
Cyber-Physical Systems

Laura Nenzi
Università degli Studi di Trieste

II Semestre 2018

Lecture: Hybrid Models

Actor Models
A box, where the inputs and the outputs are functions

!

!: # → %

%

Actor models are composable. We can form a cascade composition

Having continuous inputs

4

Input u(t) Output y

s1 s2
Guard/actionGuard/action

Guard/action

Guard/action

We will define a transition to occur when a guard on an outgoing transition from the cur-
rent state becomes enabled

Thermostat FSM preventing chattering

cooling heating

Temp ≤ 18 / ℎ)*+,-

Temp ≥ 22 / ℎ)*+,00

It could be event triggered, like the garage counter, in which case it will react whenever a
temperature input is provided. Alternatively, it could be time triggered, meaning that it
reacts at regular time intervals

Thermostat FSM with a continuous-time input signal

The outputs are present only at the times the transitions are taken

cooling heating

! " ≤ 18 / ℎ()"*+

!(") ≥ 22 / ℎ()"*00

! ℎ()"*+

ℎ()"*00

cooling heating

! " ≤ 18

!(") ≥ 22

The current state of the state machine has a state refinement that gives the dynamic
behavior of the output as a function of the input

State Refinements

h " = 0 h " = 1

! ℎ

Modal Models

A hybrid system is sometimes called a modal model because it has a finite
number of modes, one for each state of the FSM, and when it is in a mode, it
has dynamics specified by the state refinement.

Timed Automata

Ø Introduced by Alur and Dill (A theory of timed Automata, TCS,1994)

Ø They are the simplest non-trivial hybrid systems

Ø All they do is measure the passage of time

Ø A clock ! " is modeled by a first-ODE: !̇ = % ∀" ∈ ()

Timed Automata

cooling heating

! " < 20 ∧ ' " ≥)*
' " ≔ 0

! " ≥ 20 ∧ ' " ≥),
' " ≔ 0

h " = 0 h " = 1
! ℎ

s " : =)*

'̇ = 1 '̇ = 1

This is an assignment, not a predicate

cooling and heating are discrete states, s is a continuous state

Timed Automata

cooling heating

! " < 20 ∧ ' " ≥)*
' " ≔ 0

! " ≥ 20 ∧ ' " ≥),
' " ≔ 0

h " = 0 h " = 1
! ℎ

s " : =)*

'̇ = 1 '̇ = 1

This is an assignment, not a predicate

cooling and heating are discrete states, s is a continuous state

Hybrid Automata

cooling heating

! ≤ 18

! ≥ 22

!̇ = −* !
ℎ

! ≥ 18
!̇ = −* ! + -
! ≤ 20

! ≥ 18
ℎ = 0 ℎ = 1

!

u Ball dropped from an initial height of ℎ" with
an initial velocity of #"

u Velocity changes according to #̇ = −'
u When ball hits the ground, i.e. when ℎ (= 0,

velocity changes discretely from negative
(downward) to positive (upward)
� I.e. # (* ≔ −,#(() , where (* is just after (, and ,

is a damping constant
u Can model as a hybrid system!

Modeling a bouncing ball

13

Hybrid Process for Bouncing ball

14

"̇ = $
$̇ = −& ℎ ≤ 0

$ ≔ −+$ℎ = 10, $ = 15;

What happens as ℎ → 0?

Hybrid Time Set
A hybrid time set is a finite or infinite sequence of intervals

! = { $%, ' = 0,… ,*}:
• $% = !%, !%- ./0 ' < *
• $2 = !2, !2- or $2 = [!2, !2-) if M<∞
• !%- = !%45
• !% ≤ !%-

Hybrid Time Set: Length
Two notions of length for a hybrid time set ! = { $%, ' = 0,… ,*}:
• Discrete extent: < ! > = * + 1 number of discrete transition
• Continuous extent: ! = ∑%123 !%4 − !% total duration of interval in !

