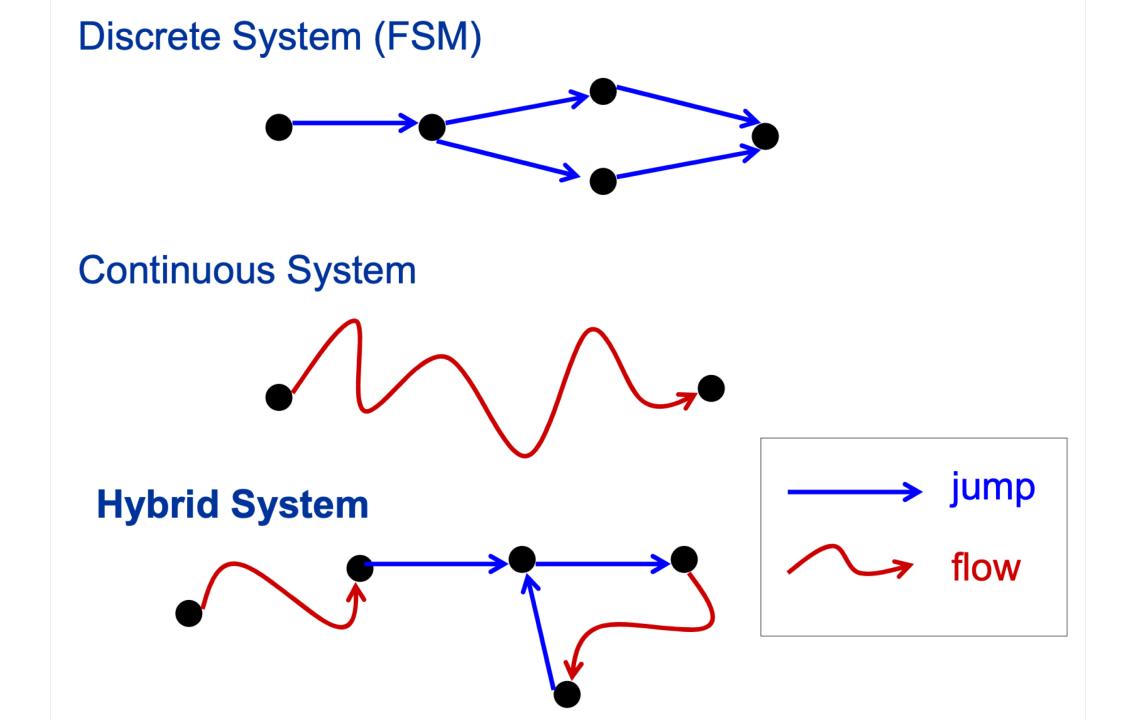
Cyber-Physical Systems

Laura Nenzi

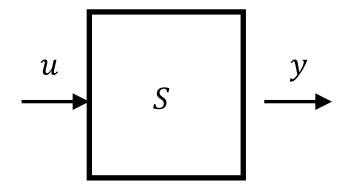
Università degli Studi di Trieste Il Semestre 2018

