . Now let Z = Y � Y1 = Y2 [ . . . [ Yr = Y 0

2 [ . . . [ Y 0
s and

proceed by induction.
⇤

6.9. Corollary. Any algebraic subset of An
(resp. of Pn

) is in a unique way the

finite union of its irreducible components. ⇤
Note that the irreducible components of X are its maximal algebraic subsets.

They correspond to the minimal prime ideals over I(X). Since I(X) is radical,
these minimal prime ideals coincide with the primary ideals appearing in the pri-
mary decomposition of I(X).
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6.10. Definition. An irreducible closed subset of An is called an a�ne variety.
Similarly, an irreducible closed subset of Pn is a projective variety. A locally closed
subset in Pn is the intersection of an open and a closed subset. An irreducible
locally closed subset of Pn is a quasi–projective variety.

6.11. Proposition. Let X ⇢ An
and Y ⇢ Am

be a�ne varieties. Then X ⇥ Y
is irreducible, i.e. a subvariety of An+m

.

Proof. Let X ⇥ Y = W1 [ W2, with W1,W2 closed. For all P 2 X the map
{P} ⇥ Y ! Y which takes (P,Q) to Q is a homeomorphism, so {P} ⇥ Y is
irreducible. {P}⇥ Y = (W1 \ ({P}⇥ Y ))[ (W2 \ ({P}⇥ Y )), so 9i 2 {1, 2} such
that {P} ⇥ Y ⇢ Wi. Let Xi = {P 2 X | {P} ⇥ Y ⇢ Wi}, i = 1, 2. Note that
X = X1 [X2.

Claim. Xi is closed in X.
Let Xi(Q) = {P 2 X | (P,Q) 2 Wi}, Q 2 Y . We have: (X ⇥ {Q}) \ Wi =
Xi(Q) ⇥ {Q} ' Xi(Q); X ⇥ {Q} and Wi are closed in X ⇥ Y , so Xi(Q) ⇥ {Q}
is closed in X ⇥ Y and also in X ⇥ {Q}, so Xi(Q) is closed in X. Note that
Xi =

T
Q2Y Xi(Q), hence Xi is closed, which proves the Claim.

Since X is irreducible, X = X1 [X2 implies that either X = X1 or X = X2,
so either X ⇥ Y = W1 or X ⇥ Y = W2. ⇤

Exercises to §6.
1. Let X 6= ; be a topological space. Prove that X is irreducible if and only

if all non–empty open subsets of X are connected.

2*. Prove that the cuspidal cubic Y ⇢ A2
C of equation x3�y2 = 0 is irreducible.

(Hint: express Y as image of A1 in a continuous map...)

3. Give an example of two irreducible subvarieties of P3 whose intersection is
reducible.

4. Find the irreducible components of the following algebraic sets over the
complex field:

a) V (y4 � x2, y4 � x2y2 + xy2 � x3) ⇢ A2;
b) V (y2 � xz, z2 � y3) ⇢ A3.

5*. Let Z be a topological space and {U↵}↵2I be an open covering of Z such
that U↵ \ U� 6= ; for ↵ 6= � and that all U↵’s are irreducible. Prove that Z is
irreducible.

7. Dimension.

Let X be a topological space.


