

Description of the evolution of the macroscopic magnetic vector by the phenomenological Bloch equations

R.F. Magnetic Field

- Nuclear magnetic resonance is obtained by applying an electromagnetic radiation in the radiofrequency range
- The radiofrequence, owing to the way it is originated, is coherent and linearly polarized

Rotating Magnetic Field B₁

A linearly polarized magnetic field can be represented as the sum of two counterotating circularly polarized fields

Mazinga ed il pugno atomico rotante

http://animeoltre.altervista.org/robot/ grandemazinga.html

The xy plane is perpendicular to z axis, which is coincident with the directionof the static magnetic field **B**₀

B_{rf} is the linearly polarized r.f. magnetic field

 $B_{rf}(t)=2B_1\cos(\omega_{rf}t+\phi)e_x$

 $B_{rf}(t) = B_1 \cos(\omega_{rf} t + \phi) \mathbf{e}_{\mathbf{x}} + i B_1 \sin(\omega_{rf} t + \phi) \mathbf{e}_{\mathbf{y}}$ $+ B_1 \cos(\omega_{rf} t + \phi) \mathbf{e}_{\mathbf{x}} - i B_1 \sin(\omega_{rf} t + \phi) \mathbf{e}_{\mathbf{y}}$

recalling the Euler formula:

 $e^{i\alpha} = \cos\alpha + i \sin\alpha$

$B_{rf}(t) = B_1 exp[i(\omega_{rf}t + \phi)] + B_1 exp[-i(\omega_{rf}t + \phi)]$

The effect is exclusively due to the rotating field with the same sense as Larmor precession of the examined nucleus (which depends on the sign of γ_N), the latter field is disregarded

 $B_{rf}(t)$ can be represented by $B_1 exp[i(\omega_{rf}t+\phi)]$

The ensamble of nuclei is affected both by the permanent static magnetic field, B_0 , and by the r.f. field, $B_{rf}(t)$. The latter may be applied just during certain times, with the aid of the gates of radiofrequency. Motion of a Magnetic Moment in the presence of a Mgnetic Field

It is described by the following equation

$$\frac{d\vec{M}(t)}{dt} = \gamma \vec{M}(t) \wedge \vec{B}(t)$$

Actually, they are 3 coupled differintial equations.

it can be checked by expliciting the vector product.

This equation is based on:

A magnetic moment in the presence of a magnetic field is affected by a torque

$$\vec{\Gamma} = \vec{M} \wedge \vec{B}$$

that acts to bring it to the position of minimum energy, i.e. parallel to the magnetic field

$$E = -\vec{M} \cdot \vec{B}$$

A well known example is the compass needle, which aligns with the earth magnetic field

since
$$\vec{M} = \gamma \vec{l}$$
 e $\frac{d\vec{l}}{dt} = \vec{\Gamma}$

$$\frac{d\vec{M}}{dt} = \gamma \frac{d\vec{l}}{dt} = \gamma \vec{\Gamma} = \gamma \vec{M} \wedge \vec{B}$$

vector product by use of the determinant

i, j and k are unit vectors $i(M_yB_z - M_zB_y)$ $j(M_zB_x - M_xB_z)$ $k(M_xB_y - M_yB_x)$

equations to be solved:

$$\frac{dM_x(t)}{dt} = \gamma \Big[M_y(t) B_z - M_z(t) B_y(t) \Big]$$
$$\frac{dM_y(t)}{dt} = \gamma \Big[M_z(t) B_x(t) - M_x(t) B_z \Big]$$
$$\frac{dM_z(t)}{dt} = \gamma \Big[M_x(t) B_y(t) - M_y(t) B_x(t) \Big]$$

The method to solve these equations is to employ a **rotating frame**, where the r.f. magnetic field is static. In this way the **coefficients** are time **independent**.

$$\frac{dM_x^r(t)}{dt} = \gamma \Big[M_y^r(t) B_z^{eff} - M_z^r(t) B_y^{eff} \Big]$$
$$\frac{dM_y^r(t)}{dt} = \gamma \Big[M_z^r(t) B_x^{eff} - M_x^r(t) B_z^{eff} \Big]$$
$$\frac{dM_z^r(t)}{dt} = \gamma \Big[M_x^r(t) B_y^{eff} - M_y^r(t) B_z^{eff} \Big]$$