Lecture: Hybrid Models



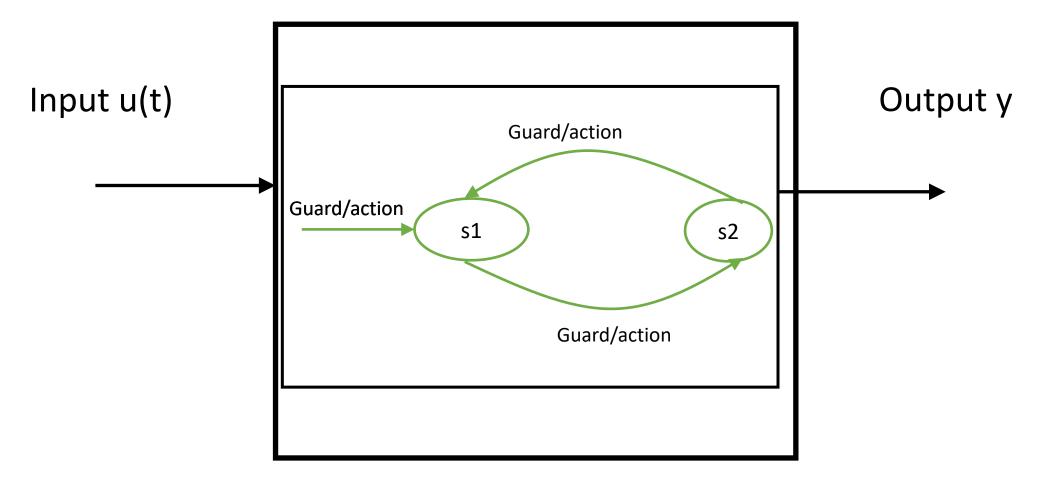
Actor Models

A box, where the inputs and the outputs are functions $S: u \rightarrow y$



Actor models are composable. We can form a cascade composition

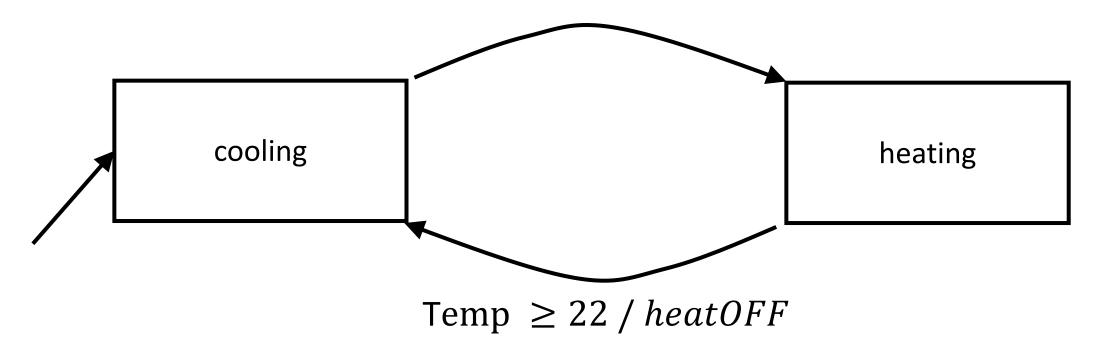
Having continuous inputs



We will define a transition to occur when a guard on an outgoing transition from the current state becomes enabled

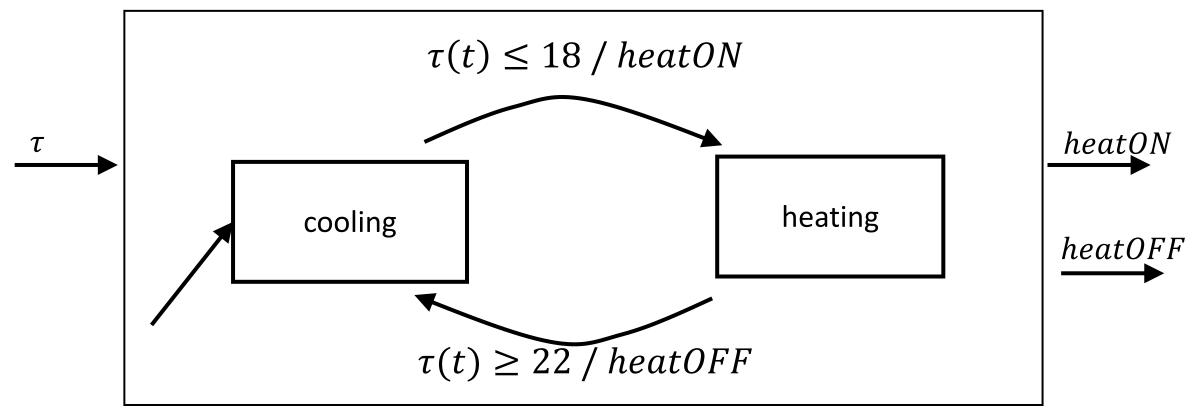
Thermostat FSM preventing chattering

Temp $\leq 18 / heatON$



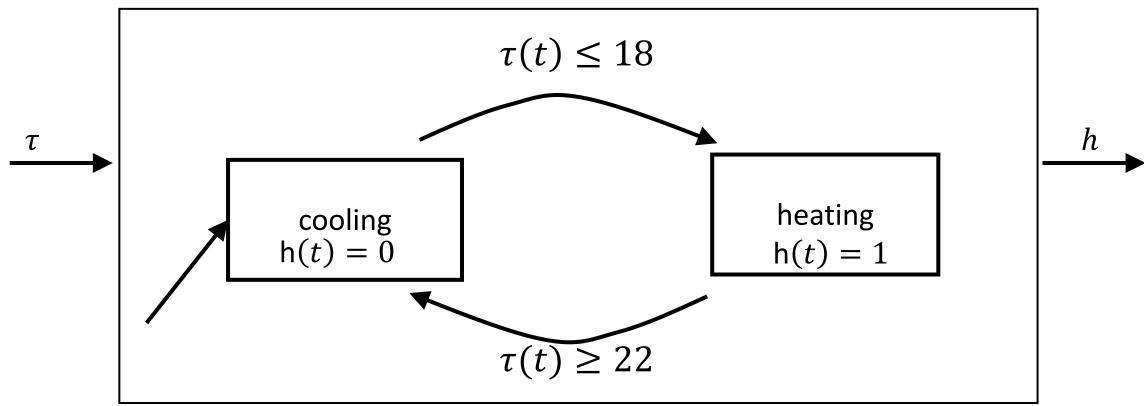
It could be event triggered, like the garage counter, in which case it will react whenever a *temperature* input is provided. Alternatively, it could be time triggered, meaning that it reacts at regular time intervals

