## Exercises QFT II — 2018/2019

Problem Sheet 3

## Problem 5: Effective action and Green's functions

Consider the 1PI effective action

$$\Gamma[\psi] \equiv W[J] - \int d^4x J(x) \psi(x) \qquad (e^{iW[J]} = Z[J]), \qquad (1)$$

where

$$\psi(x) \equiv \langle \Omega | \phi(x) | \Omega \rangle_J = \frac{\delta W[J]}{\delta J}. \tag{2}$$

1. Verify that the  $\psi$  given by (2) satisfies the equation  $\frac{\delta\Gamma}{\delta\psi(x)} = -J(x)$ .

Consider the free scalar theory given by

$$S = \int d^4x \left( \frac{1}{2} \partial_\mu \phi(x) \partial^\mu \phi(x) - \frac{m^2}{2} \phi(x)^2 \right) . \tag{3}$$

2. Compute  $\Gamma[\psi]$  for this simple case. Remember that for a free scalar theory

$$W[J] = -\frac{1}{2} \int d^4x \, d^4y \, J(x) \Delta_F(x-y) J(y)$$
 and  $\Delta_F(x-y) = \int \frac{d^4p}{(2\pi)^4} \frac{e^{-ip\cdot(x-y)}}{p^2 - m^2 + i\epsilon}$ .

Define

$$\Gamma^{(n)}(x_1, ..., x_n) \equiv \frac{\delta^n \Gamma[\psi]}{\delta \psi(x_1) ... \delta \psi(x_n)} \bigg|_{\psi = 0} . \tag{4}$$

3. Compute the Fourier transform  $\tilde{\Gamma}^{(2)}(p_1, p_2)$  of  $\Gamma^{(2)}(x_1, x_2)$ , where

$$\tilde{\Gamma}^{(n)}(p_1, ..., p_n) = \int \frac{d^4x_1}{(2\pi)^2} ... \int \frac{d^4x_n}{(2\pi)^2} e^{-i(p_1 \cdot x_1 + ... + p_n \cdot x_n)} \Gamma^{(n)}(x_1, ..., x_n) .$$
(5)

4. Show that

$$\int d^4y \, G^{(2)}(x,y) \Gamma^{(2)}(y,z) = \alpha \, \delta^4(x-z)$$

and find the value of  $\alpha$ .

Let us now show that the 2-point Green's function depends only on the difference of the point positions, i.e.

$$\langle \Omega | T \hat{\phi}(x_1) \hat{\phi}(x_2) | \Omega \rangle = G^{(2)}(x_1 - x_2) \tag{6}$$

This follows form the invariance of the vacuum state under space-time translation, i.e.  $\hat{P}_{\mu}|\Omega\rangle = 0$ .

5. Using this property of  $|\Omega\rangle$  and the transformation low of the field  $\hat{\phi}(x)$  under translation, show that

$$\langle \Omega | T \, \hat{\phi}(x_1) \hat{\phi}(x_2) | \Omega \rangle = \langle \Omega | T \, \hat{\phi}(x_1 + v) \hat{\phi}(x_2 + v) | \Omega \rangle$$

where v is a constant space-time shift. Why does this imply (6)?

## Problem 6: Phase space Path Integral

We have seen in Lecture 1, that

$$\langle q', t_f | q, t_i \rangle = \lim_{\delta t \to 0} \prod_{k=1}^{n-1} \left\{ \int dq_i \left( \frac{m}{2\pi i \hbar \delta t} \right)^{1/2} \right\} e^{i \sum_{k=0}^{n-1} L[q_k, \dot{q}_k]/\hbar} \equiv \int \mathcal{D}q \, e^{i/\hbar \int_{t_i}^{t_f} L[q, \dot{q}] dt}$$
(7)

(with proper boundary conditions for q(t)). To derive this formula we assumed to have a system with  $H = \frac{p^2}{2m} + V(q)$ .

Consider instead an Hamiltonian of the form  $H = \frac{1}{2}p^2v(q)$ .

- Show that the classical Lagrangian is  $L = \frac{\dot{q}^2}{2v(q)}$ .
- Show that

$$\langle q', t_f | q, t_i \rangle \neq \int \mathcal{D}q \, e^{i/\hbar \int_{t_i}^{t_f} L[q,\dot{q}]dt}.$$

where

$$\langle q', t_f | q, t_i \rangle = \int \mathcal{D}q \, \mathcal{D}p e^{i/\hbar \int_{t_i}^{t_f} dt \{p\dot{q} - H\}} \,.$$
 (8)