
Description	of	the	evolution	of	the	
macroscopic	magnetic	vector	by	the	
phenomenological	Bloch	equations	



R.F.	Magnetic	Field	

•  Nuclear	magnetic	resonance	is	obtained	by	
applying	an	electromagnetic	radiation	in	the	
radiofrequency	range		

•  The	radiofrequence,	owing	to	the	way	it	is	
originated,	is	coherent	and	linearly	polarized	



Rotating	Magnetic	Field	B1	
A	linearly	polarized	magnetic	field	can	be	
represented	as	the	sum	of	two	
counterotating	circularly	polarized	fields	

Mazinga	ed	il	pugno	
atomico	rotante	
http://animeoltre.altervista.org/robot/	
grandemazinga.html	
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Brf	is	the	linearly	polarized	r.f.	magnetic	field	

The	xy	plane	is	
perpendicular	to	z	
axis,	which	is	
coincident	with	the	
directionof	the	static	
magnetic	field	B0	

Brf(t)=2B1cos(ωrft+φ)ex	

Brf(t)=	B1cos(ωrft+φ)ex	+	i	B1sin(ωrft+φ)ey	
										+		B1cos(ωrft+φ)ex	–	i	B1sin(ωrft+φ)ey	

recalling	the	Euler	formula:	 eiα=cosα+i	senα



Brf(t)=B1exp[i(ωrft+φ)]	+	B1exp[-i(ωrft+φ)]	

The	effect	is	exclusively	due	to	the	rotating	field	with	the	same	
sense	as	Larmor	precession	of	the	examined	nucleus	(	which	
depends	on	the	sign	of	γN),	the	latter	field	is	disregarded	

Brf(t)	can	be	represented	by	B1exp[i(ωrft+φ)]		

The	ensamble	of	nuclei	is	affected	
both	by	the	permanent	static	
magnetic	field,	B0,	and	by	the		r.f.	
field,	Brf(t).	The	latter	may	be	
applied	just	during	certain	times,		
with	the	aid	of	the	gates	of	
radiofrequency.		



Motion of a Magnetic Moment in the 
presence of a Mgnetic Field  

It	is	described	by	the	following	equation	
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Actually,	they	are	3	coupled	differintial	equations.		

it	can	be	checked	by	expliciting	the	vector	product.	

This	equation	is	based	on:	



A	magnetic	moment	in	the	presence	of	a	magnetic	field	is	
affected	by	a	torque	

A	well	known	example	is	the	
compass	needle,	which	
aligns	with	the	earth	
magnetic	field	

that	acts	to	bring	it	to	the	position	of	minimum	energy,	i.e.	
parallel	to	the	magnetic	field	
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vector	product	by	use	of	the	determinant	
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)( yzzy BMBMi −
i,	j	and	k	are	unit	vectors	

)( zxxz BMBMj −

)( xyyx BMBMk −

equations	to	be	solved:	
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The	method	to	solve	these	equations	is	to	employ	a	
rotating	frame,	where	the	r.f.	magnetic	field	is	static.	
In	this	way	the	coefficients	are	time	independent.	
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Axes Rotations 
γ	rotation	angle	about	z	axis	

y’=	ycosγ -	xsenγ

x’=	xcosγ	+	ysenγ



e.g..	P(x=3,	y=5)	γ=	30°	y’=?	x’=?	
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The	point	P	position	can	be	represented	by	the	vector	rP	
	with	components	x	and	y	in	the	former	frame	

and	x’ and	y’ in	the	new	axes	system	



Transform Matrix for Axes Rotation 

Vector	components:	column	
matrix	
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The	transform	matrix	is	a	square	matrix	of	the	suited	
coefficients	2x2	in	the	former	case	and	3x3	in	the	
latter	



Transform by rotating of a γ angle 
about z 
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Trasform	matrix	for	rotation	of	a	γ	about		z	in	3	

D	
	

100
0cossin
0sincos

)( γγ

γγ

γ −=zT

NB	to	transform	from	the	lab	frame	to	the	
rotating	frame	

γ=	ωRFt	



Magnetization	Evolution	in	the	Rotating	Frame	
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Efficient	Magnetic	Field	Beff	
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the	rotating	frame	is	such	
that	B1	lies	on	y’axis	

modulus	of	Beff	 Larmor	frequency	

ω0=	-γB0	
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For	the	isofrequency	case	
ωRF=ω0,	Ω0=	0,	ΔB0=	0		

thus	Beff	coincides	with	B1	
	Ω0=ω0-ωRF	with	



Pulsed	Experiment	in	the	Isofrequency	
Case	

• At	equilibrium	M	is	aligned	with	the	z	
axis	(M0)	

