
Synthesis of acetic acid

The Wacker process

$$C_2H_4 + 1/2 O_2 \xrightarrow{cat} CH_3CHO \qquad \Delta G = -197 \text{ kJ mol}^{-1}$$

The Pd(II) precursor

$$\begin{array}{c|c} CI & CI \\ \hline CI & CI \\ \hline \end{array} \begin{array}{c} + & H_2C = CH_2 \ , - CI \\ \hline \end{array} \begin{array}{c} CH_2 \\ \hline CI & CI \\ \hline \end{array} \begin{array}{c} + & H_2O, - CI \\ \hline \end{array} \begin{array}{c} CH_2 \\ \hline \end{array} \begin{array}{c} + & H_2O, - CI \\ \hline \end{array} \begin{array}{c} CH_2 \\ \hline \end{array} \begin{array}{c} + & H_2O, - CI \\ \hline \end{array} \begin{array}{c} CH_2 \\ \hline \end{array} \begin{array}{c} + & H_2O, - CI \\ \hline \end{array} \begin{array}{c} CH_2 \\ \hline \end{array} \begin{array}{c} + & H_2O, - CI \\ \hline \end{array} \begin{array}{c} CH_2 \\ \hline \end{array} \begin{array}{c} + & H_2O, - CI \\ \hline \end{array} \begin{array}{c} CH_2 \\ \hline \end{array} \begin{array}{c} + & H_2O, - CI \\ \hline \end{array} \begin{array}{c} CH_2 \\ \hline \end{array} \begin{array}{c} + & H_2O, - CI \\ \hline \end{array} \begin{array}{c} CH_2 \\ \hline \end{array} \begin{array}{c} + & H_2O, - CI \\ \hline \end{array} \begin{array}{c} CH_2 \\ \hline \end{array} \begin{array}{c} + & H_2O, - CI \\ \hline \end{array} \begin{array}{c} CH_2 \\ \hline \end{array} \begin{array}{c} + & H_2O, - CI \\ \hline \end{array} \begin{array}{c} - & CI \\ \hline \end{array} \begin{array}{c} - & H_2O, - CI \\ \hline \end{array} \begin{array}$$

From Pd(0) to Pd(II) oxidation by the Cu(II) salt

$$Pd(0) + 2 [CuCl_4]^{2} \longrightarrow Pd^{2+} + 2 [CuCl_2]^{-} + 4 Cl^{-}$$

$$2 [CuCl_2]^{-} + 1/2 O_2 + 2 H^{+} + 4 Cl^{-} \longrightarrow 2 [CuCl_4]^{2-} + H_2O$$

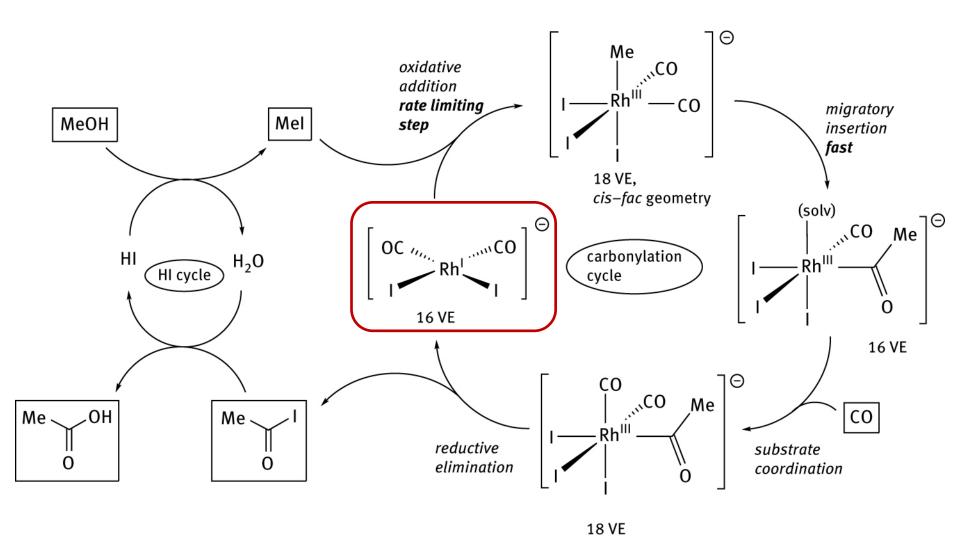
The Monsanto process

It is based on the carbonylation reaction of methanol

$$CH_3OH + CO \rightarrow CH_3COOH$$

 ΔG , standard conditions, -75 kJ.mol⁻¹

ATOM EFFICIENCY = 100 %


E FACTOR = 0

in situ catalytic system: RhI₃, CO e H₂O

(1)