Thermostat FSM with a continuous-time input signal



The outputs are present only at the times the transitions are taken

State Refinements



The current state of the state machine has a state refinement that gives the dynamic behavior of the output as a function of the input

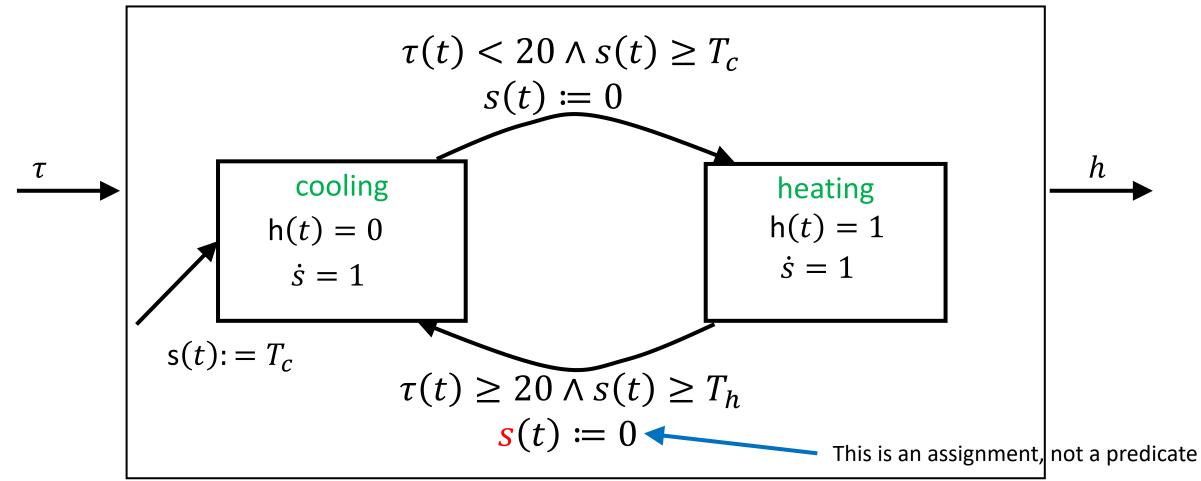
Modal Models

A hybrid system is sometimes called a modal model because it has a finite number of modes, one for each state of the FSM, and when it is in a mode, it has dynamics specified by the state refinement.

Timed Automata

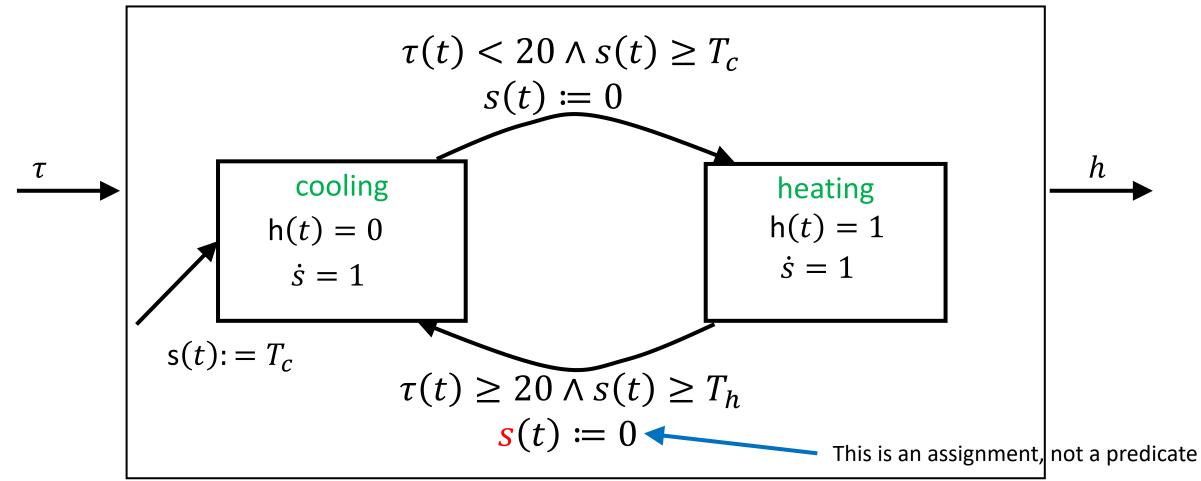
- > Introduced by Alur and Dill (A theory of timed Automata, TCS, 1994)
- > They are the simplest non-trivial hybrid systems
- > All they do is measure the passage of time
- → A clock s(t) is modeled by a first-ODE: $\dot{s} = a$ $\forall t \in T_m$

