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Actor Models
A box, where the inputs and the outputs are functions

!

!: # → %

# %

Actor models are composable. We can form a cascade composition



Having continuous inputs
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Input u(t) Output y

s1 s2
Guard/actionGuard/action

Guard/action

Guard/action

We will define a transition to occur when a guard on an outgoing transition from the cur-
rent state becomes enabled 



Thermostat FSM preventing chattering

cooling heating

Temp ≤ 18 / ℎ)*+,-

Temp ≥ 22 / ℎ)*+,00

It could be event triggered, like the garage counter, in which case it will react whenever a 
temperature input is provided. Alternatively, it could be time triggered, meaning that it 
reacts at regular time intervals 



Thermostat FSM with a continuous-time input signal

The outputs are present only at the times the transitions are taken 

cooling heating

! " ≤ 18 / ℎ()"*+

!(") ≥ 22 / ℎ()"*00

! ℎ()"*+

ℎ()"*00



cooling heating

! " ≤ 18

!(") ≥ 22

The  current state of the state machine has a state refinement that gives the dynamic 
behavior of the output as a function of the input 

State Refinements

h " = 0 h " = 1

! ℎ



Modal Models

A hybrid system is sometimes called a modal model because it has a finite 
number of modes, one for each state of the FSM, and when it is in a mode, it 
has dynamics specified by the state refinement. 



Timed Automata

Ø Introduced by Alur and Dill ( A theory of timed Automata, TCS,1994)

Ø They are the simplest non-trivial hybrid systems 

Ø All they do is measure the passage of time

Ø A clock ! " is modeled by a first-ODE:   !̇ = % ∀" ∈ ()



Timed Automata

cooling heating

! " < 20 ∧ ' " ≥ )*
' " ≔ 0

! " ≥ 20 ∧ ' " ≥ ),
' " ≔ 0

h " = 0 h " = 1
! ℎ

s " : = )*

'̇ = 1 '̇ = 1

This is an assignment, not a predicate

cooling and heating are discrete states, s is a continuous state 



Timed Automata

cooling heating

! " < 20 ∧ ' " ≥ )*
' " ≔ 0

! " ≥ 20 ∧ ' " ≥ ),
' " ≔ 0

h " = 0 h " = 1
! ℎ

s " : = )*

'̇ = 1 '̇ = 1

This is an assignment, not a predicate

cooling and heating are discrete states, s is a continuous state 



Hybrid Automata

cooling heating

! ≤ 18

! ≥ 22

!̇ = −* !
ℎ

! ≥ 18
!̇ = −* ! + -
! ≤ 20

! ≥ 18
ℎ = 0 ℎ = 1

!



u Ball dropped from an initial height of ℎ" with 
an initial velocity of #"

u Velocity changes according to #̇ = −'
u When ball hits the ground, i.e. when ℎ ( = 0, 

velocity changes discretely from negative 
(downward) to positive (upward)
� I.e. # (* ≔ −,#(() , where (* is just after (, and ,

is a damping constant
u Can model as a hybrid system!

Modeling a bouncing ball
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Hybrid Process for Bouncing ball
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"̇ = $
$̇ = −& ℎ ≤ 0

$ ≔ −+$ℎ = 10, $ = 15;

What happens as ℎ → 0?



Hybrid Time Set
A hybrid time set is a finite or infinite sequence of intervals

! = { $%, ' = 0,… ,*}:
• $% = !%, !%- ./0 ' < *
• $2 = !2, !2- or $2 = [!2, !2- ) if M<∞
• !%- = !%45
• !% ≤ !%-



Hybrid Time Set: Length
Two notions of length for a hybrid time set ! = { $%, ' = 0,… ,*}:
• Discrete extent: < ! > = * + 1 number of discrete transition
• Continuous extent: ! = ∑%123 !%4 − !% total duration of interval in !



Hybrid Time Set: Classification

• Finite: if < " > is finite and I% = ["%, "%) ]
• Infinite:if ||"|| is infinite 
• Zeno: if < " > is infinite but ||"|| is finite 

A hybrid set " = { -., / = 0,… ,2} is :



u Described by Greek philosopher Zeno in context of a race between Achilles and a 
tortoise

u Tortoise has a head start over Achilles, but is much slower
u In each discrete round, suppose Achilles is d meters behind at the beginning of the 

round
u During the round, Achilles runs d meters, but by then, tortoise has moved a little 

bit further
u At the beginning of the next round, Achilles is still behind, by a distance of !×#

meters, where ! is a fraction 0<!<1
u By induction, if we repeat this for infinitely many rounds, Achilles will never catch 

up!

Zeno’s Paradox
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Non-Zeno hybrid process for bouncing ball
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ℎ̇ = $
$̇ = −& ℎ = 0 →

$ ≔ −*$ℎ = 10, $ = 15

ℎ = 0 ∧ $ < 0 →
$ ≔ 0

halt

faling



u Inputs, Outputs, States (both continuous and discrete), Internal actions, 
input and output actions exactly like the asynchronous model

u Continuous action/transition:

Hybrid Process
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u Discrete mode ! does not change
u "(0) = "&
u

'" (
'( satisfies the given dynamical equation for mode !

u Output ) satisfies the output equation for mode !: ) * = ℎ-(" * , / * )
u At all times * ∈ 0, 1 , the state " * satisfies the invariant for mode !