• the	e.m.	radiation	of	νRF=ν0	is	applied	
• The	motion	of	the	M	vector	is	
described	in	a	frame	with	y’axis	
coinciding	with	the	r.f.	rotating		
magnetic	field,	B1		

M0	

B0	



Magnetic	Field	B	in	the	Rotating	Frame	
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Magnetic	Field	B1	in	the	Rotating	
Frame	
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Choosing	sensitively	the	phase	angle	(φ)	B1	may	lie	

on	either	axis	x’ or	y’ or	–x’ or	–y’ (phase	shift	by	90°	and	
multiples)	

or	at	intermediate	positions	for	phase	shifts	lower	than	90°	
(not	implemented	in	the	oldest	spectrometers)	



Differential	Equations	for	the	Motion	of	M	in	the	Rotating	
Frame:	Isofrequency	

r
eff

r
r

BtM
dt
tMd !!

!

∧= )()(
γ

0

0

1BBreff =

1

1

)()(

0
)(

)()(

BtM
dt
tdM

dt
tdM

BtM
dt
tdM

r
x

r
z

r
y

r
z

r
x

γ

γ

=

=

−=

the	systems	of	to	coupled	
differential	equations	has	to	be	

solved	



• 	The	forme	is	derived	again	with	respect	to	t	
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• 	then	it	is	sustituted	for	the	third	
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The	so	obtained	equation	is	very	common,	e.g.	in	the	classical	
harmonic	oscillator	
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Its	general	solution	is:	

Mx
r=	C1cos(-γB1t)	+	C2sen(-γB1t)	



C1	and	C2	are	two	constants	that	must	be	determined	on	the	
basis	of	the	initial	conditions:	

§ 	t=0	Mx
r(0)=	0,	therefore	C1=	0	

§ Max	is	M0	(when	il	sin=1),	thus	C2=	M0	

Mx
r(t)=M0sin(-γB1t)	

sometimes	–γB1	is	written	as	ω1	and	called	Rabi	frequency	

The	espression	found	for	Mx
r	is	substituted	in	the	differential	

equation	for	Mz
r:	

)sin( 101 tBMB
dt
dM r

z γγ −=

Mz
r(t)=M0cos(-γB1t)	



• 		The	applicaton	of	an	oscillating	magnetic	field,	in	the	plane	
perpendicular	to	the	intrumental	static	field,	with	frequency	
equal	to	the	Larmor	fequency	induces	M	rotation	about	the	axis	
on	which	B1	in	lying.	

• 	In	the	present	case	its	rotation	takes	place	in	the	zx	plane	
• 	The	rotation	angle		 β=	-γB1t	

β

x’	
y
’	

z’	
If	B1,	lies	along	another	axis:	

B1	 M*	rotates	in	
the	plane	

x	 z(-y)	
-x	 zy	
-y	 z(-x)	



Measurement	of	the	π/2	Pulse	Length	

•  The	NMR	signal	is	proprotional	to	the	
component	of	magnetization	in	the	plane	
perpendicular	to	B0	

•  Acquiring	various	signaks	obtained	upon	
incresing	the	r.f.	pulse	length	a	sine	
dependence	on	time	must	be	observed	

•  The	first	maximum	of	the	sinus	curve	occurs	at		
–γB1t=	π/2	



•  	γ	depends	on	the	nucleus	
•  B1	depends	on	the	instrument,	usually	is	such	to	
have	tπ/2	on	the	order	of	10	µs	

•  if	π/2=	10	µs	for	1H	(γH=26.75·107	radT-1s-1)		
	B1=	5.84·10-4	T	
•  The	trasmitter	for	the	heternuclei	is	more	powerful,	
e.g.	if	π/2	=	10	µs	for	13C	(γC=	6.73·107	radT-1s-1)	B1=	
23.3	·10-4	T	

•  if	π/2	for	15N	(γN=	-2.71	·	107	radT-1s-1)	is	52	µs:	
B1=11.15	·10-4	T	

	

Measurement	of	π/2	Pulse	Length	



1H	of	CHCl3	in	aceton-d6	

t	from	1	to	30	µs	steps:	1	µs	

π/2	at13	µs	



Inhomogeneity	of	B1	
B1	may	slightly	differ	over	the	sample	

the	signal	should	be	
zero	for	a	π	pulse	