Axes Rotations

e.g.. P(x=3, y=5)
$$\gamma = 30^{\circ} y' = ? x' = ?$$

 $x' = x \cos \gamma + y \sin \gamma = 3 \frac{\sqrt{3}}{2} + 5 \frac{1}{2} = 5.098$
 $y' = -x \sin \gamma + y \cos \gamma = -3 \frac{1}{2} + 5 \frac{\sqrt{3}}{2} = 2.83$

The point P position can be represented by the vector r_P with components x and y in the former frame and x' and y' in the new axes system

Transform Matrix for Axes Rotation

Vector components: column matrix

The transform matrix is a square matrix of the suited coefficients 2x2 in the former case and 3x3 in the latter

Transform by rotating of a γ angle about z

$$\bar{r'}_P = \overline{\overline{T}}(\gamma)r_P$$

$$\begin{vmatrix} x' \\ y' \end{vmatrix} = \begin{vmatrix} \cos \gamma & \sin \gamma \\ -\sin \gamma & \cos \gamma \end{vmatrix} \begin{vmatrix} x \\ y \end{vmatrix} = \begin{vmatrix} x \cos \gamma + y \sin \gamma \\ -x \sin \gamma + y \cos \gamma \end{vmatrix}$$

trsform matrix

Trasform matrix for rotation of a γ about z in 3 D

$$\overline{\overline{T}}_{z}(\gamma) = \begin{vmatrix} \cos \gamma & \sin \gamma & 0 \\ -\sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

NB to transform from the lab frame to the rotating frame

$$\gamma = \omega_{RF} t$$

Magnetization Evolution in the Rotating Frame

$$\frac{d\vec{M}^{r}(t)}{dt} = \gamma \vec{M}^{r}(t) \wedge \vec{B}_{eff}^{r}$$

$$\vec{B}_{eff}^{r} = \begin{vmatrix} B_{x}^{r} \\ B_{y}^{r} \\ B_{0} + \frac{\omega_{RF}}{\gamma} \end{vmatrix}$$

efficient magnetic field in the rotating frame

Efficient Magnetic Field B_{eff}

$$\Delta B_0 \underbrace{\theta}_{B_1} \qquad B_r = \begin{vmatrix} 0 \\ B_1 \\ \Delta B_0 \end{vmatrix}$$

modulus of B_{eff}

 $B_{eff}^r = \sqrt{B_1^2 + \Delta B_0^2}$

 $\Delta B_0 = B_0 + \frac{\omega_{RF}}{\gamma} = -\frac{\omega_0}{\gamma} + \frac{\omega_{RF}}{\gamma} =$

 $\Omega_0 = \omega_0 - \omega_{RF}$

the rotating frame is such that B_1 lies on y' axis

Larmor frequency $\omega_0 = -\gamma B_0$

For the isofrequency case $\omega_{\rm RF}=\omega_0, \ \Omega_0=0, \ \Delta B_0=0$

thus B_{eff} coincides with B_1

with

 $=-rac{\Omega_0}{\gamma}$

Pulsed Experiment in the Isofrequency Case

B

- At equilibrium M is aligned with the z axis (M₀)
 - the e.m. radiation of $v_{RF}=v_0$ is applied
- The motion of the M vector is described in a frame with y' axis coinciding with the r.f. rotating magnetic field, B₁

Magnetic Field B in the Rotating Frame

$$\vec{B}_1^r = \overline{T}\vec{B}_1^{LAE}$$

The most general B^{LAB} corresponds to

$$\vec{B}^{LAB} = \begin{vmatrix} B_1 \cos(\omega_{RF} t + \phi) \\ B_1 \sin(\omega_{RF} t + \phi) \\ B_0 \end{vmatrix}$$

$$\vec{B}^{r} = \begin{vmatrix} \cos \omega_{RF} t & \sin \omega_{RF} t & 0 \\ -\sin \omega_{RF} t & \cos \omega_{RF} t & 0 \\ 0 & 0 & 1 \end{vmatrix} \begin{vmatrix} B_{1} \left[\cos \omega_{RF} t \cos \phi - \sin \omega_{RF} t \sin \phi \right] \\ B_{1} \left[\sin \omega_{RF} t \cos \phi + \cos \omega_{RF} t \sin \phi \right] \\ B_{0} \end{vmatrix}$$