Hybrid Time Set: Classification

• Finite: if < " > is finite and I% = ["%, "%)]
• Infinite:if ||"|| is infinite
• Zeno: if < " > is infinite but ||"|| is finite

A hybrid set " = { -., / = 0,… ,2} is :

u Described by Greek philosopher Zeno in context of a race between Achilles and a
tortoise

u Tortoise has a head start over Achilles, but is much slower
u In each discrete round, suppose Achilles is d meters behind at the beginning of the

round
u During the round, Achilles runs d meters, but by then, tortoise has moved a little

bit further
u At the beginning of the next round, Achilles is still behind, by a distance of !×#

meters, where ! is a fraction 0<!<1
u By induction, if we repeat this for infinitely many rounds, Achilles will never catch

up!

Zeno’s Paradox

18

Non-Zeno hybrid process for bouncing ball

19

ℎ̇ = $
$̇ = −& ℎ = 0 →

$ ≔ −*$ℎ = 10, $ = 15

ℎ = 0 ∧ $ < 0 →
$ ≔ 0

halt

faling

u Inputs, Outputs, States (both continuous and discrete), Internal actions,
input and output actions exactly like the asynchronous model

u Continuous action/transition:

Hybrid Process

21

u Discrete mode ! does not change
u "(0) = "&
u

'" (
'(satisfies the given dynamical equation for mode !

u Output) satisfies the output equation for mode !:) * = ℎ-(" * , / *)
u At all times * ∈ 0, 1 , the state " * satisfies the invariant for mode !

(2, " 3) 2, " t + 11
/(*)/)(*)

u Discrete action/transition:
� Happens instantaneously
� Changes discrete mode ! to !"
� Can execute only if #(%&) evaluates to true
� Changes state variable value from %& to (%&
� (%& should satisfy mode invariant of q′
� Some definitions make # a function of % and *
� Output will change from ℎ, %& to ℎ,- (%&

Hybrid Process

22

(!, % &) !′, (%&
#(%)/% ≔ (%

u Hybrid systems can have surprising results with respect to stability

u No uniform method like Lyapunov analysis for analyzing all hybrid systems

u Example: Piecewise Linear (PWL) Dynamical System

� Special class of hybrid system, in which each mode has linear dynamics, guards, resets

are all linear/affine

� Each mode in the PWL system can have stable dynamics (by doing eigen-value analysis),

but resulting hybrid system may be unstable, or the opposite, each model in unstable

but the resulting hybrid system is stable.

Stability of hybrid systems

23

Example

24

"̇ = −1 10
−100 −1 " "̇ = −1 100

−10 −1 "

'(= −0.2'+ ?

'(= 5'+ ?

Dynamics in each mode are stable!

Simulation results

25

u Objective: Steer vehicle to follow a given track
u Control inputs: linear vehicle speed ! , vehicle angular velocity (#),

start/stop
u Constraints on control inputs:

� ! ∈ !&'(, !&'(/2,0
� # ∈ {−/, 0, /}

u Designer choice: ! = !&'(only if # = 0, otherwise ! = 2345
6

Design Application: Autonomous Guided Vehicle

26

On/Off control for Path following

27

!
"

#

$

Track

"̇ = (()*+/2) cos !
#̇ = ⁄()*+ 2 sin !

!̇ = −6
$ ≥ 8

"̇ = 0
#̇ = 0
!̇ = 0

"̇ = (()*+/2) cos !
#̇ = ⁄()*+ 2 sin !

!̇ = 6
$ ≤ −8

"̇ = ()*+ cos !
#̇ = ()*+ sin !

!̇ = 0
−8 ≤ $ ≤ 8

$ ≤ 8?

$ ≤ −8? $ ≥ −8?

$ ≥ 8?

<<? <=>?= ∧
$ ≥ 8? <<? <=AB <<?

<=AB

<<?
<=>?

= ∧

−8
≤ $

≤ 8
?