Timed Automata



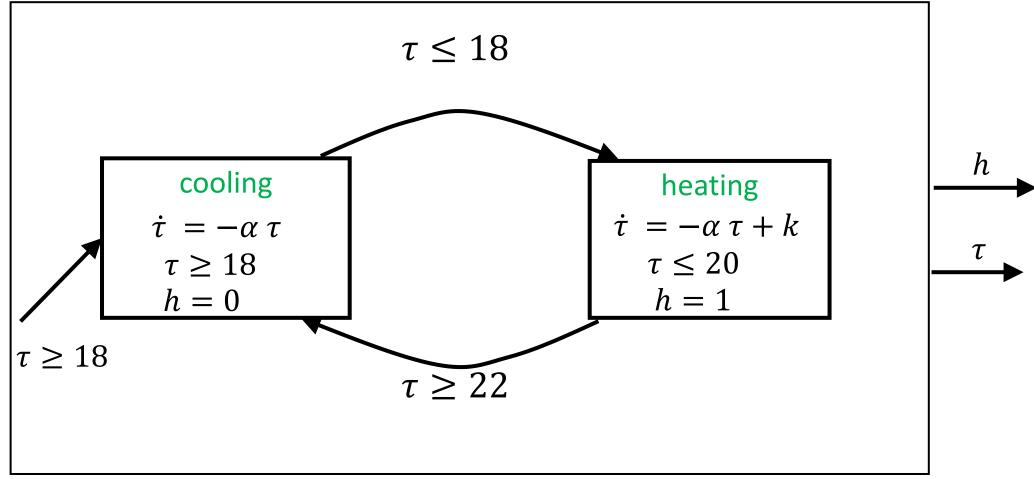
cooling and heating are discrete states, s is a continuous state

Timed Automata



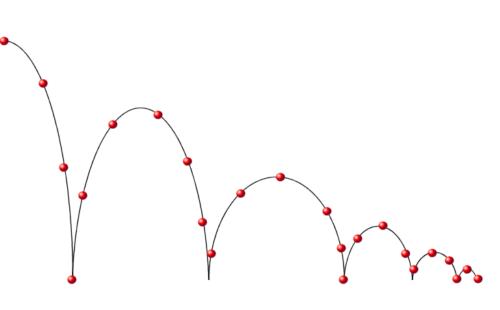
cooling and heating are discrete states, s is a continuous state

Hybrid Automata

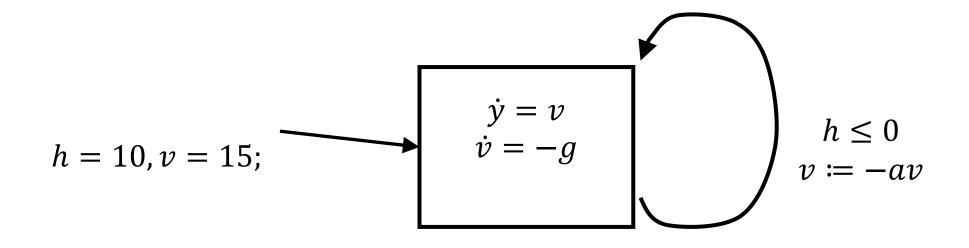


Modeling a bouncing ball

- Ball dropped from an initial height of h_0 with an initial velocity of v_0
- Velocity changes according to $\dot{v} = -g$
- When ball hits the ground, i.e. when h(t) = 0, velocity changes discretely from negative (downward) to positive (upward)
 - ▶ I.e. $v(t^+) \coloneqq -av(t)$, where t^+ is just after t, and a is a damping constant
- Can model as a hybrid system!