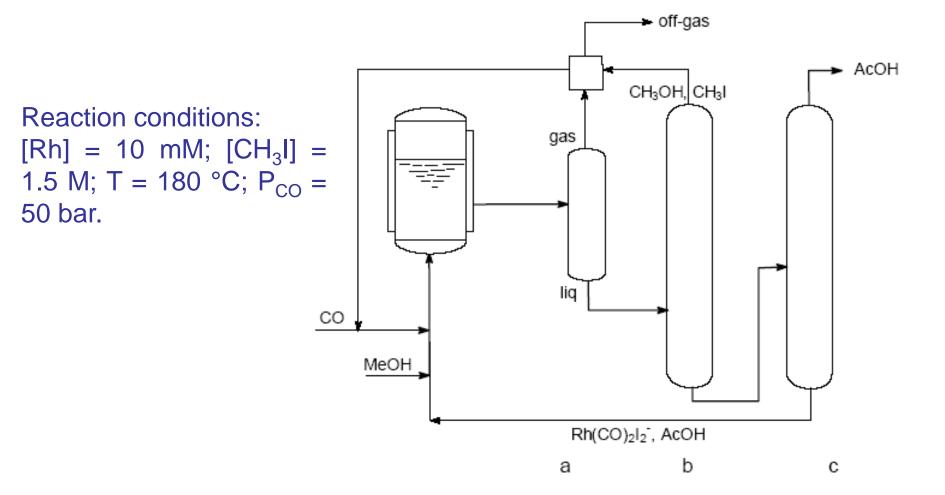
$$\Rightarrow$$
 CH₃I + H₂O

The catalytic cycle

The rate determining step of the catalytic cycle

Rate law: $V = k . [Rh I_2(CO)_2^-] . [CH_3 I]$ v: $CH_3I > CH_3Br > CH_3Cl$ ca. 20 kJ/mol $K_1 = 4.5 \cdot 10^{-3} \text{ l/mol}$ $K_2 = 3.2 \cdot 10^3$ v_{CO}: 2055 e 1984 cm⁻¹

¹³C NMR: two equivalent carbons with J_{Rh} = 60 Hz


¹³C NMR: methyl group with J_{Rh} = 14 Hz at δ = -0.6 ppm

Side reactions

CO +
$$H_2O$$
 \rightarrow $H_2 + CO_2$
 $Rhl_2(CO)_2^- + OH^- \rightarrow$ $Rhl_2(CO)(CO_2H)^2^-$
 $Rhl_2(CO)(CO_2H)^2^- \rightarrow$ $Rhl_2(CO)(H)^2^- + CO_2$
 $Rhl_2(CO)(H)^2^- + H^+ + CO \rightarrow Rhl_2(CO)_2^- + H_2$

$$CH_3RhI_3(CO)_2^- + HI \rightarrow CH_4 + RhI_4(CO)_2^-$$

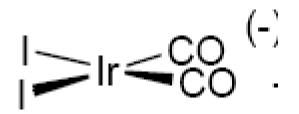
 $RhI_2(CO)_2^- + 2 HI \Rightarrow H_2 + RhI_4(CO)_2^-$

Process scheme Monsanto process

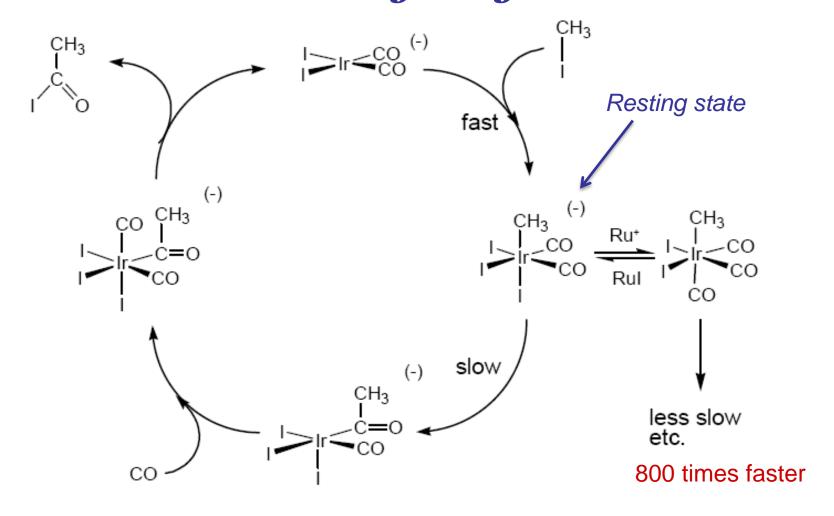
The CATIVA process

It is based on the carbonylation reaction of methanol

4 plants are in operation since 2003;