(2, " 3) 2, " t + 11
/(*)/)(*)



u Discrete action/transition:
� Happens instantaneously
� Changes discrete mode ! to !"
� Can execute only if #(%&) evaluates to true
� Changes state variable value from %& to ( %&
� ( %& should satisfy mode invariant of q′
� Some definitions make # a function of % and *
� Output will change from ℎ, %& to ℎ,- ( %&

Hybrid Process
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(!, % &) !′, ( %&
#(%)/% ≔ ( %



u Hybrid systems can have surprising results with respect to stability

u No uniform method like Lyapunov analysis for analyzing all hybrid systems

u Example: Piecewise Linear (PWL) Dynamical System

� Special class of hybrid system, in which each mode has linear dynamics, guards, resets 

are all linear/affine

� Each mode in the PWL system can have stable dynamics (by doing eigen-value analysis), 

but resulting hybrid system may be unstable, or the opposite, each model in unstable 

but the resulting hybrid system is stable.

Stability of hybrid systems
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Example
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"̇ = −1 10
−100 −1 " "̇ = −1 100

−10 −1 "

'( = −0.2'+ ?

'( = 5'+ ?

Dynamics in each mode are stable!



Simulation results
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u Objective: Steer vehicle to follow a given track
u Control inputs: linear vehicle speed ! , vehicle angular velocity (#), 

start/stop 
u Constraints on control inputs:

� ! ∈ !&'(, !&'(/2,0
� # ∈ {−/, 0, /}

u Designer choice: ! = !&'( only if # = 0, otherwise ! = 2345
6

Design Application: Autonomous Guided Vehicle
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On/Off control for Path following
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!
"

#

$

Track

"̇ = (()*+/2) cos !
#̇ = ⁄()*+ 2 sin !

!̇ = −6
$ ≥ 8

"̇ = 0
#̇ = 0
!̇ = 0

"̇ = (()*+/2) cos !
#̇ = ⁄()*+ 2 sin !

!̇ = 6
$ ≤ −8

"̇ = ()*+ cos !
#̇ = ()*+ sin !

!̇ = 0
−8 ≤ $ ≤ 8

$ ≤ 8?

$ ≤ −8? $ ≥ −8?

$ ≥ 8?

<<? <=>?= ∧
$ ≥ 8? <<? <=AB <<?

<=AB

<<?
<=>?

= ∧

−8
≤ $

≤ 8
?

<<? <=AB

<<? <=>?= ∧
$ ≤ −8?

u When $ ∈ −8,+8 , controller decides 
that vehicle goes straight, otherwise 
executes a turn command to bring error 
back in the interval

Turn right

Turn left

Go straight

Stationary

" ≔ "G
# ≔ #G
! ≔ !G



u Autonomous mobile robots in a room, goal for each robot:
� Reach a target at a known location
� Avoid obstacles (positions not known in advance)
� Minimize distance travelled

u Design Problems:
� Cameras/vision systems can provide estimates of obstacle positions

�When should a robot update its estimate of the obstacle position?
� Robots can communicate with each other

�How often and what information can they communicate?
� High-level motion planning

�What path in the speed/direction-space should the robots traverse?

Design Application: Robot Coordination
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Path planning with obstacle avoidance
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Goal

!

"

#$ = !$, "$

#' = !', "'

(, )'

(, )$

!*, "*

u Assumptions:
� Two-dimensional world 
� Robots are just points
� Each robot travels with a fixed speed

u Dynamics for Robot +,:
� ̇!, = ( cos ),; ̇", = ( sin ),

u Design objectives:
� Eventually reach !*, "*
� Always avoid Obstacle1 and Obstacle 2
� Minimize distance travelled

+$

+'

Obstacle 1
#3$ = !3$, "3$

Obstacle 2
#3' = !3', "3'



1. Computer vision tasks
2. Actual path planning task

u Assume computer vision algorithm identifies obstacles, and labels them with 
some easy-to-represent geometric shape (such as a bounding boxes)
� In this example, we will assume a sonar-based sensor, so we will use circles

u Assuming the vision algorithm is correct, do path planning based on the estimated 
shapes of obstacles

u Design challenge: 
� Estimate of obstacle shape is not the smallest shape containing the obstacle
� Shape estimate varies based on distance from obstacle

Divide path/motion planning into two parts
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u Robot !" maintains radii #" and #$ that are 
estimates of obstacle sizes

u Every % seconds, !" executes following 
update to get estimates of shapes of each 
obstacle:

#" ≔ min #", +" + - ." − .0" − +"
#$ ≔ min #$, +$ + - ." − .0$ − +$

u Computation of !$ is symmetric

Estimation error
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##1

+"

Estimated shape 
from distance 2′

Estimated shape 
from distance 2

Smallest shape 
bounding obstacle

Estimated radius (from distance d) # = + + -(2 − +), 
where - ∈ [0,1] is a constant

.0" = <0", =0"



u Choose shortest path !" to target (to minimize 
time)

u If estimate of obstacle 1 intersects !", calculate 
two paths that are tangent to obstacle 1 
estimate

u If estimate of obstacle 2 intersects !", or 
obstacle 1, calculate tangent paths

u Plausible paths: !# and !$
u Calculate shorter one as the planned path

Path planning
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u Path planning inputs:
� Current position of robot
� Target position
� Position of obstacles and estimates

u Output: 
� Direction for motion assuming obstacle estimates are correct

u May be useful to execute planning algorithm again as robot moves!
� Because estimates will improve closer to the obstacles
� Invoke planning algorithm every ! seconds

Dynamic path planning
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u Every robot has its own estimate of the obstacle
u !"’s estimate of obstacle might be better than !#’s
u Strategy: every $ seconds, send estimates to other robot, and receive 

estimates
u For estimate %&, use final estimate = min %&, %&+,-.
u Re-run path planner

Communication improves planning
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Improved path planning through communication
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!#
!$

!%
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("(0) Old path

New path available
because estimate of 
obstacle 1 improved 
after receiving estimate 
from 1#



Hybrid State Machine for Communicating Robot
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