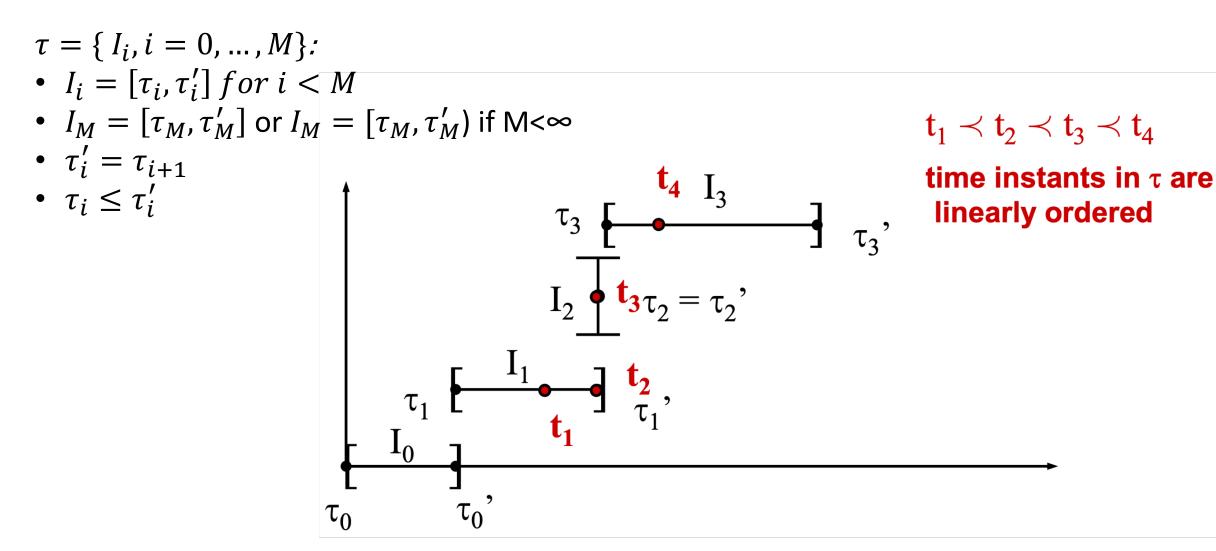
Hybrid Process for Bouncing ball



What happens as $h \rightarrow 0$?

Hybrid Time Set

A hybrid time set is a finite or infinite sequence of intervals

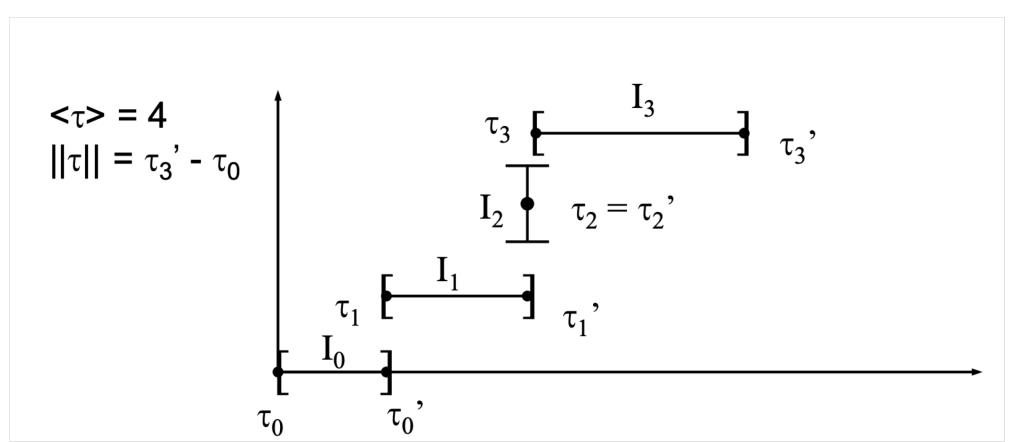


Hybrid Time Set: Length

Two notions of length for a hybrid time set $\tau = \{ I_i, i = 0, ..., M \}$:

- Discrete extent: $< \tau > = M + 1$
- Continuous extent: $||\tau|| = \sum_{i=0}^{M} |\tau'_i \tau_i|$

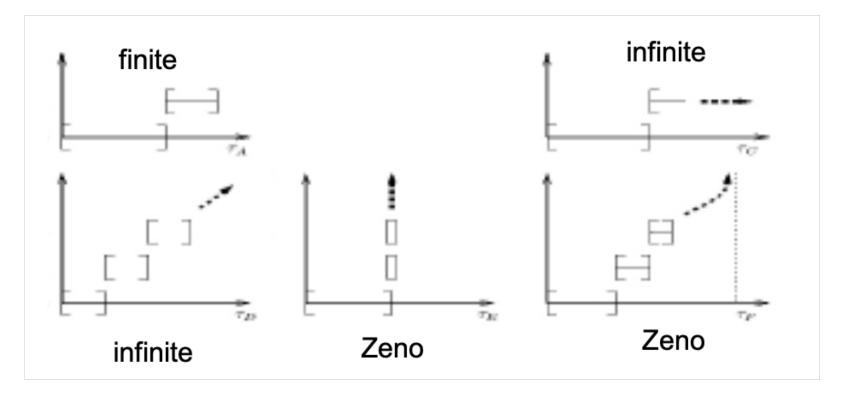
number of discrete transition total duration of interval in τ



Hybrid Time Set: Classification

A hybrid set $\tau = \{ I_i, i = 0, \dots, M \}$ is :

- Finite: if $< \tau >$ is finite and $I_M = [\tau_M, \tau'_M]$
- Infinite: if $||\tau||$ is infinite
- Zeno: if $< \tau >$ is infinite but $||\tau||$ is finite



Zeno's Paradox

- Described by Greek philosopher Zeno in context of a race between Achilles and a tortoise
- Tortoise has a head start over Achilles, but is much slower
- In each discrete round, suppose Achilles is d meters behind at the beginning of the round
- During the round, Achilles runs d meters, but by then, tortoise has moved a little bit further
- At the beginning of the next round, Achilles is still behind, by a distance of a×d meters, where a is a fraction 0<a<1</p>
- By induction, if we repeat this for infinitely many rounds, Achilles will never catch up!