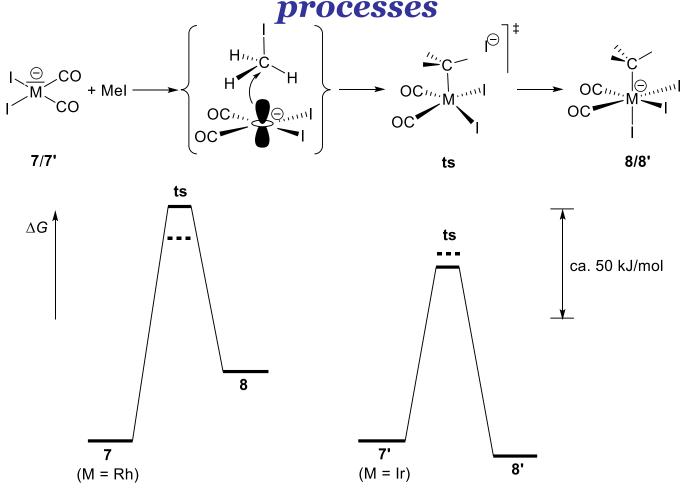

It is based on an Iridium catalyst;

High rate at low water concentration;

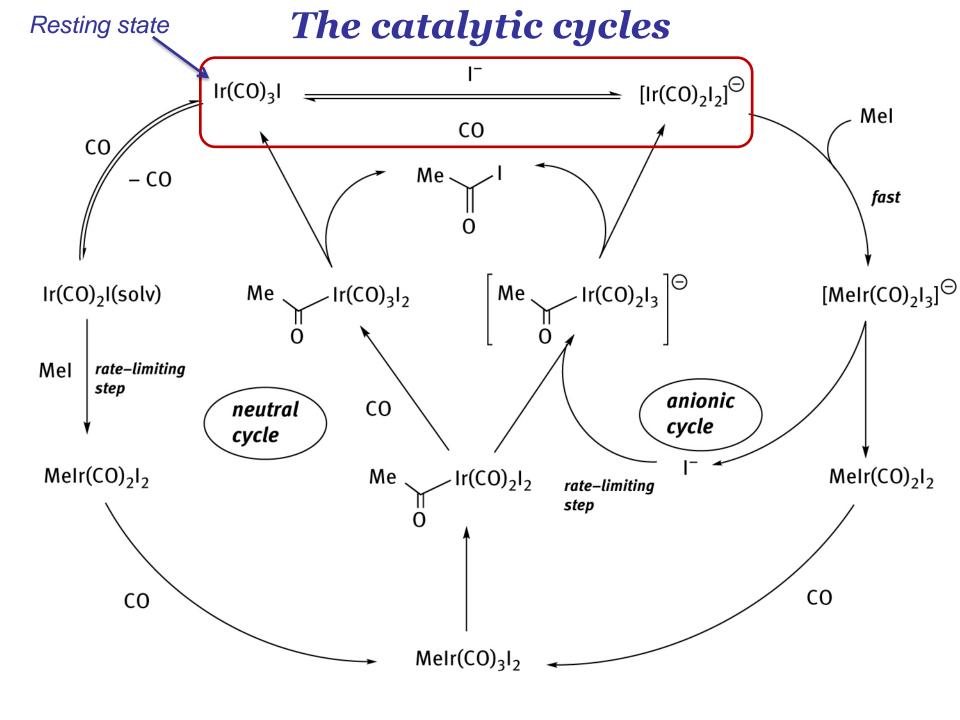

High stability allowing a wide range of process condition;.

The catalyst is about 25 % faster than the Monsanto;

Thanks to lower content of sideproducts, the produced acetic acid is of better quality than that obtained by the Monsanto process.



The catalytic cycle


The oxidative addition is facile and it is no longer the rate determining step!

The energetic in Monsanto and CATIVA

The Gibbs free energy for activation of the methyl migration:

Experimental values: $\Delta G^{\#} = 128.5 \text{ kJ/mol (Ir)}$; $\Delta G^{\#} = 81.1 \text{ kJ/mol (Rh)}$ Calculated values: $\Delta G^{\#} = 116.3 \text{ kJ/mol (Ir)}$; $\Delta G^{\#} = 72.2 \text{ kJ/mol (Rh)}$