Magnetic Field B₁ in the Rotating Frame

$$\vec{B}_1^r = \begin{vmatrix} B_1 \cos \phi \\ B_1 \sin \phi \\ 0 \end{vmatrix}$$

Choosing sensitively the phase angle (ϕ) B₁ may lie

on either axis x'or y'or –x'or –y'(phase shift by 90° and multiples)

or at intermediate positions for phase shifts lower than 90° (not implemented in the oldest spectrometers)

Differential Equations for the Motion of M in the Rotating Frame: Isofrequency

$$\frac{d\vec{M}^{r}(t)}{dt} = \gamma \vec{M}^{r}(t) \wedge \vec{B}_{eff}^{r} \qquad B_{eff}^{r} =$$

$$\frac{dM_x^r(t)}{dt} = -\gamma M_z^r(t)B_1$$
$$\frac{dM_y^r(t)}{dt} = 0$$
$$\frac{dM_z^r(t)}{dt} = \gamma M_x^r(t)B_1$$

the systems of to coupled differential equations has to be solved

0

 B_1

0

• The forme is derived again with respect to t

$$\frac{d^2 M_x^r}{dt^2} = -\gamma B_1 \frac{d M_z^r}{dt}$$

• then it is sustituted for the third

$$\frac{d^2 M_x^r}{dt^2} = -\gamma^2 B_1^2 M_x^r$$

The so obtained equation is very common, e.g. in the classical harmonic oscillator $d^2 u$

$$\frac{d^2y}{dt^2} + \omega^2 y = 0$$

Its general solution is:

$$M_x^{r} = C_1 \cos(-\gamma B_1 t) + C_2 \sin(-\gamma B_1 t)$$

 C_1 and C_2 are two constants that must be determined on the basis of the initial conditions:

■Max is M₀ (when il sin=1), thus C₂= M₀

sometimes $-\gamma B_1$ is written as ω_1 and called Rabi frequency

The espression found for M_x^{r} is substituted in the differential equation for M_z^{r} :

$$\frac{dM_z^r}{dt} = \gamma B_1 M_0 \sin(-\gamma B_1 t)$$

$$M_z^{r}(t) = M_0 \cos(-\gamma B_1 t)$$

• The applicaton of an oscillating magnetic field, in the plane perpendicular to the intrumental static field, with frequency equal to the Larmor fequency induces M rotation about the axis on which B₁ in lying.

In the present case its rotation takes place in the zx plane

The rotation angle

$$\beta = -\gamma B_1 t$$

If B_1 , lies along another axis:

Measurement of the $\pi/2$ Pulse Length

- The NMR signal is proprotional to the component of magnetization in the plane perpendicular to B₀
- Acquiring various signaks obtained upon increasing the r.f. pulse length a sine dependence on time must be observed
- The first maximum of the sinus curve occurs at $-\gamma B_1 t = \pi/2$

Measurement of $\pi/2$ Pulse Length

- γ depends on the nucleus
- $B^{}_1$ depends on the instrument, usually is such to have $t^{}_{\pi/2}$ on the order of 10 μs
- if $\pi/2=10 \ \mu s$ for ¹H ($\gamma_{H}=26.75 \cdot 10^{7} \ radT^{-1}s^{-1}$)
- $B_1 = 5.84 \cdot 10^{-4} T$
- The trasmitter for the heternuclei is more powerful, e.g. if $\pi/2 = 10 \ \mu s$ for ${}^{13}C (\gamma_C = 6.73 \cdot 10^7 \ radT^{-1}s^{-1}) B_1 = 23.3 \cdot 10^{-4} \ T$
- if $\pi/2$ for ¹⁵N (γ_N = -2.71 · 10⁷ radT⁻¹s⁻¹) is 52 µs: B₁=11.15 ·10⁻⁴ T

Inhomogeneity of B₁

B₁ may slightly differ over the sample

the signal should be zero for a π pulse