Non-Zeno hybrid process for bouncing ball faling $\dot{h} = v$ $\dot{v} = -g$ $\begin{array}{l} h = 0 \ \rightarrow \\ v \coloneqq -av \end{array}$ h = 10, v = 15 $h = 0 \land v < \epsilon \rightarrow$ $v \coloneqq 0$ halt

Hybrid Process

 $\mathbf{x}(0) = \mathbf{x}_{\tau}$

- Inputs, Outputs, States (both continuous and discrete), Internal actions, input and output actions exactly like the asynchronous model
- Continuous action/transition:
 - Discrete mode *m* does not change

$$(q, \mathbf{x}_{\tau}) \xrightarrow{\mathbf{u}(t)/\mathbf{y}(t)}_{\delta} (q, \mathbf{x}(t+\delta))$$

- $\frac{d\mathbf{x}(t)}{dt}$ satisfies the given dynamical equation for mode m
- Output **y** satisfies the output equation for mode m: $\mathbf{y}(t) = h_q(\mathbf{x}(t), \mathbf{u}(t))$
- At all times $t \in [0, \delta]$, the state $\mathbf{x}(t)$ satisfies the invariant for mode m

Hybrid Process

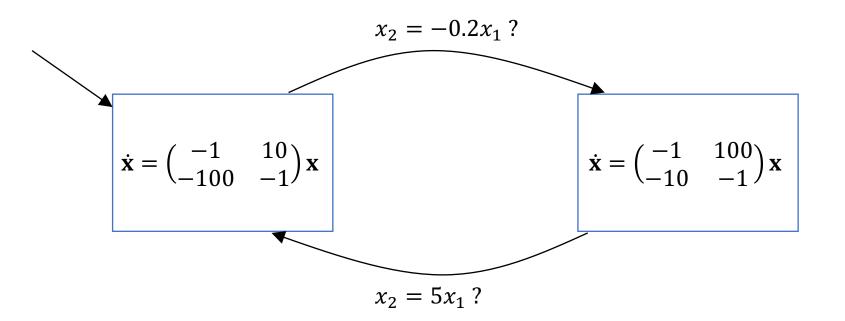
- Discrete action/transition:
 - Happens instantaneously
 - Changes discrete mode q to q'
 - ▶ Can execute only if $g(\mathbf{x}_{\tau})$ evaluates to true
 - Changes state variable value from \mathbf{x}_{τ} to $r(\mathbf{x}_{\tau})$
 - ▶ $r(\mathbf{x}_{\tau})$ should satisfy mode invariant of q'
 - Some definitions make g a function of \mathbf{x} and \mathbf{u}
 - Output will change from $h_q(\mathbf{x}_{\tau})$ to $h_{q'}(r(\mathbf{x}_{\tau}))$

$$(q, \mathbf{x}_{\tau}) \xrightarrow{g(\mathbf{x})/\mathbf{x} \coloneqq r(\mathbf{x})} (q', r(\mathbf{x}_{\tau}))$$

Stability of hybrid systems

- Hybrid systems can have surprising results with respect to stability
- No uniform method like Lyapunov analysis for analyzing all hybrid systems
- Example: Piecewise Linear (PWL) Dynamical System
 - Special class of hybrid system, in which each mode has linear dynamics, guards, resets are all linear/affine
 - Each mode in the PWL system can have stable dynamics (by doing eigen-value analysis), but resulting hybrid system may be unstable, or the opposite, each model in unstable but the resulting hybrid system is stable.

Example



Dynamics in each mode are stable!

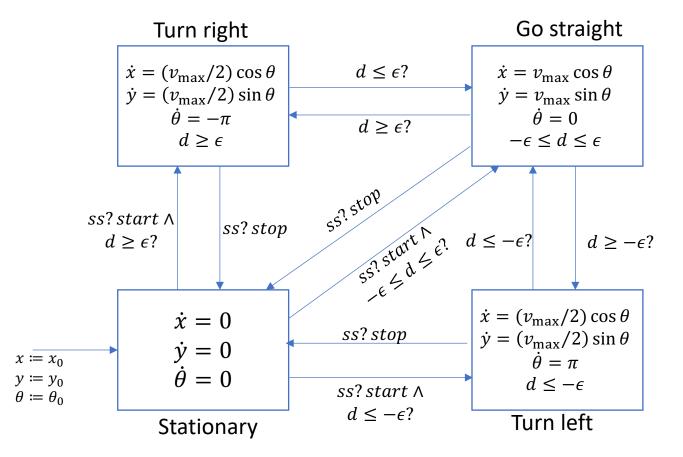
Simulation results

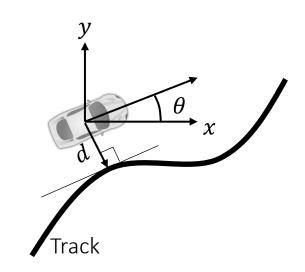
Design Application: Autonomous Guided Vehicle