<<? <=AB

<<? <=>?= ∧
$ ≤ −8?

u When $ ∈ −8,+8 , controller decides
that vehicle goes straight, otherwise
executes a turn command to bring error
back in the interval

Turn right

Turn left

Go straight

Stationary

" ≔ "G
≔ #G
! ≔ !G

u Autonomous mobile robots in a room, goal for each robot:
� Reach a target at a known location
� Avoid obstacles (positions not known in advance)
� Minimize distance travelled

u Design Problems:
� Cameras/vision systems can provide estimates of obstacle positions

�When should a robot update its estimate of the obstacle position?
� Robots can communicate with each other

�How often and what information can they communicate?
� High-level motion planning

�What path in the speed/direction-space should the robots traverse?

Design Application: Robot Coordination

28

Path planning with obstacle avoidance

29

Goal

!

"

#$ = !$, "$

#' = !', "'

(,)'

(,)$

!*, "*

u Assumptions:
� Two-dimensional world
� Robots are just points
� Each robot travels with a fixed speed

u Dynamics for Robot +,:
� ̇!, = (cos),; ̇", = (sin),

u Design objectives:
� Eventually reach !*, "*
� Always avoid Obstacle1 and Obstacle 2
� Minimize distance travelled

+$

+'

Obstacle 1
#3$ = !3$, "3$

Obstacle 2
#3' = !3', "3'

1. Computer vision tasks
2. Actual path planning task

u Assume computer vision algorithm identifies obstacles, and labels them with
some easy-to-represent geometric shape (such as a bounding boxes)
� In this example, we will assume a sonar-based sensor, so we will use circles

u Assuming the vision algorithm is correct, do path planning based on the estimated
shapes of obstacles

u Design challenge:
� Estimate of obstacle shape is not the smallest shape containing the obstacle
� Shape estimate varies based on distance from obstacle

Divide path/motion planning into two parts

30

u Robot !" maintains radii #" and #$ that are
estimates of obstacle sizes

u Every % seconds, !" executes following
update to get estimates of shapes of each
obstacle:

#" ≔ min #", +" + - ." − .0" − +"
#$ ≔ min #$, +$ + - ." − .0$ − +$

u Computation of !$ is symmetric

Estimation error

31

##1

+"

Estimated shape
from distance 2′

Estimated shape
from distance 2

Smallest shape
bounding obstacle

Estimated radius (from distance d) # = + + -(2 − +),
where - ∈ [0,1] is a constant

.0" = <0", =0"

u Choose shortest path !" to target (to minimize
time)

u If estimate of obstacle 1 intersects !", calculate
two paths that are tangent to obstacle 1
estimate

u If estimate of obstacle 2 intersects !", or
obstacle 1, calculate tangent paths

u Plausible paths: !# and !$
u Calculate shorter one as the planned path

Path planning

32

!#

!$
!"
!%

&

'

(#

()#

()$

(&+, '+)

u Path planning inputs:
� Current position of robot
� Target position
� Position of obstacles and estimates

u Output:
� Direction for motion assuming obstacle estimates are correct

u May be useful to execute planning algorithm again as robot moves!
� Because estimates will improve closer to the obstacles
� Invoke planning algorithm every ! seconds

Dynamic path planning

33

u Every robot has its own estimate of the obstacle
u !"’s estimate of obstacle might be better than !#’s
u Strategy: every $ seconds, send estimates to other robot, and receive

estimates
u For estimate %&, use final estimate = min %&, %&+,-.
u Re-run path planner

Communication improves planning

34

Improved path planning through communication

35

!"

!#
!$

!%

&

'

("

()"

()#

(&+, '+)
!"

!#
!$

!%.

&

'

("(0)
()"

()#

(&+, '+)

("(0) Old path

New path available
because estimate of
obstacle 1 improved
after receiving estimate
from 1#

Hybrid State Machine for Communicating Robot

36