- Objective: Steer vehicle to follow a given track
- Control inputs: linear vehicle speed (v), vehicle angular velocity (ω), start/stop
- Constraints on control inputs:
 - ▶ $v \in \{v_{\max}, v_{\max}/2, 0\}$ ▶ $\omega \in \{-\pi, 0, \pi\}$

• Designer choice: $v = v_{max}$ only if $\omega = 0$, otherwise $v = \frac{v_{max}}{2}$

On/Off control for Path following



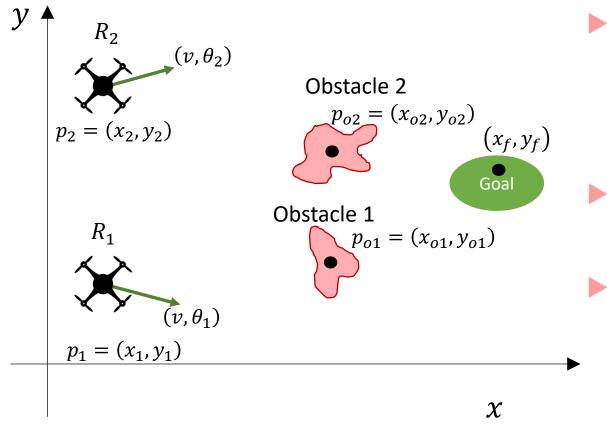


When $d \in [-\epsilon, +\epsilon]$, controller decides that vehicle goes straight, otherwise executes a turn command to bring error back in the interval

Design Application: Robot Coordination

- Autonomous mobile robots in a room, goal for each robot:
 - Reach a target at a known location
 - Avoid obstacles (positions not known in advance)
 - Minimize distance travelled
- Design Problems:
 - Cameras/vision systems can provide estimates of obstacle positions
 - When should a robot update its estimate of the obstacle position?
 - Robots can communicate with each other
 - How often and what information can they communicate?
 - High-level motion planning
 - What path in the speed/direction-space should the robots traverse?

Path planning with obstacle avoidance

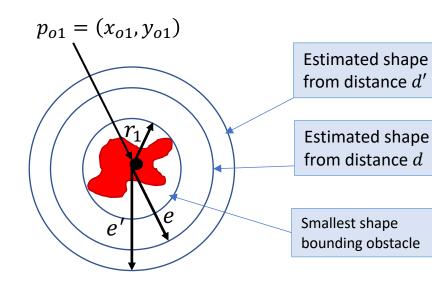


- Assumptions:
 - Two-dimensional world
 - Robots are just points
 - Each robot travels with a fixed speed
- Dynamics for Robot R_i :
 - $\blacktriangleright \dot{x_i} = \nu \, \cos \theta_i; \, \dot{y_i} = \nu \, \sin \theta_i$
- Design objectives:
 - Eventually reach (x_f, y_f)
 - Always avoid Obstacle1 and Obstacle 2
 - Minimize distance travelled

Divide path/motion planning into two parts

- 1. Computer vision tasks
- 2. Actual path planning task
- Assume computer vision algorithm identifies obstacles, and labels them with some easy-to-represent geometric shape (such as a bounding boxes)
 - In this example, we will assume a sonar-based sensor, so we will use circles
- Assuming the vision algorithm is correct, do path planning based on the estimated shapes of obstacles
- Design challenge:
 - Estimate of obstacle shape is not the smallest shape containing the obstacle
 - Shape estimate varies based on distance from obstacle

Estimation error



- Robot R_1 maintains radii e_1 and e_2 that are estimates of obstacle sizes
- Every τ seconds, R_1 executes following update to get estimates of shapes of each obstacle:

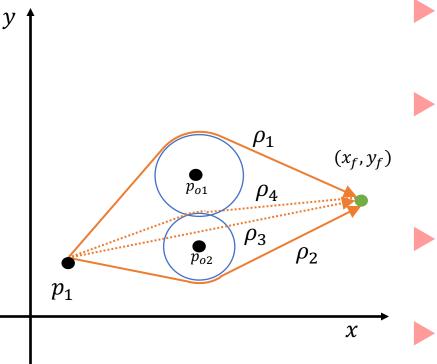
$$e_{1} \coloneqq \min(e_{1}, r_{1} + a(||p_{1} - p_{o1}|| - r_{1}))$$

$$e_{2} \coloneqq \min(e_{2}, r_{2} + a(||p_{1} - p_{o2}|| - r_{2}))$$

Computation of R₂ is symmetric

Estimated radius (from distance d) e = r + a(d - r), where $a \in [0,1]$ is a constant

Path planning



- Choose shortest path ρ_3 to target (to minimize time)
- If estimate of obstacle 1 intersects ρ_3 , calculate two paths that are tangent to obstacle 1 estimate
- If estimate of obstacle 2 intersects ρ_3 , or obstacle 1, calculate tangent paths
- Plausible paths: ρ_1 and ρ_2
- Calculate shorter one as the planned path

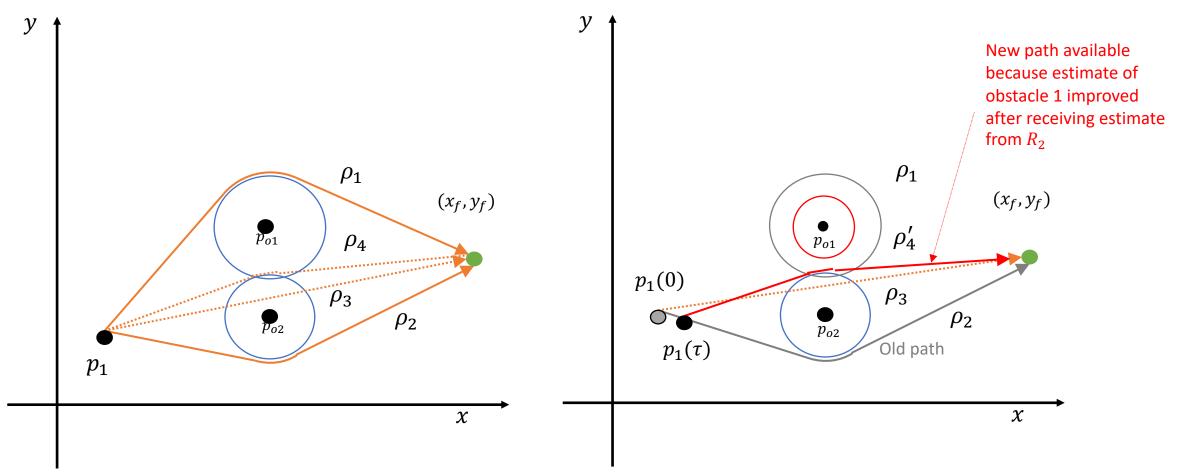
Dynamic path planning

- Path planning inputs:
 - Current position of robot
 - Target position
 - Position of obstacles and estimates
- Output:
 - Direction for motion assuming obstacle estimates are correct
- May be useful to execute planning algorithm again as robot moves!
 - Because estimates will improve closer to the obstacles
 - Invoke planning algorithm every τ seconds

Communication improves planning

- Every robot has its own estimate of the obstacle
- \triangleright R_2 's estimate of obstacle might be better than R_1 's
- Strategy: every τ seconds, send estimates to other robot, and receive estimates
- For estimate e_i , use final estimate = min (e_i, e_i^{recv})
- Re-run path planner

Improved path planning through communication



Hybrid State Machine for Communicating Robot

$$(z_{c} = t_{c}) \rightarrow \{out! (e_{1}, e_{2}); z_{c} := 0\}$$

$$clock z_{p}, z_{e}, z_{c} := 0$$

$$x := x_{0}; y := y_{0}$$

$$e_{1} := r_{1} + a(dist((x, y), (x_{o}^{1}, y_{o}^{1})) - r_{1}))$$

$$e_{2} := r_{2} + a(dist((x, y), (x_{o}^{2}, y_{o}^{2})) - r_{2}))$$

$$\theta := plan(x, y, x_{f}, y_{f}, e_{1}, e_{2})$$

$$\theta := plan(x, y, x_{f}, y_{f}, e_{1}, e_{2})$$

$$x := v \cos \theta$$

$$y = v \sin \theta$$

$$z_{p} \leq t_{p} \land z_{c} \leq t_{c} \land z_{e} \leq t_{e}$$

$$\wedge (x \neq x_{f} \lor y \neq y_{f})$$

$$(z_{e} = t_{e}) \rightarrow \{z_{e} := 0;$$

$$e_{1} := min(e_{1}, r_{1} + a(dist((x, y), (x_{o}^{1}, y_{o}^{1})) - r_{1}));$$

$$e_{2} := min(e_{2}, r_{2} + a(dist((x, y), (x_{o}^{2}, y_{o}^{2})) - r_{2}))) \}$$